Missions for Nuclear Weapons After the Cold War

Total Page:16

File Type:pdf, Size:1020Kb

Missions for Nuclear Weapons After the Cold War FEDERATION of ofAAMERICANMERICANSCIENTISTSSCIENTISTS Missions for Nuclear Weapons after the Cold War Ivan Oelrich Occasional Paper No. 3 January 2005 About the Federation of American Scientists For almost sixty years, the Federation of American Scientists and our members have played a critical role both in identifying opportunities and risks resulting from advances in science and technology. Our efforts are focused on research and advocacy on science and policy issues to ensure that advances in science and technology make America more secure, our economy more sustainable, and our society more just. The Federation of American Scientists (FAS) was founded in 1945 by Manhattan Project scientists who recognized that atomic weapons had irreversibly changed the role of scientists in national affairs. Our members are united by the conviction that scientists and engineers have a unique opportunity — and responsibility — to help America seize the benefits of their discoveries and inventions and avoid their potential dangers. Our current work is focused on some of our country’s most critical policy challenges: strategic security, information technologies, science policy, housing and energy. Our work is funded by membership dues, philanthropic foundations, corporate and individual gifts, and government grants. FAS is a 501(c)3 organization. Donations and gifts are tax-deductible. Join or donate online at http://www.fas.org/join.html, or contact us at 202.546.3300. The Occasional Paper Series is a publication of the Federation of American Scientists. The purpose of the series is to stimulate and inform debate on current science and security policy issues. Copies of this and previous papers can be obtained by contacting the FAS at 202-546-3300 or by visiting our website: www.fas.org. Photo: Paths of reentry vehicles after release from a Peacekeeper ICBM in a test over Kwajalein Atoll in the Pacific Ocean. Courtesy of US. Army. Board of Sponsors Board of Directors (Partial List) Tara O’Toole * Sidney Altman * H. Gobind Khorana Chair * Philip W. Anderson * Arthur Kornberg * Kenneth J. Arrow * Edwin G. Krebs Steven Weinberg * Julius Axelrod * Willis E. Lamb Vice Chair * David Baltimore * Leon Lederman * Baruj Benacerraf * Edward Lewis Jonathan Silver * Paul Berg * William N. Lipscomb Secretary-Treasurer * Hans A. Bethe Jessica T. Mathews * J. Michael Bishop Roy Menninger Henry Kelly * Nicolaas Matthew S. Meselson President Bloembergen * Mario Molina * Norman Borlaug Philip Morrison * Paul Boyer Stephen S. Morse Ann Pitts Carter * Ferid Murad Rosina Bierbaum * Owen Chamberlain * Joseph E. Murray Morris Cohen Franklin A. Neva Francois Castaing * Stanley Cohen * Marshall Nirenberg David Foster Mildred Cohn * Douglas D. Osheroff Richard Garwin * Leon N. Cooper * Arno A. Penzias * E. J. Corey * Martin L. Perl Lawrence Grossman * James Cronin George Rathjens Eamon Kelly * Johann Deisenhofer * Burton Richter Jane Owen Ann Druyan * Richard J. Roberts * Renato Dulbecco * J. Robert Schrieffer Kumar Patel Paul R. Ehrlich Andrew Sessler Judith Reppy George Field * Phillip A. Sharp Art Rosenfeld * Val L. Fitch * K. Barry Sharpless Shankar Sastry * Jerome I. Friedman George A. Silver * Robert Furchgott * Richard E. Smalley Maxine Savitz John Kenneth * Robert M. Solow Galbraith Gregory Simon * Jack Steinberger * Riccardo Giacconi Richard Wald * Joseph Stiglitz * Walter Gilbert * Henry Taube * Donald Glaser * Daniel Tsui Ex officio: * Sheldon L. Glashow * Charles H. Townes Marvin L. Goldberger Carl Kaysen Frank von Hippel * Joseph L. Goldstein Robert A. Weinberg Robert Solow * Roger C. L. Guillemin Myron Wegman * Herbert A. Hauptman Frank von Hippel * Steven Weinberg * Dudley R. Herschbach * Torsten N. Wiesel * Roald Hoffmann Alfred Yankauer John P. Holdren Herbert F. York * David H. Hubel * Jerome Karle * Nobel Laureate Carl Kaysen Missions for Nuclear Weapons after the Cold War Ivan Oelrich Occasional Paper No. 3 January 2005 Acknowledgements In support of this study, the Federation of American Scientists asked a dis- tinguished group of experts to provide advice and comments. This panel was made up of Charlie Curtis, Steve Fetter, Leon Fuerth, Rose Gottemoeller, Michael Levi, Jan Lodal, Michael May, and Jim Steinberg. This report benefit- ed enormously from their thoughtful discussions, during meetings at the Federa- tion and from their comments on earlier drafts. While I am sure no panel mem- ber agrees with every point made in this study, I hope each can see their ideas reflected here. I would also like to thank Henry Kelly, the President of the Fed- eration for his comments and support and Jaime Yassif for assistance with the research, organizing the panel meetings, and providing summary narratives of each meeting. Finally, I want to thank the John D. and Catherine T. MacArthur Foundation and the Ploughshares Fund for their generous support that made this work possible. Ivan Oelrich Director, Strategic Security Program, FAS November 2004 TABLE OF CONTENTS Executive Summary . 1 Section 1: Background & Approach … . 9 The post-Cold War nuclear environment. 12 Table 1 United States Nuclear Warhead Inventory. 13 Defining Nuclear Missions. 15 Table 2 Nuclear Weapons Missions. 16 Evaluation Criteria . 17 Section 2: Nuclear Mission Evaluations . 21 Mission 1: Retaliation for nuclear attack against homeland Mission 2: Retaliation for nuclear attack against allies . 21 Mission 3: Retaliate for CBW attack against homeland Mission 4: Retaliate for CBW attack against allies Mission 5: Retaliate for CBW use in military theater. 29 Mission 6: Deploying weapons capable of attacking enemy nuclear weapons to discourage their development Mission 7: Deploying weapons capable of attacking enemy CBW weapons to discourage their development . 33 Mission 8: Damage-limitation attacks against nuclear weapons in military theater Mission 9: Damage-limitation attacks against CB weapons in military theater . 36 Mission 10: Damage limitation attacks against Russian/Chinese central systems . 41 iv | Federation of American Scientists Mission 11: Retaliate for regional conventional attacks. 45 Mission 12: Overawe potential rivals . 46 Mission 13: Provide virtual power . 49 Mission 14: Fight regional wars . 49 Mission 15: War termination . 51 Section 3: Conclusions . 53 Appendix: Nuclear "Usability" and the Likelihood of Use . 57 Figure A1 The “More is Less” Curve . 58 Endnotes . 63 Executive Summary uclear weapons are instruments of immense military and political power. Their existence affected every aspect of the Cold War. The Nappropriate roles of nuclear weapons are less clear now that the Cold War is over and much of the current U.S. nuclear force posture is extrapolated from the past. In spite of the great changes in the strategic environment, the United States and Russia still maintain arsenals of over seven thousand nuclear weapons, most with explosive force equivalent to hundreds of thousands of tons of TNT, and most ready to launch within minutes. During the Cold War, the nuclear arsenals of both the United States and the Soviet Union allowed for substantial overkill and redundancy. Thus, even large quantitative reductions in intercontinental strategic weapons do not have comparable qualitative ef- fects. Even when the United States and Russia move to the two thousand or so weapons envisioned by the SORT or Moscow Treaty, the U.S. nuclear force structure will be a scaled down version of its Cold War arsenal. In addition the United States, and probably Russia, are exploring new missions for nuclear weapons. This study sets out to evaluate today's nuclear missions. The range of mis- sions for nuclear weapons is being eroded from two sides. First, changes in the strategic environment, including the end of the Cold War, the collapse of the Soviet Union, dissolution of the Warsaw Pact, the ris- ing conventional dominance of the United States, and the growing non-state threat have reduced the number of missions that might warrant weapons of such enormous power. The stakes involved during the Cold War were for each su- perpower's survival; for the West, nuclear weapons helped compensate for per- ceived conventional weaknesses. Nuclear doctrines evolved at a time when So- 2 | Federation of American Scientists viet tank armies were poised west of Berlin. But today, America's conventional superiority stands the Cold War strategic balance on its head. Introduction of nuclear weapons into conflicts around the world will work to the disadvantage of the United States. Second, on-going advances in U.S. non-nuclear technology allow conven- tional weapons to supplant nuclear weapons in those missions that remain. Dur- ing the Cold War, nuclear explosives were developed for use in torpedoes, depth charges, demolition charges, air-to-air rockets and surface-to-air missiles, and for small-unit fire support. One by one, advances in modern sensor-guided mu- nitions have made nuclear weapons obsolete for each of these missions. Per- haps the current emphasis on nuclear attack of deep and very hard targets comes about because it is the last mission, aside from destroying cities, for which nu- clear weapons are not obviously displaced by conventional alternatives. This is not to say that nuclear weapons are not potentially extremely useful for some other militaries. The Chinese military, for example, might be viewed as at the technological level of the U.S. military in the 1960s when tactical nu- clear capabilities were at their peak. Indeed, the Chinese might have difficulty sinking an American
Recommended publications
  • Alfred Nobel
    www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent.
    [Show full text]
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • Mario Molina (1943– ) Information Sheet
    Mario Molina (1943– ) information sheet Mario Molina (Picture reproduced courtesy of Nobel Foundation.) As a boy, Mario Molina was strongly influenced by his aunt, a chemist in the sugar industry, who later became a teacher. She used to encourage him to carry out chemistry experiments at home in a converted bathroom. From a young age Mario’s ambition was to be a research scientist, even though it was not a trendy job for a young Mexican. Why investigate CFCs and the atmosphere? Molina went to university and studied chemistry at degree level. He then took a research degree (a PhD) in 1972, at the University of California, Berkeley. Molina then went to Irvine to work with a man called Sherwood Rowland, who had recently heard that the British scientist James Lovelock had discovered some of the refrigerant trichlorofluoromethane (called CFC-11) in the atmosphere of the Northern and Southern hemisphere. He was curious to find out more, and wanted to know the answer to a simple question, ‘what happens to CFCs in the environment and were there any consequences?’ Rowland managed to persuade his sponsors to fund the project and Molina started investigating CFCs in October 1973, even though his knowledge of atmospheric chemistry was limited. Molina got to work, carrying out calculations and he soon started to build up a very worrying picture of the atmosphere. If he was right, it was not good news; if he was wrong he would look stupid. What should he do next? Molina’s theory CFC’s were so inert that there was nothing for them to react with in the atmosphere.
    [Show full text]
  • Paul Josef Crutzen: Ingeniousness and Innocence RETROSPECTIVE Hans Joachim Schellnhubera,B,1
    RETROSPECTIVE Paul Josef Crutzen: Ingeniousness and innocence RETROSPECTIVE Hans Joachim Schellnhubera,b,1 On January 28, 2021, the world lost a scholar, who won a Nobel Prize, who shaped our thinking about planet Earth, and whose fight for the protection of the global environment will be remembered forever. Paul Josef Crutzen was born in Amsterdam in 1933 and embarked on a cosmopolitan journey in 1957, when he left The Netherlands for Sweden. Looking back at that journey, we can state that he arrived at a triad of accomplishments that few intellectuals obtain: the disruptive advancement of science, the inspiring com- munication of science, and the responsible operation- alization of science. Paul was trained as a civil engineer for the con- struction sector, which he abandoned for becoming a computer programmer at the Meteorology Institute of Stockholm University (MISU). The university housed the world’s fastest computers at that time, and the institute, founded by the great Gustav Rossby, was at the forefront of atmospheric research. When Paul Paul J. Crutzen. Image credit: Carsten Costard arrived, MISU was headed by another giant of mete- Photography. orology, Bert Bolin, who later became the chair of the Intergovernmental Panel on Climate Change. Paul had always longed for an academic career due to his for Chemistry, Mainz, from 1980 onwards), while also interest and talent in mathematics and physics, yet teaching as a visiting professor in various other loca- was denied access to university education in The tions around the globe. Yet it was in Stockholm where Netherlands by an unfortunate episode of illness.
    [Show full text]
  • PDF File, 2.06 MB
    Introduction Have you ever seen those little About the International Year of Crystallography pictures of a molecule of your The United Nations declares 2014 as the official International Year of prescribed medication? …or a drawing Crystallography. It commemorates not only the centennial of X-ray of DNA showing two strands winding Amoxicillin diffraction, which allowed the detailed study of crystalline material, but also the 400th anniversary of Kepler’s observation in 1611 of the What do around each other? symmetrical form of ice crystals, which began the wider study of the role Molecules are too small to be seen by of symmetry in matter. New Drug Design, normal microscopy. Learn more at http://iycr2014.org X-ray crystallography is one of the DNA Studies few techniques that can visualize them About IUCr The International Union of Crystallography is a not-for- and was used to determine the first Schematic picture profit, scientific organization that aims to: and molecular structures ever known. of DNA • promote international cooperation in crystallography • contribute to all aspects of crystallography X-rays X-rays & X-ray Crystallography • promote international publication of crystallographic research have in common? How They Work • facilitate standardization of methods, units, nomenclatures and symbols • form a focus for the relations of crystallography to other sciences • X-ray beams are shot through • We calculate how the diffracted a crystal composed of the X-rays would look, if they The IUCr fulfils these objectives by publishing
    [Show full text]
  • Public Perceptions of S&T in Brazil, Funding Crisis and the Future
    Public perceptions of S&T in Brazil, funding crisis and the future Interest in science and technology The interest in science and technology increased 15% in Brazil between the first and the more recent survey CGEE, 2015 Interest in science and technology European Union (2013) x Brazil (2015) 26% of the Brazilians are very interested in S&T, against 13% of the people interviewed in the European Union European Union 2013 Brazil 2015 Not interested Low interested Interested Very interested DK DA CGEE, 2015 Who is interested? DA DN Very interested Interested Not very interested Not interested Illiterate Elementary school Elementary High school University (incomplete) school (complete) degree (complete) CGEE, 2015 Those who have more formal education have more interest in S&T Do you remember... Do you know any Brazilian institution dedicated to scientific research? Do you remember the name of a Brazilian scientist? No Yes DA CGEE, 2015 50% of Brazilians think scientists are smart people who do useful things for humanity Science brings only benefits: 1987–12% 2006–29% 2010–38% 2015–54% What inspires the scientists? Helping humanity (34%), contributing to the advancement of knowledge (17%), contributing to the scientific and technological development of the country (15%) People in the government should follow guidelines developed by scientists Partially agree - 41% Completely agree - 18% Scientific and technological developments will lead to less social inequalities Partially agree - 35% Completely agree - 17% Considering the surveys... - People
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • Report to the President on Health Information Technology
    REPORT TO THE PRESIDENT REALIZING THE FULL POTENTIAL OF HEALTH INFORMATION TECHNOLOGY TO IMPROVE HEALTHCARE FOR AMERICANS: THE PATH FORWARD Executive Office of the President President’s Council of Advisors on Science and Technology December 2010 Created: 2:52 PM 09/01/2009 — Modified: 2:27 PM 12/07/2010 REPORT TO THE PRESIDENT REALIZING THE FULL POTENTIAL OF HEALTH INFORMATION TECHNOLOGY TO IMPROVE HEALTHCARE FOR AMERICANS: THE PATH FORWARD Executive Office of the President President’s Council of Advisors on Science and Technology December 2010 About the President’s Council of Advisors on Science and Technology The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the nation’s leading scientists and engineers, appointed by the President to augment the science and tech­ nology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the full range of issues where understandings from the domains of science, technology, and innovation bear potentially on the policy choices before the President. PCAST is administered by the White House Office of Science and Technology Policy (OSTP). For more information about PCAST, see http://www.whitehouse.gov/ostp/pcast ★ i ★ The President’s Council of Advisors on Science and Technology Co-Chairs John P. Holdren Eric Lander Harold Varmus* Assistant to the President President, Broad Institute of President, Memorial Sloan­ forScience and Technology
    [Show full text]
  • Nobel Special Issue of Chemical Physics Letters
    Accepted Manuscript Editorial Nobel Special Issue of Chemical Physics Letters David Clary, Mitchio Okumura, Villy Sundstrom PII: S0009-2614(13)01325-0 DOI: http://dx.doi.org/10.1016/j.cplett.2013.10.045 Reference: CPLETT 31683 To appear in: Chemical Physics Letters Please cite this article as: D. Clary, M. Okumura, V. Sundstrom, Nobel Special Issue of Chemical Physics Letters, Chemical Physics Letters (2013), doi: http://dx.doi.org/10.1016/j.cplett.2013.10.045 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Nobel Special Issue of Chemical Physics Letters Editorial The hallmark of Chemical Physics Letters is the fast publication of urgent communications of the highest quality. It has not escaped our notice that this policy has allowed several of the breakthrough papers in chemistry to be published in our journal. Indeed, looking through Chemical Physics Letters over the last 42 years we found papers published by as many as 15 authors who went on subsequently to win the Nobel Prize in Chemistry for work linked to their articles. Furthermore, several of these papers were referenced in the Nobel citations. We thought our readers would find it of interest to see a collection of these papers brought together and introduced with summaries explaining their significance and written by the Nobelists themselves, close colleagues or editors of the journal.
    [Show full text]
  • Letter from Nobel Laureates
    May 19, 2015 The Honorable Eddie Bernice Johnson Ranking Minority Member Committee on Science, Space and Technology U.S. House of Representatives Washington, DC 20515 Dear Ms. Johnson: We, the undersigned American Nobel laureates in Physics, Chemistry, Medicine and Physiology, urge the House of Representatives to eliminate the separate appropriations authorizations for each directorate in the National Science Foundation when it considers H.R. 1806, The America COMPETES Reauthorization Act of 2015. If the separate authorizations for each directorate are not eliminated, we urge the House to restore the budgets for the Geosciences and Social, Behavioral and Economic Directorates. For the first time in the history of the National Science Foundation, H.R. 1806, as approved by the Committee on Science, Space, and Technology establishes a separate appropriations authorization for each of the Foundation’s directorates. The bill authorizes the appropriation of $1.2 billion annually for the Foundation’s Geosciences Directorate in the next two fiscal years, over $100 million less than this year. The bill authorizes $150 million annually for the Foundation’s Social, Behavioral and Economic Directorate in the next two fiscal years, which is $100 million less than this year. The allocation of funds among the Foundation’s directorates requires a broad understanding of the scientific and engineering opportunities that hold the most promise of advancing scientific and technical knowledge and thus benefiting the nation. The Foundation’s leadership and the scientific and technical experts who advise them are in the best position to make these allocations. The reductions in support for the geosciences and the social sciences contained in H.R.
    [Show full text]