Nobel Prize in Chemistry in 1995

Total Page:16

File Type:pdf, Size:1020Kb

Nobel Prize in Chemistry in 1995 Nobel Prize in Chemistry in 1995 The Royal Swedish Academy of Sciences has decided to award the 1995 Nobel Prize in Chemistry to Professor Paul Crutzen, Max Planck Institute for Chemistry, Mainz, Germany (Dutch citizen), Professor Mario Molina, Department of Earth, Atmospheric and Planetary Sciences and Department of Chemistry, MIT, Cambridge, MA, USA and Professor F. Sherwood Rowland, Department of Chemistry, University of California, Irvine, CA, USA for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone. Paul J. Crutzen Mario J. Molina F. Sherwood Rowland Prize share: 1/3 Prize share: 1/3 Prize share: 1/3 • Paul Crutzen was born in 1933 in Amsterdam. Dutch citizen. Doctor’s degree in meteorology, Stockholm University, 1973. Member of the Royal Swedish Academy of Sciences, the Royal Swedish Academy of Engineering Sciences and Academia Europaea. Professor Paul Crutzen, Max Planck Institute for Chemistry, P.O. Box 3060 D-55020 Mainz, Germany. • Mario Molina was born in 1943 in Mexico City, Mexico. Ph.D. in physical chemistry, University of California, Berkeley. Member of the US National Academy of Sciences. Professor Mario Molina, Department of Earth, © The Author(s) 2016 239 P.J. Crutzen and H.G. Brauch (eds.), Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene, Nobel Laureates 50, DOI 10.1007/978-3-319-27460-7 240 Nobel Prize in Chemistry in 1995 Atmospheric and Planetary Sciences MIT 54—1312, Cambridge MA 02139, USA. • F. Sherwood Rowland was born in Delaware, Ohio, USA, 1927 and deceased in 2012. Doctor’s degree in chemistry, University of Chicago, 1952. Member of the American Academy of Arts and Sciences and of the US National Academy of Sciences, where he was Foreign Secretary. Source: “Press Release: The 1995 Nobel Prize in Chemistry”. Nobelprize.org. Nobel Media AB 2014. Web. 3 Jan 2015. http://www.nobelprize.org/nobel_prizes/ chemistry/laureates/1995/press.html and at: http://www.nobelprize.org/nobel_ prizes/chemistry/laureates/1995/illpres/reading.html and for the Award Ceremony Speech by Professor Ingmar Grenthe of the Royal Swedish Academy of Sciences is at: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1995/presentation- speech.html. Interview with Paul Crutzen by Astrid Gräslund at the meeting of Nobel Laureates in Lindau, Germany, June 2000. Paul Crutzen talks about family back- ground, early education and interest in natural science; his work in the Institute of Meteorology in Stockholm (5:02); his discovery (6:55); the ozone layer (15:42); the Greenhouse Effect (19:10); ozone holes (23:43); and the consequences of a ‘Nuclear winter’ (27:09). See a Video of the Interview, 34 min., at: http://www. nobelprize.org/mediaplayer/index.php?id=734. Prof. Paul J. Crutzen on the eve of his 80th birthday on 2 December 2013 at the symposium The Anthropocene organized in his honour by the Max Planck Institute of Chemistry in Mainz. Photo by Carsten Costard Max Planck Institute for Chemistry Aiming at an Integral Scientific Understanding of Chemical Processes in the Earth System from Molecular to Global Scales Current research at the Max Planck Institute for Chemistry in Mainz aims at an integral understanding of chemical processes in the Earth system, particularly in the atmosphere and biosphere. Investigations address a wide range of interactions between air, water, soil, life and climate in the course of Earth history up to today’s human-driven epoch, the Anthropocene: see at: http://www.mpic.de/en/employees/ honors-and-awards/the-anthropocene.html. Research at the Max Planck Institute for Chemistry has been at the forefront of science throughout its existence. Since the Institute’s foundation in 1912, three of its directors were awarded with the Nobel Prize for Chemistry: Richard Willstätter in 1915 for the revelation of the structure of chlorophyll and other plant pigments, Otto Hahn in 1944 for the discovery of nuclear fission, and Paul Crutzen in 1995 for the elucidation of atmospheric ozone chemistry. The research departments and focal points of the Institute have gone through a history of change and scientific evolution. What began in 1912 with classical organic, inorganic and physical chemistry at the Kaiser Wilhelm Institute for Chemistry in Berlin evolved into radiochemistry and nuclear physics in the 1930s, © The Author(s) 2016 243 P.J. Crutzen and H.G. Brauch (eds.), Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene, Nobel Laureates 50, DOI 10.1007/978-3-319-27460-7 244 Max Planck Institute for Chemistry leading to the discovery of nuclear fission by Otto Hahn, Lise Meitner and Fritz Strassmann. As the Institute was severely damaged towards the end of World War II it was moved to the Swabian Alps in today’s Baden-Wuerttemberg. There the chemists worked provisionally from 1944 to 1949 until the Institute moved a second time to the campus of the newly founded Johannes Gutenberg University in Mainz. At the same time it was integrated into the Max Planck Society, the successor of the Kaiser Wilhelm Society, Institute for Chemistry. Since 1959 the Institute also carries the name “Otto Hahn Institute” in honor of its previous director and the first president of the Max Planck Society. In the 1960s and 1970s the Institute’s research portfolio was extended from Physical Chemistry, Nuclear Physics and Mass Spectrometry to Cosmochemistry, Isotope Cosmology and Air Chemistry. Meteorites and moon dust samples were studied and the interplay of atmospheric gases, particles and meteorology were investigated. In the 1980s new departments for Geochemistry and Biogeochemistry were founded, in 2001 the Particle Chemistry department was established jointly with the Institute for Atmospheric Physics at the Johannes Gutenberg University of Mainz. In 2012 the Multiphase Chemistry Department and in 2015 the Climate Geochemistry Department was founded. Nowadays, the research focus of the Max Planck Institute for Chemistry is on Earth System science, in particular on the chemical processes occurring in the atmosphere and their interactions with the biosphere and oceans. It also includes the influence of humans, as unprecedented urbanization and industrialization in the past centuries have changed the course of natural processes on our planet, in an epoch now known as the Anthropocene. Currently, the institute employs some 300 staff in five departments (Atmospheric Chemistry, at: http://www.mpic.de/en/research/atmospheric-chemistry.html, Biogeochemistry, at: http://www.mpic.de/en/research/biogeochemistry.html, Climate Geochemistry at: http://www.mpic.de/en/research/111561.html, Multiphase Chemistry, at: http://www.mpic.de/en/research/multiphase-chemistry. html and Particle Chemistry, at: http://www.mpic.de/en/research/particle-chemistry. html) and additional research groups. Scientists conduct laboratory experiments, collect samples and record measurement data during field campaigns utilizing airplanes, ships, and vehicles. The practical work is complemented with mathe- matical models that simulate chemical, physical, and biological processes from molecular to global scales. One of the major goals is to find out how air pollution, including reactive trace gases and aerosols, affect the atmosphere, biosphere, cli- mate, and public health. A description of current research topics is given in the Institute Reports http:// www.mpic.de/fileadmin/user_upload/images_Institut/Fachbeirat/MPIC_Scientific_ Report_2012-2014_screen_sm_rev.pdf. About the Author The research of Paul J. Crutzen has been mainly concerned with the role of chemistry in climate and biogeochemistry, and in particular the photochemistry of ozone in the stratosphere and troposphere. In 1970 he hypothesized that natural ozone production by the action of solar ultraviolet radiation on molecular oxygen (O2) is mainly balanced by destruction pro- cesses, involving NO and NO2 as catalysts. These catalysts in turn result from the oxidation of N2O, a product of microbiological nitrogen conversion in soils and waters. He and Prof. Harold Johnston of the Photo by Carsten Costard University of California, Berkeley, pointed out that NO emissions from large fleets of supersonic aircraft could cause substantial ozone losses in the stratosphere. In the years 1972–1974 Crutzen proposed that NO and NO2 could catalyse ozone production in the background troposphere by reactions occurring in the CO and CH4 oxidation chains. Additional photochemical reactions leading to ozone loss were likewise identified. These gross ozone production and destruction terms are each substantially larger than the downward flux of ozone from the stratosphere, which until then had been considered the main source of tropospheric ozone. In 1979–1980 Crutzen and co-workers drew attention to the great importance of the tropics in atmospheric chemistry. In particular, some measurement campaigns in Brazil clearly showed that biomass burning in the tropics was a major source of air pollutants, on a par with, or larger than, industrial pollution in the developed world. In 1982 Crutzen, together with Prof. John Birks of the University of Colorado, drew attention to the risk of darkness and strong cooling at the earth surface as a consequence of heavy smoke production by extensive fires in a nuclear war (‘nuclear winter’). This study and additional studies by R. Turco, B. Toon, T. Ackerman, J. Pollack and C. Sagan and by the Scientific Committee on Problems of the Environment (SCOPE), to which
Recommended publications
  • Alfred Nobel
    www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent.
    [Show full text]
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • Mario Molina (1943– ) Information Sheet
    Mario Molina (1943– ) information sheet Mario Molina (Picture reproduced courtesy of Nobel Foundation.) As a boy, Mario Molina was strongly influenced by his aunt, a chemist in the sugar industry, who later became a teacher. She used to encourage him to carry out chemistry experiments at home in a converted bathroom. From a young age Mario’s ambition was to be a research scientist, even though it was not a trendy job for a young Mexican. Why investigate CFCs and the atmosphere? Molina went to university and studied chemistry at degree level. He then took a research degree (a PhD) in 1972, at the University of California, Berkeley. Molina then went to Irvine to work with a man called Sherwood Rowland, who had recently heard that the British scientist James Lovelock had discovered some of the refrigerant trichlorofluoromethane (called CFC-11) in the atmosphere of the Northern and Southern hemisphere. He was curious to find out more, and wanted to know the answer to a simple question, ‘what happens to CFCs in the environment and were there any consequences?’ Rowland managed to persuade his sponsors to fund the project and Molina started investigating CFCs in October 1973, even though his knowledge of atmospheric chemistry was limited. Molina got to work, carrying out calculations and he soon started to build up a very worrying picture of the atmosphere. If he was right, it was not good news; if he was wrong he would look stupid. What should he do next? Molina’s theory CFC’s were so inert that there was nothing for them to react with in the atmosphere.
    [Show full text]
  • Paul Josef Crutzen: Ingeniousness and Innocence RETROSPECTIVE Hans Joachim Schellnhubera,B,1
    RETROSPECTIVE Paul Josef Crutzen: Ingeniousness and innocence RETROSPECTIVE Hans Joachim Schellnhubera,b,1 On January 28, 2021, the world lost a scholar, who won a Nobel Prize, who shaped our thinking about planet Earth, and whose fight for the protection of the global environment will be remembered forever. Paul Josef Crutzen was born in Amsterdam in 1933 and embarked on a cosmopolitan journey in 1957, when he left The Netherlands for Sweden. Looking back at that journey, we can state that he arrived at a triad of accomplishments that few intellectuals obtain: the disruptive advancement of science, the inspiring com- munication of science, and the responsible operation- alization of science. Paul was trained as a civil engineer for the con- struction sector, which he abandoned for becoming a computer programmer at the Meteorology Institute of Stockholm University (MISU). The university housed the world’s fastest computers at that time, and the institute, founded by the great Gustav Rossby, was at the forefront of atmospheric research. When Paul Paul J. Crutzen. Image credit: Carsten Costard arrived, MISU was headed by another giant of mete- Photography. orology, Bert Bolin, who later became the chair of the Intergovernmental Panel on Climate Change. Paul had always longed for an academic career due to his for Chemistry, Mainz, from 1980 onwards), while also interest and talent in mathematics and physics, yet teaching as a visiting professor in various other loca- was denied access to university education in The tions around the globe. Yet it was in Stockholm where Netherlands by an unfortunate episode of illness.
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • Report to the President on Health Information Technology
    REPORT TO THE PRESIDENT REALIZING THE FULL POTENTIAL OF HEALTH INFORMATION TECHNOLOGY TO IMPROVE HEALTHCARE FOR AMERICANS: THE PATH FORWARD Executive Office of the President President’s Council of Advisors on Science and Technology December 2010 Created: 2:52 PM 09/01/2009 — Modified: 2:27 PM 12/07/2010 REPORT TO THE PRESIDENT REALIZING THE FULL POTENTIAL OF HEALTH INFORMATION TECHNOLOGY TO IMPROVE HEALTHCARE FOR AMERICANS: THE PATH FORWARD Executive Office of the President President’s Council of Advisors on Science and Technology December 2010 About the President’s Council of Advisors on Science and Technology The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the nation’s leading scientists and engineers, appointed by the President to augment the science and tech­ nology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the full range of issues where understandings from the domains of science, technology, and innovation bear potentially on the policy choices before the President. PCAST is administered by the White House Office of Science and Technology Policy (OSTP). For more information about PCAST, see http://www.whitehouse.gov/ostp/pcast ★ i ★ The President’s Council of Advisors on Science and Technology Co-Chairs John P. Holdren Eric Lander Harold Varmus* Assistant to the President President, Broad Institute of President, Memorial Sloan­ forScience and Technology
    [Show full text]
  • Nobel Special Issue of Chemical Physics Letters
    Accepted Manuscript Editorial Nobel Special Issue of Chemical Physics Letters David Clary, Mitchio Okumura, Villy Sundstrom PII: S0009-2614(13)01325-0 DOI: http://dx.doi.org/10.1016/j.cplett.2013.10.045 Reference: CPLETT 31683 To appear in: Chemical Physics Letters Please cite this article as: D. Clary, M. Okumura, V. Sundstrom, Nobel Special Issue of Chemical Physics Letters, Chemical Physics Letters (2013), doi: http://dx.doi.org/10.1016/j.cplett.2013.10.045 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Nobel Special Issue of Chemical Physics Letters Editorial The hallmark of Chemical Physics Letters is the fast publication of urgent communications of the highest quality. It has not escaped our notice that this policy has allowed several of the breakthrough papers in chemistry to be published in our journal. Indeed, looking through Chemical Physics Letters over the last 42 years we found papers published by as many as 15 authors who went on subsequently to win the Nobel Prize in Chemistry for work linked to their articles. Furthermore, several of these papers were referenced in the Nobel citations. We thought our readers would find it of interest to see a collection of these papers brought together and introduced with summaries explaining their significance and written by the Nobelists themselves, close colleagues or editors of the journal.
    [Show full text]
  • Missions for Nuclear Weapons After the Cold War
    FEDERATION of ofAAMERICANMERICANSCIENTISTSSCIENTISTS Missions for Nuclear Weapons after the Cold War Ivan Oelrich Occasional Paper No. 3 January 2005 About the Federation of American Scientists For almost sixty years, the Federation of American Scientists and our members have played a critical role both in identifying opportunities and risks resulting from advances in science and technology. Our efforts are focused on research and advocacy on science and policy issues to ensure that advances in science and technology make America more secure, our economy more sustainable, and our society more just. The Federation of American Scientists (FAS) was founded in 1945 by Manhattan Project scientists who recognized that atomic weapons had irreversibly changed the role of scientists in national affairs. Our members are united by the conviction that scientists and engineers have a unique opportunity — and responsibility — to help America seize the benefits of their discoveries and inventions and avoid their potential dangers. Our current work is focused on some of our country’s most critical policy challenges: strategic security, information technologies, science policy, housing and energy. Our work is funded by membership dues, philanthropic foundations, corporate and individual gifts, and government grants. FAS is a 501(c)3 organization. Donations and gifts are tax-deductible. Join or donate online at http://www.fas.org/join.html, or contact us at 202.546.3300. The Occasional Paper Series is a publication of the Federation of American Scientists. The purpose of the series is to stimulate and inform debate on current science and security policy issues. Copies of this and previous papers can be obtained by contacting the FAS at 202-546-3300 or by visiting our website: www.fas.org.
    [Show full text]
  • Report to the President Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics
    REPORT TO THE PRESIDENT ENGAGE TO EXCEL: PRODUCING ONE MILLION ADDITIONAL COLLEGE GRADUATES WITH DEGREES IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS Executive Office of the President President’s Council of Advisors on Science and Technology FEBRUARY 2012 About the President’s Council of Advisors on Science and Technology The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the nation’s leading scientists and engineers, appointed by the President to augment the science and tech­ nology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the full range of issues where understandings from the domains of science, technology, and innovation bear potentially on the policy choices before the President. For more information about PCAST, see www.whitehouse.gov/ostp/pcast. The President’s Council of Advisors on Science and Technology Co-Chairs John P. Holdren Eric Lander Assistant to the President for President Science and Technology Broad Institute of Harvard and MIT Director, Office of Science and Technology Policy Vice Chairs William Press Maxine Savitz Raymer Professor in Computer Science and Vice President Integrative Biology National Academy of Engineering University of Texas at Austin Members Rosina Bierbaum Shirley Ann Jackson Professor of Natural Resources and President Environmental Policy Rensselaer Polytechnic Institute School of Natural Resources and Environment
    [Show full text]
  • Congressional Record—Senate S6593
    July 13, 2000 CONGRESSIONAL RECORD Ð SENATE S6593 E. J. Corey, Harvard University, 1990 Nobel The PRESIDING OFFICER. The Sen- AMENDMENT NO. 3753 Prize in chemistry. ator from Mississippi. Mr. ROCKEFELLER. Mr. President, I James W. Cronin, University of Chicago, Mr. COCHRAN. Mr. President, the am pleased that the Senate has taken 1980 Nobel Prize in physics. an important step toward protecting Renato Dulbecco, The Salk Institute, 1975 Durbin amendment is unnecessary. It Nobel Prize in medicine. purports to direct the manner and de- the lives and property of all Americans Edmond H. Fischer, Univ. of Washington, tails of a missile testing program that with the passage of the Firefighter In- 1992 Nobel Prize in medicine. the Secretary of Defense is committed vestment and Response Enhancement Val L. Fitch, Princeton University, 1980 to conduct already. Act. I am proud today to join with Sen- Nobel Prize in physics. This amendment is an unprecedented ators DODD and DEWINE as a cosponsor Robert F. Furchgott, Suny Health Science effort by the Senate to micromanage a of this legislation. I wish to thank Sen- Ctr., 1998 Nobel Prize in medicine. ator DODD and Senator DEWINE for the Murray Gell-Mann, Santa Fe Institute, weapons system testing program. In no 1969 Nobel Prize in physics. other program has the Senate tried to leadership and effort they have shown Ivar Giaever, Rensselaer Polytechnic Insti- legislate in this way to dictate to DOD on behalf of the men and women serv- tute, 1973 Nobel Prize in physics. how a classified national security test- ing as firefighters across the nation.
    [Show full text]
  • OLC Denies FOIA Request for Opinion on Executive Orders
    FEDERATION OF AMERICAN SCIENTISTS Board of Sponsors 1725 DeSales Street NW, 6th floor [email protected] (Partial List) Washington, DC 20036 www.fas.org *Sidney Altman Phone: (202) 546-3300 Fax: (202) 675-1010 Bruce Ames F.A.S. *Philip W. Anderson *Kenneth J. Arrow *Julius Axelrod *David Baltimore Frank von Hippel Hal Feiveson Henry C. Kelly Paul Beeson Chairman Secretary-Treasurer President *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop *Nicolaas Bloembergen *Norman Borlaug *Paul Boyer March 11, 2008 *Owen Chamberlain (202)454-4691 Morris Cohen *Stanley Cohen [email protected] Mildred Cohn *Leon N. Cooper Elizabeth Farris *E. .J. Corey Paul B. Cornely Office of Legal Counsel *James Cronin *Johann Deisenhofer Room 5515, 950 Pennsylvania Avenue, NW Carl Djerassi Ann Druyan Department of Justice *Renato Dulbecco John T. Edsall Washington, DC 20530-0001 Paul R. Ehrlich By fax: 202-514-0563 George Field *Val L. Fitch Jerome D. Frank *Jerome I. Friedman Dear Ms. Farris: *John Kenneth Galbraith *Walter Gilbert *Donald Glaser *Sheldon L. Glashow This is a request under the Freedom of Information Act. Marvin L. Goldberger *Joseph L. Goldstein *Roger C. L. Guillemin We request a copy of an Office of Legal Counsel opinion from the George *Dudley R. Herschbach *Roald Hoffmann W. Bush Administration pertaining in part to the efficacy of executive John P. Holdren *David H. Hubel orders. *Jerome Karle Nathan Keyfitz *H. Gobind Khorana *Arthur Kornberg In particular, Senator Sheldon Whitehouse stated on the Senate floor on *Edwin G. Krebs *Willis E. Lamb December 7 that he had examined an OLC opinion which included, *Leon Lederman *Edward Lewis according to his notes, the following statement or something resembling it: *William N.
    [Show full text]
  • H. Res. 593 in the House of Representatives, U
    H. Res. 593 In the House of Representatives, U. S., September 17, 2007. Whereas in 1973, on the University of California, Irvine cam- pus, chemists F. Sherwood Rowland and Mario Molina began researching the depletion of stratospheric ozone by the chlorofluorocarbon gases then used worldwide as re- frigerants and aerosol propellants; Whereas on June 28, 1974, F. Sherwood Rowland and Mario Molina published in the scientific journal Nature, their path-breaking article, ‘‘Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalysed Destruc- tion of Ozone’’; Whereas in 1976, the work of F. Sherwood Rowland and Mario Molina connecting chlorofluorocarbons and atmos- pheric ozone depletion was confirmed by the National Academy of Sciences; Whereas in 1978, the United States banned chlorofluorocarbons as propellants in aerosol cans; Whereas in 1987, because of the research of F. Sherwood Rowland, Mario Molina, Paul Crutzen, and many other scientists, the international community acted through the adoption of the Montreal Protocol on Substances that Deplete the Ozone Layer (‘‘Montreal Protocol’’); 2 Whereas the Montreal Protocol created the Multilateral Fund for the Implementation of the Montreal Protocol which provides funds to help developing countries to phase out the use of ozone-depleting substances; Whereas the Multilateral Fund for Implementation of the Montreal Protocol was the first financial mechanism to be created under an international treaty; Whereas the Montreal Protocol recognized that world-wide emissions of certain substances can significantly deplete and otherwise modify the ozone layer in a manner that is likely to result in adverse effects on human health and the environment; Whereas because of the adoption of the Montreal Protocol the levels of chlorofluorocarbon gases in the Earth’s atmos- phere have decreased; Whereas on September 17, 1987, the Montreal Protocol was open for signatures; Whereas to date, 191 nations have signed the Montreal Pro- tocol; Whereas F.
    [Show full text]