<<

Nobel Prizes in Closely Connected with the Physics of

1901 Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable rays subsequently named after him 1909 , , and Ferdinand Braun, Strassburg, for their contributions to the development of 1913 , , for his investigations on the properties of at low temperatures which , inter alia, to the production of liquid 1914 , Frankfort/Main, for his discovery of the of X-rays by crystals 1915 Bragg, London, and William , , for their analysis of crystal structure by means of X-rays 1918 , Berlin, in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta 1920 Charles Edouard Guillaume, Sèvres, in recognition of the service he has rendered to precise measurements in Physics by his discovery of anoma- lies in nickel steel alloys 1921 , Berlin, for services to , and especially for his discovery of the law of the 1923 Andrews Millikan, Pasadena, , for his work on the ele- mentary charge of and on the photo-electric effect 1924 , Uppsala, for his discoveries and researches in the of X-ray spectroscopy 1926 , , for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium 1928 Owen Willans Richardson, London, for his work on the thermionic phe- nomenon and especially for his discovery of the law named after him 1929 Louis Victor de Broglie, Paris, for his discovery of the of 1930 Venkata Raman, Calcutta, for his work on the scattering of and for the discovery of the effect named after him

© Springer International Publishing 2015 199 R.P. Huebener, Conductors, , Superconductors, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9 200 Nobel Prizes in Physics Closely Connected with the Physics of Solids

1932 , Leipzig, for the creation of , the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen 1933 Erwin Schrödinger, Berlin, and Paul Adrien Maurice Dirac, Cambridge, for the discovery of new productive forms of 1937 Clinton Joseph Davisson, New York, N. Y., and , London, for their experimental discovery of the diffraction of electrons by crystals 1945 , , for the discovery of the Exclusion Principle, also called the Pauli Principle 1946 Percy Williams Bridgman, , , for the invention of an apparatus to produce extremely high pressures and for discoveries he made in the field of high pressure physics 1952 , , California, and , Harvard University, Massachusetts, for the development of new methods for nuclear magnetic precision measurements and the discoveries in con- nection therewith 1954 , Edinburgh, for his fundamental research in quantum mechan- ics, especially for his statistical interpretation of the wave-function 1956 , Pasadena, California, , Urbana, Illinois, and , Murray Hill, , for their investiga- tions on semiconductors and their discovery of the effect 1961 Rudolf Ludwig Mössbauer, Munich, for his researches concerning the resonance absorption of gamma radiation and his discovery in this con- nection of the effect which bears his name 1962 Lew Dawidowitsch Landau, Moscow, for his pioneering theories for con- densed matter, especially 1965 Sin-itiro Tomonaga, Tokyo, Julian Seymour Schwinger, Cambridge, Massachusetts, and Richard Phillips Feynman, Pasadena, California, for their fundamental work in , with deep-plough- ing consequences for the physics of elementary particles 1970 Louis Eugène Felix Néel, Grenoble, for fundamental work and discover- ies concerning and which have led to important applications in state physics 1972 John Bardeen, Urbana, Illinois, Leon Neil Cooper, Providence, Rhode Island, and , , Pennsylvania, for their theory of , usually called the BCS-theory 1973 , Yorktown Heights, New York, and , Schenectady, New York, one half for their experimental discoveries regarding tunnel- ing phenomena in semiconductors and superconductors, respectively, and with the other half to Brian David Josephson, Cambridge, UK, for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects Nobel Prizes in Physics Closely Connected with the Physics of Solids 201

1977 Philip Warren Anderson, Murray Hill, New Jersey, , Cambridge, UK, and , Cambridge, Massachusetts, for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems 1978 Pyotr Leonidovich Kapitza, Moscow, for his basic inventions and discov- eries in the area of low-temperature physics 1981 Kai Manne Siegbahn, Uppsala, for his contribution to the development of high-resolution spectroscopy 1982 Kenneth Geddes Wilson, , New York, for his theory of critical phenomena in connection with phase transitions 1985 , Stuttgart, for the discovery of the quantized 1986 , Berlin, for his fundamental work in electron optics and for the design of the first electron , and the other half jointly to and , Zurich, for their design of the scanning tunneling microscope 1987 Johannes and Karl Alexander Müller, Zurich, for their important breakthrough in the discovery of superconductivity in ceramic materials 1991 Pierre-Gilles de Gennes, Paris, for discovering that methods developed for studying order phenomena in simple systems can be generalized to more forms of matter, in particular to liquid crystals and 1994 Bertram Neville Brockhouse, McMaster University, Hamilton, Ontario, for the development of spectroscopy, and to Clifford Glenwood Shull, Massachusetts Institute of Technology, Cambridge, Massachusetts, for the development of the neutron diffraction technique 1996 David Morris Lee, Cornell University, New York, Douglas Dean Osheroff, Stanford University, California, and Robert Coleman Richardson, Cornell University, New York, for their discovery of super- fluidity in helium-3 1998 Robert Betts Laughlin, Stanford University, California, Horst Ludwig Störmer, , New York, and Daniel Chee Tsui, , New Jersey, for their discovery of a new form of quantum fluid with fractionally charged excitations 2000 Zhores Ivanovich Alferov, St. Petersburg, , Santa Barbara, California, and Jack St. Clair Kilby, Dallas, Texas, for basic work on information and communication technology, in particular for developing hetero-structures used in high-speed- and opto-, and for the invention of the integrated circuit 2003 Alexei Alexeyevich Abrikosov, Argonne, Illinois, Vitaly Lazarevich Ginzburg, Moscow, and , Urbana, Illinois, for their pioneering contributions to the theory of superconductors and superfluids 202 Nobel Prizes in Physics Closely Connected with the Physics of Solids

2007 Albert Louis Francois Fert, Paris, and Peter Grünberg, Jülich, for the dis- covery of giant magneto-resistance 2009 Willard S. Boyle, Charles Kuen Kao, and George Elwood Smith, Bell Laboratories, Murray Hill, New Jersey, for the invention of an imaging semiconductor circuit—the CCD sensor 2010 and , Manchester, UK, for discovering and isolating a single free-standing atomic layer of () and elucidating its remarkable electronic properties Nobel Prizes in Closely Connected with the Physics of Solids

1920 , Berlin, in recognition of his work in thermochemistry 1936 , Berlin-Dahlem, for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases 1949 William Francis Giauque, Berkeley, California, for his contributions in the field of chemical thermodynamics, particularly concerning the behav- iour of substances at extremely low temperatures 1954 Linus Carl Pauling, Pasadena, California, for his research into the nature of the and its application to the elucidation of the structure of complex substances 1966 Robert Sanderson Mulliken, Chicago, Illinois, for his fundamental work concerning chemical bonds and the electronic structure of by the molecular orbital method 1968 Lars Onsager, New Haven, Connecticut, for the discovery of the reciproc- ity relations bearing his name, which are fundamental for the thermody- namics of irreversible processes 1977 , Brussels, for his contribution to non-equilibrium thermo- dynamics, particularly the theory of dissipative structures 1985 Herbert Aaron Hauptman, Buffalo, New York, and Jerome Karle, Washington, DC, for their outstanding achievements in the development of direct methods for the determination of crystal structures 1988 Johann Deisenhofer, Dallas, Texas, Robert Huber, Martinsried, and Hartmut Michel, Frankfort/Main, for the determination of the three- dimensional structure of a photosynthetic reaction centre 1991 Richard Robert Ernst, Zurich, for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy 1996 Robert Floyd Curl, Jr., Rice University, Houston, Texas, Harold Walter Kroto, , and Richard Errett Smalley, Rice University, for their discovery of fullerenes

© Springer International Publishing Switzerland 2015 203 R.P. Huebener, Conductors, Semiconductors, Superconductors, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9 204 Nobel Prizes in Chemistry Closely Connected with the Physics of Solids

1998 , Santa Barbara, California, for his development of the den- sity-functional theory, and John Anthony Pople, Northwestern University, Evanston, Illinois, for his development of computational methods in quantum chemistry 2000 Alan Jay Heeger, Santa Barbara, California, Alan Graham MacDiarmid, Philadelphia, Pennsylvania, and , , for the dis- covery and development of conductive polymers 2007 Gerhard Ertl, Fritz-Haber Institut, Berlin, for his studies of chemical pro- cesses at solid surfaces 2011 Daniel Shechtman, Technion, Haifa, for the discovery of quai-crystals Bibliography

General Solid State Physics

N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976) L. Hoddeson, E. Braun, J. Teichmann, S. Weart (eds.), Out of the Crystal Maze: Chapters from the History of Solid State Physics (, London, 1992) Ch. Kittel, Introduction to Solid State Physics, 4th edn. (John Wiley, New York, 1971)

Solid State Theory

J. Callaway, Quantum Theory of the Solid State (Academic Press, New York, 1974) H. Haken, of Solids (North Holland Publishing Co., Amsterdam, 1976) W.A. Harrison, Solid State Theory (McGraw-Hill, New York, 1969) O. Madelung, Introduction to Solid State Theory (Springer Verlag, Berlin, 1978) N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys ( Publications, New York, 1958) R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1965) F. Seitz, The Modern Theory of Solids (Mc-Graw Hill, New York, 1940) A.H. Wilson, The Theory of Metals (Cambridge University Press, London, 1965) J.M. Ziman, Electrons and (Oxford University Press, London, 1960) J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)

Semiconductors

G. Allan, G. Bastard, N. Boccara, M. Lanoo, M. Voos (eds.), Heterojunctions and Semiconductor Superlattices (Springer Verlag, Berlin, 1986) V.L. Bonch-Bruyevich, The Electronic Theory of Heavily Doped Semiconductors (American Publishing, New York, 1966) K. Seeger, Semiconductor Physics, 8th edn. (Springer Verlag, Berlin, 2002) B. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer Verlag, Berlin, 1984) E. Spenke, Electronic Semiconductors (McGraw-Hill, New York, 1958) S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1969)

© Springer International Publishing Switzerland 2015 205 R.P. Huebener, Conductors, Semiconductors, Superconductors, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9 206 Bibliography

Superconductivity

K.H. Bennemann, J.B. Ketterson (eds.), The Physics of Superconductors (Springer, Berlin, 2003) W. Buckel, R. Kleiner, Superconductivity—Fundamentals and Applications, 2nd edn. (Wiley- VCH Verlag, Weinheim, 2004) P.F. Dahl, Superconductivity—Its Historical Roots and Development from Mercury to the Ceramic Oxides (American , New York, 1992) P.G. De Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York, 1966) R.P. Huebener, Magnetic Flux Structures in Superconductors, 2nd edn. (Springer Verlag, Berlin, 2001) J.B. Ketterson, S.N. Song, Superconductivity (Cambridge University Press, Cambridge, 1999) E.A. Lynton, Superconductivity (Methuen & Co, London, 1962) R.D. Parks (ed.), Superconductivity (Marcel Dekker, New York, 1969) Ch.P. Jr. Poole, H.A. Farach, R.J. Creswick, Superconductivity (Academic Press, New York, 1995) R. Rickayzen, Theory of Superconductivity (Wiley, New York, 1965) M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996) J.R. Waldram, Superconductivity of Metals and Cuprates (Institute of Physics Publishing, Bristol, 1996)

Magnetism

A.S. Chakravarty, Introduction to the Magnetic Properties of Solids (Wiley, New York, 1980) S. Chikazumi, Physics of (Wiley, New York, 1964) S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1997) J. Crangle, The Magnetic Properties of Solids (Arnold, London, 1977) A.H. Morrish, The Physical Principles of Magnetism (Wiley, New York, 1965) R.M. White, Quantum Theory of Magnetism (McGraw-Hill, New York, 1970)

Special Subjects

R.D. Barnard, Thermoelectricity in Metals and Alloys (Taylor & Francis, London, 1972) M. Born, K.H. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954) J.H. Davies, The Physics of Low-Dimensional Semiconductors—An Introduction (Cambridge University Press, Cambridge, 1998) J. Hooper McCarty, T. Foecke, What Really Sank the (Citadel Press Book, New York, 2008) D.K.C. MacDonald, Thermoelectricity—An Introduction to the Principles (Wiley, New York, 1962) A.A. Maradudin, E.W. Montroll, G.H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971) R.E. Prange, S.M. Girvin (eds.), The , 2nd edn. (Springer, New York, 1990) A.M. Stoneham, Theory of Defects in Solids—Electronic Structure and Defects in Insulators and Semiconductors (Oxford University Press, Oxford, 1975) P.T. Townsend, J.C. Kelly, Color Centers and Imperfections in Insulators and Semiconductors (Crane & Russack, New York, 1973) R. Waser (ed.), Nanoelectronics and Information Technology (Wiley-VCH, Weinheim, 2003) Name Index

A C Abrikosov, Alexei A., 115, 201 Casimir, Hendrik Brugt Gerhard, 108 Abstreiter, Gerhard, 100 Chaudhari, Praveen, 140 Aharonov, Yakir, 182 Chu, Paul Ching-Wu, 132 Akimitsu, Jun, 143 Clusius, Klaus, 61 Alferov, Zhores Ivanovich, 201 Cooper, Leon Neil, 120, 200 Ardenne, Manfred von, 10 Cotton, Aimé, 103 Anderson, Philip W., 122, 125, 201 Crick, Francis Harry Compton, 24 Curie, Marie, 147 Curie, Pierre, 147 B Curl, Jr., Robert Floyd, 174, 203 Ballard, Robert, 197 Balluffi, Robert W., 187 Bardeen, John, 4, 69, 120, 200 D Barkhausen, Heinrich, 153 Davisson, Clinton Joseph, 9, 200 Becker, Richard, 193 Deaver, Bascom, 118 Bednorz, Johannes Georg, 131, 201 de Broglie, Louis Victor, 8, 199 Bethe, Hans, 63 Debye, Peter, 4, 23, 35, 38, 203 Binnig, Gerd, 11, 201 de Gennes, Pierre-Gilles, 201 Bitter, Francis, 103, 156 de Haas, Wander Johannes, 93 Bloch, Felix, 43, 44, 55, 122, 123, Deisenhofer, Johann, 24, 203 153–155, 200 Devoret, Michel H., 173 Bohm, David, 182 Dingle, Raymond, 100 Bohr, Niels, 122 Dirac, Paul Adrien Maurice, 43, 54, 145, 200 Born, Max, 200 Döhler, Gottfried H., 168 Borries, Bodo von, 8 Doll, Robert, 118 Bose, Satyendra Nath, 36 Dorsman, Cornelis, 106 Boyle, Willard S., 202 Drude, Paul, 51 Bragg, William Henry, 1, 20, 199 Dulong, Pierre Louis, 31 Bragg, William Lawrence, 1, 20, 199 Brattain, Walter Houser, 4, 69, 200 Braun, Ferdinand, 65, 66, 73, 199 E Bravais, Auguste, 14 Einstein, Albert, 32–34, 36, 123, 191, 199 Bridgman, Percy Williams, 200 Ernst, Richard Robert, 203 Brillouin, Léon, 63, 122, 147 Er-Rakho, L., 133 Brockhouse, Bertram Neville, 38, 201 Ertl, Gerhard, 204

© Springer International Publishing Switzerland 2015 207 R.P. Huebener, Conductors, Semiconductors, Superconductors, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9 208 Name Index

Esaki, Leo, 164, 200 I Essmann, Uwe, 117, 197 Iijima, Sumio, 175 Esteve, D., 173 Ioffe, Abram Fedorovich, 83, 103, 189 Euler, Leonhard, 174 Ittner, W.B., 114 Ewald, Paul Peter, 16 J Jones, H., 63 F Jordan, Pascual, 121 Fairbank, William, 118 Josephson, Brian David, 122, 124, 200 Faraday, Michael, 65, 87 Fermi, Enrico, 54 Fert, Albert Louis Francois, 158, 202 K Feynman, Richard P., 116, 123, Kane, Charles L., 180, 181 158, 163, 200 Kao, Charles Kuen, 202 Flim, Gerrit Jan, 106 Kapitza, Pyotr Leonidovich, 103, 201 Foecke, Tim, 198 Karle, Jerome, 203 Förster, Friedrich, 197 Kawaji, S., 99 Franklin, Rosalind, 24, 163 Kelly, Mervin, 3 Frenkel, Jakov I., 122, 190 Kepler, Johannes, 14 Friedrich, Walter, 16 Kilby, Jack St. Clair, 201 Fu, Liang, 181 Kim, Young, 125 Fuller, Buckminster, 174 Kleiner, Reinhold, 142 Klitzing, Klaus von, 96, 98, 201 Knipping, Paul, 16 G Knoll, Max, 8, 9 Garzke, William, 198 Kohn, Walter, 204 Geim, Andre, 177, 202 Krätschmer, Walter, 174 Germer, Lester, 9 Kroemer, Herbert, 80, 201 Giaever, Ivar, 121, 200 Kronig, Ralph, 122 Giauque, William Francis, 4, 203 Kroto, Harold Walter, 174, 203 Gibbs, Josiah Willard, 21, 186 Kunzler, Gene, 125 Ginzburg, Vitaly L., 116, 114, 201 Kurti, Nicholas, 5 Gorter, Cornelis Jacobus, 4, 108 Gossard, Arthur C., 100 L Grünberg, Peter, 158, 202 Landauer, Rolf, 170 Guillaume, Charles Edouard, 199 Landau, Lew Dawidowitsch, 90, 103, 114, 116, 122, 146, 200 Landwehr, Gottfried, 96 H Langevin, Paul, 146, 147 Hahn, Otto, 132, 191 Laue, Max von, 1, 16, 17, 38, 112, 199 Hall, Edwin Herbert, 88 Laughlin, Robert Betts, 102, 201 Hauptman, Herbert Aaron, 203 Lee, David Morris, 201 Heeger, Alan Jay, 204 Leggett, Anthony J., 116, 201 Heisenberg, Werner, 43, 44, 67, 122, Lifshitz, Ilya Mikhailovich, 93 150, 154, 200 Lindemann, Frederick Alexander, 5 Heitler, Walter Heinrich, 29 London, Fritz, 5, 6, 29, 112 Helmholtz, Hermann von, 32, 87, 186 London, Heinz, 5, 6, 112 Holborn, Ludwig, 32 Lorentz, Hendrik Antoon, 51, 88 Holm, Ragnar, 124 Lummer, Otto, 32 Holst, Gilles, 106 Hooke, Robert, 192 Hosono, Hideo, 144 M Huber, Robert, 24, 203 Madelung, Erwin Rudolf, 29 Huffman, Donald R., 174 Maier-Leibnitz, Heinz, 7, 38, 39 Name Index 209

Mann, Thomas, 15 Pohl, Robert Wichard, 190 Mannhart, Jochen, 140 Polanyi, Michael, 192, 193 Marconi, Guglielmo, 65, 199 Pople, John Anthony, 204 Mark, Hermann Francis, 192 Pound, Robert V., 39 Martens, Adolf, 185 Prigogine, Ilya, 203 Matthias, Bernd T., 125 Pringsheim, Ernst, 32 Maxwell, James Clerk, 87 Purcell, Edward Mills, 200 McCarthy, Jennifer Hooper, 198 McLennan, John C., 108 Meissner, Walther, 108, 109, 124 Q Mendelssohn, Kurt, 5 Quinn, D.J., 114 Michel, C., 133 Michel, Hartmut, 24, 203 Millikan, Robert Andrews, 199 R Molenkamp, Laurens W., 180 Raman, Venkata, 199 Möllenstedt, Gottfried, 182 Raveau, B., 133 Moore, Gordon E., 81 Rebka, Glen A., 39 Mössbauer, Rudolf L., 39, 200 Richardson, Owen Willans, 199 Mott, Nevill Francis, 63, 190, 194, 201 Richardson, Robert Coleman, 201 Müller, Karl Alexander, 131, 201 Rohrer, Heinrich, 11, 201 Müller, Paul, 142 Röntgen, Wilhelm Conrad, 1, 16, 17, 23, 83, Mulliken, Robert Sanderson, 203 132, 199 Roosevelt, Franklin Delano, 191 Rowland, Henry A., 87 N Rubens, Heinrich, 32 Näbauer, Martin, 118 Ruska, Ernst, 8, 201 Nakamura, Shuji, 79 Rutherford, Ernest, 103 Néel, Louis Eugene Felix, 147, 156, 200 Nernst, Walther, 35, 203 Novoselov, Konstantin, 177, 202 S Scheer, Elke, 173 Scherrer, Paul, 23 O Schmid, E., 192 Ochsenfeld, Robert, 108 Schottky, Walter, 72–74, 76 Ohl, Russell Shoemaker, 75, 78 Schrieffer, John Robert, 120, 200 Onnes, Heike Kamerlingh, 4, 105, 106, 199 Schrödinger, Erwin, 43, 200 Onsager, Lars, 57, 63, 93, 203 Schwinger, Julian Seymour, 200 Orowan, Egon, 193 Seebeck, Thomas Johann, 61 Osheroff, Douglas Dean, 201 Seitz, Frederick, 3, 190, 191 Sharvin, D.Yu., 182 Sharvin, Yurii Vasil‘evich, 171, 182 P Shechtman, Daniel, 25, 204 Pauling, Linus Carl, 29, 203 Shirakawa, Hideki, 204 Pauli, Wolfgang, 54, 55, 122, 145, 149, 150, Shockley, William, 4, 69, 200 200 Shoenberg, David, 57, 93 Peierls, Rudolf E., 40, 44, 47, 55, 72, 93 Shubnikov, Leo Vasilyevich, 103, 115 Peltier, Jean Charles Athanase, 60 Shull, Clifford Glenwood, 201 Penrose, Roger, 25 Siegbahn, Kai Manne, 201 Perrin, Jean Baptiste, 199 Siegbahn, Manne, 199 Perutz, Max, 23 , Werner, 32 Petit, Alexis Thérèse, 31 Simmons, Ralph O., 187 Pippard, Alfred Brian, 57, 114, 122 Simon, Franz Eugen, 5 Planck, Max, 32–34, 199 Smalley, Richard E., 174, 203 Ploog, Klaus, 100, 168 Smith, George Elwood, 202 210 Name Index

Solvay, Ernest, 36 W Sommerfeld, Arnold, 16, 63, 70 Waller, Ivar, 38 Sorby, Henry Clifton, 185 Wannier, Gregory Hugh, 168 Spenke, Eberhard, 74, 75 Watson, James D., 24 Stark, Johannes, 168 Webb, Richard A., 182 Störmer, Horst Ludwig, 100, 201 Weiss, Pierre, 147, 151, 152, 156 Strassmann, Fritz, 132, 191 Welker, Heinrich, 70, 79 Szilard, Leo, 191 Wien, Wilhelm, 32 Wigner, Eugene P., 3, 100, 121, 191 Wilson, Allan H., 49, 63, 72 T Wilson, Kenneth Geddes, 201 Taylor, Sir Geoffrey, 193 Winkler, Clemens, 69 Teal, Gordon Kidd, 69 Wu, Maw-Kuen, 132 Thomson, George Paget, 200 Tomonaga, Sin-itiro, 200 Träuble, Hermann, 117 Y Tsu, Ray, 164 Yang, Chen Ning, 123 Tsuei, Chang C., 140, 141 Tsui, Daniel Chee, 100, 201 Z Zavaritzkii, Nikolay, 115 V Zhang, Shoucheng, 180 van Alphen, P.M., 93 Zirnbauer, Martin R., 181 van Vleck, John Hasbrouck, 201 Subject Index

A , 36, 54 Abrikosov flux-line lattice, 116, 117 Bragg diffraction law, 18, 20 Acceptors, 72 Bragg reflection, 47, 48, 57, Acoustic mode, 37 165, 166 Adiabatic demagnetization, 4, 149 Bravais lattices, 14, 15 Aharonov-Bohm effect, 182, 183 Breeder reactor, 191 Anomalous Hall effect, 67, 89 Bremsstrahlung, 23 Antiferromagnetic , 156 Brillouin function, 149 Antiferromagnetism, 156 Brillouin zones, 20, 22 Artificial , 177 Atomei, 7 Atomic force microscopy, 12 C Atomic volume, 188 Cadmium-selenide, 75 Carbon nanotubes, 175, 176 tube, 65 B , 195 BCS theory, 120–122 Clusius separation column, 61 Ballistic , 169 Coercive field, 157–159 Ballistic phonons, 41, 42 length, 114, 119, 135 Barkhausen jumps, 153 Cold-working, 196 Base, 76 Collector, 76 Batelle Institute, 195 chemistry, 179 Bell Laboratories, 69, 78, 100, 125 Color centers, 190 Bicrystal technique, 140, 141 Comet jet-aircraft, 2 Bipolar transistor, 76 Common salt, 190 Bismuth-telluride, 83 Compound semiconductors, 70 Bitter decoration technique, 117, 153 Conduction band, 66 Bloch ansatz, 45 Cooper pairs, 120, 122, 123, 136, 139 Bloch frequency, 167 Copper-oxide planes, 134, 135 Bloch oscillation, 167 Covalent bond, 29 Bloch wall, 153 Critical current, 107 Bloch-Grüneisen Law, 58, 59 Critical , 107, 108 Bohr’s magneton, 148 Critical state, 125 Boltzmann distribution, 67, 83, 147 Critical temperature, 106, 108, 135 Bose-Einstein distribution, 34, 54, 155 Cuprate superconductors, 131, 134 Bose-Einstein statistics, 36 Curie-constant, 148

© Springer International Publishing Switzerland 2015 211 R.P. Huebener, Conductors, Semiconductors, Superconductors, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-09141-9 212 Subject Index

Curie law, 147, 148 Extreme quantum limit, 102 Curie temperature, 151, 152 Extrinsic semiconductors, 71 Curie-Weiss law, 152 Cyclotron angular frequency, 91 Cyclotron energy, 91 F Cyclotron mass, 91 Fatigue fracture, 196 Fermi-Dirac statistics, 54 Fermi surface, 55, 56, 93 D Fermi distribution, 54–56, 171 D-wave symmetry, 138, 141 Fermi energy, 54, 56 DNA double helix, 24, 30, 163 Fermi wave vector, 56 De Haas-van Alphen effect, 93 Ferromagnetism, 43, 150 Debye energy, 36, 58 Field-effect transistor, 96, 160, 161 Debye frequency, 35, 36 Figure of merit, 85 Debye temperature, 37, 58 First Solvay-conference, 36 Debye-Waller factor, 39 Flux creep, 125 , 35, 36, 68, 93–96 Flux flow, 125 , 92, 146 Flux-flow resistance, 125, 126 Diamond, 40 Flux-flow voltage, 125 Diffraction theory, 17 Flux-line motion, 139 Diffraction of , 7 Forbidden energy gap, 48 , 189 Fractional quantum Hall effect, 100, 101 Diffusive propagation, 170 High-Magnetic-Field Dirac delta function, 171 Laboratory, 100 Dirac points, 181 Free electrons, 47 Dislocation line, 194 Free , 186 Dislocations, 9, 126, 194 Frenkel defect, 190 Dispersion relation, 155, 156 Fullerene, 173–175 Donors, 71 Doped semiconductors, 71 Drude-Lorentz Model, 51 G Gallium-arsenide, 70, 79, 100 Gate electrode, 172, 177 E Gate voltage, 97, 161 Edge dislocation, 194–196 German Bureau of Standards, 108 Edge states, 180 Germanium, 69, 70 Einstein frequency, 34 Giant magneto-resistance, 158, 159 Electrical , 49 Gibbs free energy, 109 Electron mean free path, 51 Ginzburg-Landau theory, 114–116 , 8–10 Gliding plane, 192 Electron synchrotrons, 23 Grain boundary, 139, 141 Elementary cell, 14 Grain-boundary junctions, 144 Elementary , 145 Granular structure, 137, 140 Emitter, 76 Graphene, 176, 181 Energy band, 46, 48 Energy gap, 121 Epitaxial layers, 140 H Esaki , 164 Half-integer magnetic flux quantum, 141, 142 European synchrotron radiation source, 23, 24 Half-integer quantum-Hall-effect, 177 Exchange energy, 150, 153 Half-integer spin, 145 Exchange integral, 156 Hall constant, 88 , 150 Hall effect, 88, 89 , 73 Heat conductivity, 52 Exclusion principle, 54 Higher fullerenes, 175 Subject Index 213

High-frequency filters, 144 Lenz rule, 146 High-temperature superconductor, 111, 133, Light emitting diode, 78, 79 197 Liquefaction of helium, 108 Hole-doping, 135 Lithography methods, 164 Holes, 67, 68 London equation, 113 Hooke’s law, 192 London penetration depth, 112 Hybrid magnets, 103 Longitudinal phonons, 37 Hydrogen bond, 30 Lorentz force, 88–90, 125 Hysteresis, 157 Low-temperature scanning electron micros- copy., 137 I Lower critical magnetic field, 117 IBM Research Laboratory, 131 Indium-antimonide, 70 M Inelastic neutron scattering, 38 MRAM, 160 Injection laser, 79 Macroscopic , 121, 122 Integer quantum hall effect, 95, 99 Madelung constant, 29 Interference, 18 Magnesium-diboride, 143 Intermediate state, 115 Magnetic hardness, 157 Interstitial , 189 Magnetic bottle, 90 Intrinsic Josephson Junction, 142, 143 Magnetic coils, 144 Intrinsic semiconductors, 68 Magnetic domains, 153 Inversion at a point, 14 Magnetic energy-storage, 130 Ionic bond, 28 Magnetic flux, 182 Ionic crystals, 190 Magnetic flux line, 116, 119 effect, 120 Magnetic flux quantization, 118, 119 Magnetic flux quantum, 116–118 J Magnetic force microscope, 11 π-junction, 141 Magnetic penetration depth, 112, 113, 119 , 122 Magnetic susceptibility, 146 Josephson equations, 122 Magnetic tunnel junction, 160 Josephson oscillation, 123, 124 Magnetization, 146, 152, 155 Josephson voltage standard, 128 Magneto-caloric effect, 149 Junction transistor, 76, 77 Magneto-cardiography, 127 Magneto-electronics, 158 Magneto-encephalography, 127 K Magneto-resistance, 89, 90 Kapitza Institute for Physics, 115, 171 , 154 , 61, 62 Material fatigue, 9 L Mathiessen’s law, 59 Landau theory, 90 Max Planck Institute for Metals Research, 186 Landau cylinders, 90–93 Mechanical strength, 192 Landé-g-factor, 149 Mechanical tension, 192 Langevin function, 148 Meissner effect, 108–111, 131, 146 Laplace , 44 Mercury, 105–107 Large Hadron Collider, 4, 129 Mercury-telluride, 180 Larmor frequency, 146 Mesoscopic regime, 169, 170 Laser scanning , 10 Metallic bond, 29 Lattice vectors, 13 Microcracks, 196, 197 Laue diagram, 19–21 Micromanipulation, 164 Law of Dulong and Petit, 31, 37 Micromechanics, 82 Layered crystal structure, 135, 138 Minibands, 165 Lennard-Jones potential, 27 Mixed state, 116, 117 214 Subject Index

Mixing cryostat, 5, 6 Phonons, 34 Mixing , 187 Photoelectric effect, 34 doping, 100 , 34 Momentum space, 21, 22, 56, 57, 137 Physikalisch-Technische Reichsanstalt, 32, 33 Mond Laboratory, 103 Piezoelectric actuators, 173 Multifilamentary wires, 128 Pinning centers, 126, 136, 139 Mössbauer effect, 39 Planar technology, 80 Planck’s constant, 32 Planck’s radiation law, 36 N Pniktides, 144 Néel temperature, 156 Point contacts, 171 N-doped, 71, 72 Pohl's circus, 190 N-i-p-i crystals, 168 Point-contact transistor, 76, 77 N-processes, 40 Population inversion, 79 National High-Magnetic-Field Laboratory, 103 Powder technique, 23 Negative differential resistance, 168 Protein crystals, 13 Neutron diffraction, 24 Pulsars, 126 Neutron stars, 126 Nondestructive material testing, 127, 197 Normal modes, 31 Q Northern , 90 Quantized conductance, 173 Nuclear demagnetization, 5 Quantized unit of the conductance, 171, 173 process, 129, 130 Quantum cascade laser, 168 Nuclear magnetism, 157 Quantum dots, 177 Nuclear reactor, 191 Quantum hall effect, 97 Nuclear spin tomography, 130 Quantum statistics, 36 N. V. Philips' Gloeilampenfabrieken, 106 Quantum statistics, Fermi distribution, 53 Quantum triangle, 128 O Quantum-spin-Hall-effect, 180 Ohm’s law, 52 Quasi-crystals, 25 Optical modes, 38 Orbital magnetic moment, 145 R technology, 57 P Radiation damage, 191 P-doping, 71, 72 Rayleigh-Jeans radiation law, 32 P-n junction, 75 Reading head, 158, 160 Pancakes, 139 Reciprocal lattice, 20–22 Paramagnetic susceptibility, 149 Rectification, 75 of the electrons, 55 Rectifying effect, 65 Paramagnetism, 147 Reflection at a mirror plane, 14 Pauli exclusion principle, 149 Relaxation time, 52 Peltier cascade, 84 Residual resistance, 59 Peltier cooling, 83, 84 Rotating-crystal technique, 22 Peltier effect, 60, 83 Rotation, 14 Periodic boundary condition, 68 Rowland gratings, 87 Periodic potential, 44, 47, 48 Periodicity condition, 45 S Perovskite structure, 134 S-wave symmetry, 137 Philips Research Laboratories, 106 SQUID (Superconducting Quantum Spectrum, 34 Interference Device), 126, 127, 140, Phonon drag, 62 144, 197 Phonon focusing, 42 SQUID-scanning microscope, 127, 141 Subject Index 215

Scanning electron microscope, 9 Thermoelectricity, 59 Scanning tunneling microscope, 10, 11 Thomas J. Watson Research Center, 140, 164, Scattering angle, 58 170, 183 Schottky contact, 74 Thomson relation, 63 Schottky diode, 73 Titanic, 197, 198 Schrödinger equation, 44, 45 , 180 Second Moore’s Law, 81 Transistor, 4, 76–78 Secondary electrons, 10 Translation symmetry, 13, 14 Seebeck coefficient, 61 Transmission channels, 170, 173 Seebeck effect, 60, 61 Transport entropy, 61 Selenium, 75 Transverse phonons, 37 Selenium rectifiers, 75 Tricrystal experiment, 141, 142 Self-field, 107 Tunnel junction, 122, 124 Self-ordered quantum dots, 179 Tunneling experiment, 121 Semiconductor, 49, 65 Two-dimensional electron gas, 96, 99, 100, Shapiro steps, 124 160 Shielding currents, 111, 112 Two-level-system, 149 Shubnikov - de Haas oscillations, 93 Type-II superconductors, 115–117 Siemens and Halske, 8 Siemens company, 75 , 7, 69 U Silicon wafers, 81 Umklapp-process, 40 Silsbee’s rule, 107 Undulators, 23 Single crystals, 69, 192 Upper critical magnetic field, 117, 136 Single-electron effects, 176 Slippage, 193, 195 Solar cell, 78 V Sound velocity, 37 Vacancies, 186–188 Specific heat, 34, 35, 37 Valence band, 66 Specific heat of the electrons, 54 Van-der-Waals bond, 25, 26 Specific heat of the magnons, 155 Vibrational energy, 31, 34 , 145 Von-Klitzing-constant, 98 Spin valves, 160 Spin waves, 154 Spintronics, 158 W Structure size, 81 Wall energy, 114, 115 Superconducting electric power cables, 130 Wannier-Stark ladder, 168 Superconducting magnetic coils, 129 Wave vector, 51, 56, 165 Superconducting magnets, 102, 130 Weiss field, 151 Superconductivity, 105, 106 Wiedemann-Franz law, 53 Superlattice, 164, 165 Wien’s radiation law, 32 Surface states, 181 Wigglers, 23 Symmetry of the , 137 Wigner crystal, 100 Synchrotron radiation, 23 Woodstock of Physics, 132

T Table salt, 28 X Thermal conductivity, 39 X-ray diffraction, 1, 7, 17, 21, 23, 38 Thermal diffusion, 61 Thermal force, 61 Thermodynamic potential, 186 Z Thermoelectric voltage, 61 Zero-point motion, 42 Thermoelements, 61 Zone melting process, 7