Conformational Transition in Immunoglobulin MOPC 460" by Correction. in Themembership List of the National Academy of Scien
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tōhoku Rick Jardine
INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces. -
Terry Cole (1931-1999)
TERRY COLE (1931-1999) INTERVIEWED BY SHIRLEY K. COHEN October 11, 22 & 30, 1996 Photo by Robert Paz ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Chemistry, Jet Propulsion Laboratory Abstract Interview in three sessions, October 1996, with Terry Cole, senior faculty associate in the Division of Chemistry and Chemical Engineering and senior member of the technical staff of the Jet Propulsion Laboratory. Cole earned his BS in chemistry from the University of Minnesota in 1954 and his PhD from Caltech in 1958 under Don Yost, on magnetic resonance. The following year he moved to the Ford Scientific Research Laboratory, in Dearborn, Michigan, where he rose to head the departments of chemistry and chemical engineering. In 1980 he joined JPL’s Energy & Technology Applications branch; in 1982 he became JPL’s chief technologist, and he was instrumental in establishing JPL’s Microdevices Laboratory and its Center for Space Microelectronic Technology. Interview includes recollections of Lew Allen’s directorship of JPL and a discussion of the origins of the SURF (Summer Undergraduate Research Fellowship) program. http://resolver.caltech.edu/CaltechOH:OH_Cole_T Administrative information Access The interview is unrestricted. Copyright Copyright has been assigned to the California Institute of Technology © 2001, 2003. All requests for permission to publish or quote from the transcript must be submitted in writing to the University Archivist. Preferred citation Cole, Terry. Interview by Shirley K. Cohen. Pasadena, California, October 11, 22, and 30, 1996. Oral History Project, California Institute of Technology Archives. Retrieved [supply date of retrieval] from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Cole_T Contact information Archives, California Institute of Technology Mail Code 015A-74 Pasadena, CA 91125 Phone: (626)395-2704 Fax: (626)793-8756 Email: [email protected] Graphics and content © 2003 California Institute of Technology. -
Herbert Charles Brown, a Biographical Memoir
NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp. -
1985 Commencement Program, University Archives, University Of
UNIVERSITY of PENNSYLVANIA Two Hundred Twenty-Ninth Commencement for the Conferring of Degrees PHILADELPHIA CIVIC CENTER CONVENTION HALL Monday, May 20, 1985 Guests will find this diagram helpful in locating the Contents on the opposite page under Degrees in approximate seating of the degree candidates. The Course. Reference to the paragraph on page seven seating roughly corresponds to the order by school describing the colors of the candidates' hoods ac- in which the candidates for degrees are presented, cording to their fields of study may further assist beginning at top left with the College of Arts and guests in placing the locations of the various Sciences. The actual sequence is shown in the schools. Contents Page Seating Diagram of the Graduating Students 2 The Commencement Ceremony 4 Commencement Notes 6 Degrees in Course 8 • The College of Arts and Sciences 8 The College of General Studies 16 The School of Engineering and Applied Science 17 The Wharton School 25 The Wharton Evening School 29 The Wharton Graduate Division 31 The School of Nursing 35 The School of Medicine 38 v The Law School 39 3 The Graduate School of Fine Arts 41 ,/ The School of Dental Medicine 44 The School of Veterinary Medicine 45 • The Graduate School of Education 46 The School of Social Work 48 The Annenberg School of Communications 49 3The Graduate Faculties 49 Certificates 55 General Honors Program 55 Dental Hygiene 55 Advanced Dental Education 55 Social Work 56 Education 56 Fine Arts 56 Commissions 57 Army 57 Navy 57 Principal Undergraduate Academic Honor Societies 58 Faculty Honors 60 Prizes and Awards 64 Class of 1935 70 Events Following Commencement 71 The Commencement Marshals 72 Academic Honors Insert The Commencement Ceremony MUSIC Valley Forge Military Academy and Junior College Regimental Band DALE G. -
Alumni Newsletter
ALUMNI NEWSLETTER SCHOOL OF CHEMICAL SCIENCES UNIVERSITY OF ILLINOIS at Urbana-Champaign NO. 11, WINTER 1976-77 The State of the Union (Comments by H. S. Gutowsky, director of the School of Chemical Sciences) Following the tradition of the last three issues of the Alumni Newsletter, I have put together a synopsis of some selected material that appears in much more detail in the 1975-76 Annual Report of the School of Chemical Sci ences and is not covered elsewhere in this issue. If you would like more details, let me know and I will be happy to forward you a copy of the com plete annual report. Instructional Program Two steps were taken dw·ing the past year to address the fact that 75 per cent or more of our chemistry graduates take positions in industry without learning much in their programs about the nature of industrial careers. Professor Peter Beak organized a special topics course, Chemistry 433, Re search in Industry, given in the fall semester. Early in the course, Dr. J. K. Stille from the University of Iowa presented a series of ten lectures on the fundamentals of industrial and polymer chemistry. This was followed by eleven weekly lectures from industrial speakers active in chemical roles. The program attracted a good deal of interest among our students and staff and its beneficial effects were visible to industrial recruiters interviewing here near its end. The second step was the inauguration of a cooperative program with Monsanto Company (St. Louis) for the summer employment of graduate students. Three entering graduate students participated in the summer of 1976, and it is hoped to extend the program to a larger number of students (and other companies) as well as to faculty next summer. -
Interview with Thomas K. Caughey
THOMAS K. CAUGHEY (1927–2004) INTERVIEWED BY CAROL BUGÉ March 25 and April 2, 1987 Photo Courtesy Caltech’s Engineering & Science ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Engineering Abstract Interview in two sessions in 1987 by Carol Bugé with Thomas Kirk Caughey, Professor of Applied Mechanics and Caltech alumnus (PhD, 1954). Caughey was born and educated in Scotland (bachelor's degree, University of Glasgow, 1948.) Comes to the U.S. with Fulbright to Cornell, where he completes his master's degree in mechanical engineering in 1952. He then earns his PhD at Caltech in 1954. He recalls Caltech’s engineering and physics faculty in the 1950s: H. Frederic Bohnenblust, Arthur Erdelyi, Richard P. Feynman, Tsien Hsue-shen. Begins teaching at Caltech in 1955; recalls Caltech’s Engineering Division under Frederick Lindvall; other engineers and physicists; compares engineering to other disciplines. Return to Cornell and earlier period: outstanding Cornell professors Feynman, Hans Bethe, Barney Rosser, Ed Gunder, Harry Conway; recalls grad student Ross Evan Iwanowski. Problems of physics degree program at Cornell. Professors http://resolver.caltech.edu/CaltechOH:OH_Caughey_T Gray and Bernard Hague at Glasgow University. Comparison between American and European educational systems. His research in dynamics. Earthquake research at Caltech: George Housner and Donald Hudson. Discusses physics and engineering entering a decade of decline; coming fields of genetic engineering, cognitive science and computing, neural networks, and artificial intelligence. Anecdotes about Fritz Zwicky and Charles Richter. Comments on coeducation at Caltech. Caltech personalities: Robert Millikan in his late years; Paul Epstein; Edward Simmons, Richard Gerke; William A. Fowler; further on Zwicky, Hudson; engineers Donald Clark, Alfred Ingersoll; early memories of Earnest Watson. -
Lemuel Shaw, Chief Justice of the Supreme Judicial Court Of
This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com AT 15' Fl LEMUEL SHAW I EMUEL SHAW CHIFF jl STIC h OF THE SUPREME Jli>I«'RL <.OlRT OF MAS Wlf .SfcTTb i a 30- 1 {'('• o BY FREDERIC HATHAWAY tHASH BOSTON AND NEW YORK HOUGHTON MIFFLIN COMPANY 1 9 1 8 LEMUEL SHAW CHIEF JUSTICE OF THE SUPREME JUDICIAL COURT OF MASSACHUSETTS 1830-1860 BY FREDERIC HATHAWAY CHASE BOSTON AND NEW YORK HOUGHTON MIFFLIN COMPANY (Sbe Slibttfibe $rrtf Cambribgc 1918 COPYRIGHT, I9lS, BY FREDERIC HATHAWAY CHASE ALL RIGHTS RESERVED Published March iqiS 279304 PREFACE It is doubtful if the country has ever seen a more brilliant group of lawyers than was found in Boston during the first half of the last century. None but a man of grand proportions could have emerged into prominence to stand with them. Webster, Choate, Story, Benjamin R. Curtis, Jeremiah Mason, the Hoars, Dana, Otis, and Caleb Cushing were among them. Of the lives and careers of all of these, full and adequate records have been written. But of him who was first their associate, and later their judge, the greatest legal figure of them all, only meagre accounts survive. It is in the hope of sup plying this deficiency, to some extent, that the following pages are presented. It may be thought that too great space has been given to a description of Shaw's forbears and early surroundings; but it is suggested that much in his character and later life is thus explained. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Information Theory and the Length Distribution of All Discrete Systems
Information Theory and the Length Distribution of all Discrete Systems Les Hatton1* Gregory Warr2** 1 Faculty of Science, Engineering and Computing, Kingston University, London, UK 2 Medical University of South Carolina, Charleston, South Carolina, USA. * [email protected] ** [email protected] Revision: $Revision: 1.35 $ Date: $Date: 2017/09/06 07:30:43 $ Abstract We begin with the extraordinary observation that the length distribution of 80 million proteins in UniProt, the Universal Protein Resource, measured in amino acids, is qualitatively identical to the length distribution of large collections of computer functions measured in programming language tokens, at all scales. That two such disparate discrete systems share important structural properties suggests that yet other apparently unrelated discrete systems might share the same properties, and certainly invites an explanation. We demonstrate that this is inevitable for all discrete systems of components built from tokens or symbols. Departing from existing work by embedding the Conservation of Hartley-Shannon information (CoHSI) in a classical statistical mechanics framework, we identify two kinds of discrete system, heterogeneous and homogeneous. Heterogeneous systems contain components built from a unique alphabet of tokens and yield an implicit CoHSI distribution with a sharp unimodal peak asymptoting to a power-law. Homogeneous systems contain components each built from arXiv:1709.01712v1 [q-bio.OT] 6 Sep 2017 just one kind of token unique to that component and yield a CoHSI distribution corresponding to Zipf’s law. This theory is applied to heterogeneous systems, (proteome, computer software, music); homogeneous systems (language texts, abundance of the elements); and to systems in which both heterogeneous and homogeneous behaviour co-exist (word frequencies and word length frequencies in language texts). -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
1978 Commencement Program, University Archives, University Of
UNIVERSITY of PENNSYLVANIA Two Hundred Thirtieth Commencement for the Conferring of Degrees FRANKLIN FIELD Monday, May 19, 1986 Contents University of Pennsylvania Page OFFICE OF THE SECRETARY The Commencement Ceremony 4 Commencement Notes 6 General Instructions for Commencement Day , 1911 Degrees in Course 8 The College of Arts and Sciences 8 The College of General Studies 16 Members of Graduating Glasses Will Please Read and Retain this Notice The School of Engineering and Applied Science 17 The Wharton School 25 The Wharton Evening School 29 For the Information of the Graduating Classes, the following Instructions are issued to The Wharton Graduate Division 31 Govern Their Actions on Commencement Day, Wednesday, June 21st The School of Nursing 36 The School of Medicine 38 All those who are to receive degrees at Commencement will assemble by Schools in HORTICULTURAL HALL (just south of the Academy of Music), not later than 10.15 a. m. The Law School 39 The Graduate School of Fine Arts 41 Full Academic Dress (i. e., cap, gown and hood) must be worn. The School of Dental Medicine 44 The Marshal in charge will start the march promptly at 10.45. Each class will be headed by its President and The School of Veterinary Medicine 45 Vice-President. Classes will move in columns of two in the following order: The Graduate School of Education 46 Classes of 1911 College and Graduate School. The School of Social Work 48 Class of 1911 Law. The Annenberg School of Communications 49 Class of 1911 Medical. The Graduate Faculties 49 Class of 1911 Dental. -
Open PDF File, 134.33 KB, for Paintings
Massachusetts State House Art and Artifact Collections Paintings SUBJECT ARTIST LOCATION ~A John G. B. Adams Darius Cobb Room 27 Samuel Adams Walter G. Page Governor’s Council Chamber Frank Allen John C. Johansen Floor 3 Corridor Oliver Ames Charles A. Whipple Floor 3 Corridor John Andrew Darius Cobb Governor’s Council Chamber Esther Andrews Jacob Binder Room 189 Edmund Andros Frederick E. Wallace Floor 2 Corridor John Avery John Sanborn Room 116 ~B Gaspar Bacon Jacob Binder Senate Reading Room Nathaniel Banks Daniel Strain Floor 3 Corridor John L. Bates William W. Churchill Floor 3 Corridor Jonathan Belcher Frederick E. Wallace Floor 2 Corridor Richard Bellingham Agnes E. Fletcher Floor 2 Corridor Josiah Benton Walter G. Page Storage Francis Bernard Giovanni B. Troccoli Floor 2 Corridor Thomas Birmingham George Nick Senate Reading Room George Boutwell Frederic P. Vinton Floor 3 Corridor James Bowdoin Edmund C. Tarbell Floor 3 Corridor John Brackett Walter G. Page Floor 3 Corridor Robert Bradford Elmer W. Greene Floor 3 Corridor Simon Bradstreet Unknown artist Floor 2 Corridor George Briggs Walter M. Brackett Floor 3 Corridor Massachusetts State House Art Collection: Inventory of Paintings by Subject John Brooks Jacob Wagner Floor 3 Corridor William M. Bulger Warren and Lucia Prosperi Senate Reading Room Alexander Bullock Horace R. Burdick Floor 3 Corridor Anson Burlingame Unknown artist Room 272 William Burnet John Watson Floor 2 Corridor Benjamin F. Butler Walter Gilman Page Floor 3 Corridor ~C Argeo Paul Cellucci Ronald Sherr Lt. Governor’s Office Henry Childs Moses Wight Room 373 William Claflin James Harvey Young Floor 3 Corridor John Clifford Benoni Irwin Floor 3 Corridor David Cobb Edgar Parker Room 222 Charles C.