Physics 1928 OWEN WILLANS RICHARDSON
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear. -
A Brief History of Nuclear Astrophysics
A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. -
Nobel Prizes Social Network
Nobel prizes social network Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Sir J. J. Thomson (Phys.1906) Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Charlotte Richardson = Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. -
Marischal College
The Scientific Tourist: Aberdeen Marischal College George P Thomson – Nobel Prize winning physicist Sir George Paget Thomson FRS (1892-1975) was the only son of Sir J. J. Thomson, the Cavendish Professor of Physics who is probably most famous for discovering the existence of the electron and measuring its mass. G. P. Thomson was one of a select group of academics in the University of Aberdeen to be awarded the Nobel Prize. He earned it for his work in the Department of Natural Philosophy at Marischal College during his tenure from 1922-1930. There is now a commemorative plaque in the Marischal College quadrangle. Thomson was a high achieving Trinity College, Cambridge, scholar who graduated in 1913 and was elected Fellow and Lecturer at Corpus Christi College in the following year. He was, though, of the generation whose adult lives were to be shaped by two World Wars and their aftermaths. Thomson spent most of the First World War in France and in the research wing of the Royal Flying Corps. His first book1 came out of this experience and is simply entitled “Applied Aerodynamics”. It is a well-illustrated summary of the lessons of wartime work on the science of aircraft design and operation, underlining the basic physics involved. Upon Thomson’s return to Cambridge he took up research into his father’s long-standing interest of electrical discharges in gases. He brought this interest with him when he came to Aberdeen in 1922 and did much of the work enlarging J. J. Thomson’s “Conduction of Electricity through Gases” into a long awaited 3rd edition that was published in their joint names in 1928. -
Electron Microscopy
Electron microscopy 1 Plan 1. De Broglie electron wavelength. 2. Davisson – Germer experiment. 3. Wave-particle dualism. Tonomura experiment. 4. Wave: period, wavelength, mathematical description. 5. Plane, cylindrical, spherical waves. 6. Huygens-Fresnel principle. 7. Scattering: light, X-rays, electrons. 8. Electron scattering. Born approximation. 9. Electron-matter interaction, transmission function. 10. Weak phase object (WPO) approximation. 11. Electron scattering. Elastic and inelastic scattering 12. Electron scattering. Kinematic and dynamic diffraction. 13. Imaging phase objects, under focus, over focus. Transport of intensity equation. 2 Electrons are particles and waves 3 De Broglie wavelength PhD Thesis, 1924: “With every particle of matter with mass m and velocity v a real wave must be associated” h p 2 h mv p mv Ekin eU 2 2meU Louis de Broglie (1892 - 1987) – wavelength h – Planck constant hc eU – electron energy in eV eU eU2 m c2 eU m0 – electron rest mass 0 c – speed of light The Nobel Prize in Physics 1929 was awarded to Prince Louis-Victor Pierre Raymond de Broglie "for his discovery of the wave nature of electrons." 4 De Broigle “Recherches sur la Théorie des Quanta (Researches on the quantum theory)” (1924) Electron wavelength 142 pm 80 keV – 300 keV 5 Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well 6 C. Davisson, L. H. Germer, "The Scattering of Electrons by a Single Crystal of Nickel" Nature 119(2998), 558 (1927) Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well Clinton Joseph Davisson (left) and Lester Germer (right) George Paget Thomson Nobel Prize in Physics 1937: Davisson and Thomson 7 C. -
(Owen Willans) Richardson
O. W. (Owen Willans) Richardson: An Inventory of His Papers at the Harry Ransom Center Descriptive Summary Creator: Richardson, O. W. (Owen Willans), 1879-1959 Title: O. W. (Owen Willans) Richardson Papers Dates: 1898-1958 (bulk 1920-1940) Extent: 112 document boxes, 2 oversize boxes (49.04 linear feet), 1 oversize folder (osf), 5 galley folders (gf) Abstract: The papers of Sir O. W. (Owen Willans) Richardson, the Nobel Prize-winning British physicist who pioneered the field of thermionics, contain research materials and drafts of his writings, correspondence, as well as letters and writings from numerous distinguished fellow scientists. Call Number: MS-3522 Language: Primarily English; some works and correspondence written in French, German, or Italian . Note: The Ransom Center gratefully acknowledges the assistance of the Center for History of Physics, American Institute of Physics, which provided funds to support the processing and cataloging of this collection. Access: Open for research Administrative Information Additional The Richardson Papers were microfilmed and are available on 76 Physical Format reels. Each item has a unique identifying number (W-xxxx, L-xxxx, Available: R-xxxx, or M-xxxx) that corresponds to the microfilm. This number was recorded on the file folders housing the papers and can also be found on catalog slips present with each item. Acquisition: Purchase, 1961 (R43, R44) and Gift, 2005 Processed by: Tessa Klink and Joan Sibley, 2014 Repository: The University of Texas at Austin, Harry Ransom Center Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 2 Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 Biographical Sketch The English physicist Owen Willans Richardson, who pioneered the field of thermionics, was also known for his work on photoelectricity, spectroscopy, ultraviolet and X-ray radiation, the electron theory, and quantum theory. -
1 Electron Diffraction Chez Thomson. Early Responses to Quantum
Electron diffraction chez Thomson. Early responses to quantum physics in Britain. Jaume Navarro Abstract In 1927, George Paget Thomson, professor at the University of Aberdeen, obtained photographs that he interpreted as evidence for electron diffraction. These photographs were in total agreement with de Broglie’s principle of wave-particle duality, a basic tenet of the new quatum wave mechanics. His experiments were an initially unforeseen spin-off from a project he had started in Cambridge with his father, Joseph John Thomson, on the study of positive rays. This paper addresses the scientific relationship between the Thomsons, father and son, as well as the influence that the institutional milieu of Cambridge had on the early work of the latter. Both Thomsons were trained in the pedagogical tradition of classical physics in the Cambridge Mathematical Tripos, and this certainly influenced their understanding of quantum physics and early quantum mechanics. In this paper, I analyse the responses of both father and son to the photographs of electron diffraction: a confirmation of the existence of the ether in the former, and a partial embrace of some ideas of the new quantum mechanics in the latter. Introduction 1 In the summer of 1922, a young Cambridge physicist applied for the recently vacated chair of Natural Philosophy at the University of Aberdeen. The testimonials he enclosed with the application letter, nine in total, all came from well-established scholars directly related to Cambridge.1 This comes to no surprise if we take into account that the applicant, George Paget Thomson (G.P.), had not only received all his academic training in that university, but had also been born in that town, son of one of the best- known British physicists of his time, and then Master of Trinity College, Joseph John Thomson (J.J.). -
Inventory to the Herbert C. Brown Papers, 1928-2005
INVENTORY TO THE HERBERT C. BROWN PAPERS, 1928-2005 Purdue University Libraries Karnes Archives and Special Collections 504 West State Street West Lafayette, Indiana 47907-2058 (765) 494-2839 http://www.lib.purdue.edu/spcol ©2008 Purdue University Libraries. All rights reserved. Compiled by: Margaret S. Morris, 2008 Revised by: Elizabeth M. Wilkinson, July 2008, May 2012, December 2012 Descriptive Summary Creator Information Brown, Herbert C., 1912 –2004 Title Herbert C. Brown papers Collection Identifier MSF 4 Date Span 1928-2005, predominant 1940s–1990s Abstract Business and personal papers of Herbert C. Brown, educator, chemist, and recipient of the 1979 Nobel Prize for Chemistry Extent 420 cubic feet (448 boxes) Finding Aid Author Margaret S. Morris, 2006 – 2008; Processing of additional materials and revisions made by Elizabeth Wilkinson, 2008, 2012 Languages English Repository Virginia Kelly Karnes Archives and Special Collections Research Center, Purdue University Libraries Administrative Information Location Information: ASCR Access Restrictions: Collection is open for research. The collection is stored offsite; 48 hours notice is required to access the collection. Some materials have been restricted due to privacy and legal issues Acquisition Donated by Herbert C. Brown and his son, Charles A. Information: Brown Custodial History: The Herbert C. Brown papers were donated to Purdue University by Herbert C. Brown when he was on the faculty at Purdue. Brown’s papers were originally housed in the small library room adjacent to his office that was provided to Brown when he became a Professor Emeritus in 1978. The papers remained as part of the Purdue Chemistry Department until Brown’s death in 2004, when they were transferred to the 12/21/2012 2 archives. -
Lsu-Physics Iq Test 3 Strikes You're
LSU-PHYSICS IQ TEST 3 STRIKES YOU'RE OUT For Physics Block Party on 9 September 2016: This was run where all ~70 people start answering each question, given out one-by-one. Every time a person missed an answer, they made a 'strike'. All was done with the Honor System for answers, plus a fairly liberal statement of what constitutes a correct answer. When the person accumulates three strikes, then they are out of the game. The game continue until only one person was left standing. Actually, there had to be one extra question to decide a tie-break between 2nd and 3rd place. The prizes were: FIRST PLACE: Ravi Rau, selecting an Isaac Newton 'action figure' SECOND PLACE: Juhan Frank, selecting an Albert Einstein action figure THIRD PLACE: Siddhartha Das, winning a Mr. Spock action figure. 1. What is Einstein's equation relating mass and energy? E=mc2 OK, I knew in advance that someone would blurt out the answer loudly, and this did happen. So this was a good question to make sure that the game flowed correctly. 2. What is the short name for the physics paradox depicted on the back of my Physics Department T-shirt? Schroedinger's Cat 3. Give the name of one person new to our Department. This could be staff, student, or professor. There are many answers, for example with the new profs being Tabatha Boyajian, Kristina Launey, Manos Chatzopoulos, and Robert Parks. Many of the people asked 'Can I just use myself?', with the answer being "Sure". 4. What Noble Gas is named after the home planet of Kal-El? Krypton. -
Diffraction of Light Prelab by Dr
Diffraction of Light Prelab by Dr. Christine P. Cheney, Department of Physics and Astronomy, 401 Nielsen Physics Building, The University of Tennessee, Knoxville, Tennessee 37996-1200 © 2018 by Christine P. Cheney* *All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without the permission in writing from the author. Read the introduction to Diffraction in your lab manual.1 Light is very interesting because it can behave as a wave or as a particle. You will observe both types of properties in the Diffraction of Light lab but will focus on the wave-like properties. (The particle-like properties come from the two light sources, a helium-neon laser and a mercury discharge lamp. The colors of light that these sources emit are discrete colors that have energy E=hn where E is the energy of the light, h is Planck’s constant, and n is the frequency of the light. Each photon of light has energy hn. This aspect of light is particle-like, and you will learn more about the particle-like behavior of light next week in the Photoelectric Effect lab.) Diffraction is used to study materials. The lattice spacing in crystalline materials is very small. For example the lattice spacing of a NaCl crystal is 5.64 Å.2 This small spacing can be used as a diffraction grating for x-rays. X-rays have a wavelength range of 0.01- 10 nm. -
J. J. Thomson Goes to America
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ACCOUNT &PERSPECTIVE J. J. Thomson Goes to America Kevin M. Downard School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, Australia Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world’s brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson’s visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s. (J Am Soc Mass Spectrom 2009, 20, 1964–1973) © 2009 American Society for Mass Spectrometry oseph John (J. J.) Thomson was born in suburban his father’s footsteps and was appointed a Professor of Manchester in England on December 18, 1856 and Physics at Cambridge. -
Appendices Due to Concerns Over the Quality of the Data Collected
APPENDIX A WSU 2014-19 STRATEGIC PLAN Appendix A: WSU Strategic Plan 2014-15 Strategic Plan 2014-2019 President Elson S. Floyd, Ph.D. Strategic Plan 2014-2019 Introduction The 2014-19 strategic plan builds on the previous five-year plan, recognizing the core values and broad mission of Washington State University. Goals and strategies were developed to achieve significant progress toward WSU’s aspiration of becoming one of the nation’s leading land-grant universities, preeminent in research and discovery, teaching, and engagement. The plan emphasizes the institution’s unique role as an accessible, approachable research institution that provides opportunities to an especially broad array of students while serving Washington state’s broad portfolio of social and economic needs. While providing exceptional leadership in traditional land-grant disciplines, Washington State University adds value as an integrative partner for problem solving due to its innovative focus on applications and its breadth of program excellence. The plan explicitly recognizes the dramatic changes in public funding that have occurred over the duration of the previous strategic plan, along with the need for greater institutional nimbleness, openness, and entrepreneurial activity that diversifies the University’s funding portfolio. In addition, the plan reaffirms WSU’s land-grant mission by focusing greater attention system-wide on increasing access to educational opportunity, responding to the needs of Washington state through research, instruction, and outreach, and contributing to economic development and public policy. While the new plan retains the four key themes of the previous plan, its two central foci include offering a truly transformative educational experience to undergraduate and graduate students and accelerating the development of a preeminent research portfolio.