Ornamental Rare Grasses in the North-Eastern Part of Azerbaijan

Total Page:16

File Type:pdf, Size:1020Kb

Ornamental Rare Grasses in the North-Eastern Part of Azerbaijan Plant & Fungal Research (2020) 3(1): 46-53 © The Institute of Botany, ANAS, Baku, AZ1004, Azerbaijan http://dx.doi.org/10.29228/plantfungalres.68 June 2020 Ornamental rare grasses in the North-Eastern part of Azerbaijan Parvin N. Aghayeva 2019]. Negative influence of human activity is widely Institute of Botany, Azerbaijan National Academy of Sciences, recognized, and it demands the international action on Badamdar 40, Baku, AZ1004, Azerbaijan plant conservation [Corlett, 2016; Knapp, 2011]. Plants Abstract: The article deals with wild species of rare are the foundation in all terrestrial ecosystems. Food, ornamental herbs growing in Quba and Qusar districts health and energy security greatly depends on plants. of Azerbaijan, south-eastern part of Greater Caucasus. Life in the rural areas based on many more on plants. During 2013-2019 years in total, about 500 specimens Thus conservation of all plant species is expediently were collected and identified as 235 taxa based on for range of reasons, including aesthetic, scientific and the main diagnostic morphological characters. Of ethical grounds [Corlett, 2016]. those 21 taxa belonging to 18 genera were rare plants Some species are estimated as rare or threatened, included in the second edition of the Red Book of but it is still unclear; those are rare due to the natural Azerbaijan. Considering the latest taxonomic and (inherent) features, dispersal capacity, or abiotic nomenclatural changes these include Alcea kusariensis, environmental condition. Important role of the Asrtagalus kubensis, Crocus biflorus subsp. adamii, environmental condition is in determining why some C. speciosus, Epipactis palustris, Galanthus alpinus, species are abundant and others are rare [Wamelink Himantoglossum formosum, Iris caucasica, Limodorum et al., 2014]. Habitat may have limited factors such as abortivum, Muscari armeniacum, Ophry sapifera, availability of nutrient, groundwater, soil pH, existing O. sphegodes subsp. mammosa, Orchis purpurea, vegetation structure etc. Habitat loss, fragmentation and Planthera chlorantha, Phelypaea coccinea, Primula degradation are among the major threats. algida, Primula heterochroma, Pulsatilla albana, Scilla Species abundance and species occupancy across the siberica subsp. caucasica, Tanacetum coccineum and local geographic range tend to be correlated and in this Tulipa biebersteiniana belonging to the five orders, case rare species tend to also show up in only a few seven families. Species have been recorded in more local communities [Enquist et al., 2019]. Estimation than one altitude zone. Most of rare species occur in of rarity in global scale can therefore minimize the low and middle mountain zones. Few species are doubts concerning whether a species is rare. The role recorded in higher elevations. Life forms and flowering of the rare species is highly disputable. Rare species are period of plants were also investigated. Cephalanthera important in maintainers of ecosystem, and this is widely damasonium, C. longifolia, Fritillaria lutea and Muscari investigated for supporting the most distinctive and armeniacum are new rare plants that need protection of vulnerable functions in the high diversity ecosystems which insertion to the third edition of the Red Book of [Mouillot et al., 2013]. They request more attention, Azerbaijan is proposed. because these are often being the first to disappear. As it is well known, locally rare taxon is rare only Key Words: Greater Caucasus, diversity, herb plants, in a given geographical boundary, but not outside that life forms, Red Book boundary. Identification of rare taxa locally is very important for recognition of their status and preservation. INTRODUCTION This information is also necessary for the identification Biodiversity is threatened worldwide. Total number of of the rare taxa globally, nationally and provincial levels land plant species are around 500.000 and many species [Crain, White, 2011]. Development decision on the are still unknown to science and significant parts of rarity of taxa happens first at local, then regional levels these plants are under risk. About 40 % of global flora and conservation measures for protection of the species considered rare or under risk due to the increase of diversity still must be agreed in the national level. global pollution and climate change [Enquist et al., The interest in ornamental plants was growing exponentially over the last decades. Continued Accepted for publication: 8 May 2020 reduction of natural resources necessitates using hardy E-mail: [email protected] ornamental plants with low maintenance requirements 46 Aghayeva: Ornamental rare grasses for creating urban landscapes, especially those plants 235 taxa of 28 orders, 44 families and 140 genera of displaying inherent tolerance to environmental stresses ornamental plants were recorded in Quba and Qusar [Heywood, 2003; Gray, Brady, 2016]. districts during our study. In this study we report 23 Ornamental plants in Azerbaijan was little studied species and two subspecies belonging to four plant [Flora of Azerbaijan, 1950-1961; Tutayuk et al., 1961]. groups, eight orders, 11 families and 20 genera that are The study of the ornamental flora of Quba and Qusar considered as rare for these districts (Table). districts was launched in 2013. The objective of the Monocots are prevailing in the number of species and present study was to report the patterns of known include species of the orders Liliales and Asparagales. and new rare ornamental herb species in Quba-Qusar Liliales is represented with Fritillaria lutea Mill. which districts of Azerbaijan. is unresolved name according to World Checklist of selected plant families (WCSP data supplied on MATERIAL AND METHODS 2012-03-23). Another species of this family is Tulipa The Quba and Qusar are adjacent districts with biebersteiniana Schult. & Schult. f. territory respectively 1542 km2 and 2574 km2 located The order Asparagales include taxa of the familes at 500-4466 m above sea level in the North-Eastern Orchidaceae, Iridaceae and Amaryllidaceae. The part of Azerbaijan which is considered one of the most family Orchidaceae include Epipactis palustris, naturally floristically rich area within the country. These Himantoglossum formosum, Limodorum abortivum, two districts have been used as a recreational area Ophrys apifera, Ophrys sphegodes subsp. mammosa, for many years and vegetation has exposed to strong Planthera chlorantha and Orchis purpurea. Two Ophrys anthropressure, which requires continuous study of species were mentioned as Ophrys oestrifera and vegetation. Human impact, recreational activities are Ophrys caucasica in the Red Book of Azerbaijan (2nd highly increased during last couple of decades due to ed; 2013). The status of the species Orchis purpurea the faster growing infrastructure and service sector, is ambiguous in the World Flora Online (WFO) but is such as travel and tourism economy in the country. accepted name in The Plant list. Approximately 500 specimens were collected and Recorded rare irises were Crocus biflorus subsp. 235 herbal taxa were recorded in the territory during adamii (Syn.: Crocus adamii J. Gay), Crocus speciosus 2013-2019 of which 25 were rare taxa. Plants for and Iris caucasica. One more species of this order was our analysis were chosen based on phonological and Galanthus alpinus Sosn. belonging to the amaryllis morphological features (structure of flowers, stem, family (Amaryllidaceae). leaves) and overall aesthetic qualities. Each collected Eudicots were represented with Pulsatilla albana sample was characterized based on morphology and of the Ranunculaceae family, order Ranunculales. identified visually or by using a dissection microscope Rosids and Asterids represented with two and three [Sunshine ST-3024R-2L, China]. Identification of species respectively. Rosids includes Asrtagalus samples was implemented based on available literature kubensis Grossh. (Fabaceae, Fabales) and Alcea on the local flora, and recent checklists [Flora of kusariensis (Malvales, Malvaceae) of which the Azerbaijan, 1961; Caucasian flora conspectus, 2008, latter is mentioned as unresolved name in The Plant 2012; Alizade et al., 2019]. The species status was also List and ambiguous in WFO. Asterids includes and checked following the “An Online Flora of All Known Phelypaea coccinea (M. Bieb.) Poir., Tanacetum Plants” (www.worldfloraonline.org) and “The Plant coccineum (Asteraceae, Asterales), Primula algida and List” (http://www.theplantlist.org). Plant life forms P. heterochroma (Primulaceae, Ericales). In The Plant were determined according to C. Raunkiaer [1934] and List P. heterochroma is recorded as unresolved name I. Serebryakov [1964]. and it is also mentioned as ambigous in the WFO. Tanacetum coccineum is an accepted name with its RESULTS AND DISCUSSION original publication diagnosis in both data bases, but Species diversity. The study area locates along various mentioned with low confidence level. altitude belts that include foothills, low, middle and high Above mentioned 20 taxa are given as rare and mountain zones, subalpine and alpine habitats. Herbs endangered in the last Red Book (2013) of the country, growing here could be mainly related to the spring flora of those 11 species (55%) mentioned as vulnerable (VU), but there are also occur species blooming in summer five species (25%) as endangered (EN), three species and autumn [Aghayeva et al., 2018]. Altogether about (15%) as near threatened (NT) and one species (5%) 47 Plant
Recommended publications
  • Rediscovery of Crocus Biflorus Var. Estriatus (Iridaceae) 23 Doi: 10.3897/Italianbotanist.6.28729 RESEARCH ARTICLE
    Italian Botanist 6: 23–30 (2018)Rediscovery of Crocus biflorus var. estriatus (Iridaceae) 23 doi: 10.3897/italianbotanist.6.28729 RESEARCH ARTICLE http://italianbotanist.pensoft.net Rediscovery of Crocus biflorus var. estriatus (Iridaceae) and its taxonomic characterisation Francesco Roma-Marzio1, Doerte Harpke2, Lorenzo Peruzzi1 1 Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126 Pisa, Italy 2 Leibniz Institute of Plant Genetics and Crop Research (IPK), Gatersleben, Germany Corresponding author: Lorenzo Peruzzi ([email protected]) Academic editor: Vitor Miranda | Received 30 July 2018 | Accepted 3 September 2018 | Published 5 September 2018 Citation: Roma-Marzio F, Harpke D, Peruzzi L (2018) Rediscovery of Crocus biflorus var. estriatus (Iridaceae) and its taxonomic characterisation. Italian Botanist 6: 23–30. https://doi.org/10.3897/italianbotanist.6.28729 Abstract The Italian endemicCrocus biflorus usually shows white or lilac flowers with three-to-five striking violet longitudinal stripes on the outer tepals, but unstriped plants were recorded in the past. These plants were originally described as C. annulatus subvar. estriatus, and subsequently recombined as a variety of C. biflo- rus. The rediscovery of such plants in Toscana gave us the opportunity to clarify their systematic relation- ships, so that we typified the name, and performed karyological and ITS analyses. These plants share the same chromosome number (2n = 2x = 8) and ITS sequence with C. biflorus s. str. Keywords Chromosome number, Herbert, Italian endemics, ITS, typification Introduction The genus Crocus L. (Iridaceae) consists of about 200 recognized species, ranging from western Europe and north-western Africa to western China, with a centre of diversity in the Balkan Peninsula and in Turkey (Mathew 1982, Harpke et al.
    [Show full text]
  • Isolation and Characterization of New Polymorphic Microsatellite Loci in the Mixotrophic Orchid Limodorum Abortivum L
    Molecular Ecology Resources (2008) 8, 1117–1120 doi: 10.1111/j.1755-0998.2008.02176.x PERMANENTBlackwell Publishing Ltd GENETIC RESOURCES Isolation and characterization of new polymorphic microsatellite loci in the mixotrophic orchid Limodorum abortivum L. Swartz (Orchidaceae) V. TRANCHIDA LOMBARDO,* S. E. HOPKINS,† M.-A. SELOSSE,‡ S. COZZOLINO§ and D. L. TAYLOR† *Sezione di Biologia ed Ecologia Vegetale D.A.C.P.A., Università di Catania, Via Valdisavoia 5, 95123 Catania, Italy, †Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving I Building, Fairbanks, AK 99775, USA, ‡Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, Equipe Interactions Biotiques, 1919 Route de Mende, 34293 Montpellier cédex, France, §Dipartimento delle Scienze Biologiche, Università di Napoli ‘Federico II’, Via Foria 223, 80139 Naples, Italy Abstract Here, we report the isolation and characterization of 11 polymorphic microsatellites in Limodorum abortivum. Allele variability has been characterized in three populations from Southern Italy and France. The number of alleles ranged from one to six per locus with an average of 3.8 alleles per locus. Observed and expected heterozygosity values ranged from 0.000 to 1.000 and from 0.492 to 0.806, respectively, with striking differences among populations. These microsatellites should be valuable tools for studying fine-scale genetic structure of scattered Limodorum abortivum populations, patterns of relationship with closely related taxa and the evolutionary ecology of its mycorrhizal interactions. Keywords: cross-species amplification, genomic library, Limodorum abortivum, microsatellite, orchids Received 7 December 2007; revision accepted 12 February 2008 Limodorum abortivum (tribe Neottiae, Orchidaceae) has a termed mixotrophy (Selosse et al.
    [Show full text]
  • Approaches and Limitations of Species Level Diagnostics in Flowering Plants
    Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change.
    [Show full text]
  • The Genomic Impact of Mycoheterotrophy in Orchids
    fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming.
    [Show full text]
  • Date Plant Collector Locality Vc Inst 1868 5 0 Primula Polyantha Crespigny, E
    natstand: last updated 14/12/2014 URL: www.natstand.org.uk/pdf/DeCrespignyEC002.pdf Person: De Crespigny, Eyre N. Champion (1821 – 1895) Description: Chronologically arranged list of specimens From various British herbaris. Source: Herbaria @ Home and University of Hull Extraction date: 2014 December 13 Annotated by: Richard Middleton Copyright: Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. Date Plant Collector Locality vc Inst 1868 5 0 Primula polyantha Crespigny, E. de Normandy, France HLU 1869 0 0 Teucrium scordium Crespigny, E. de Braunton Burrows 4 MANCH 1870 7 0 Oenanthe fluviatilis Crespigny, E. de River Lee, Edmonton 21 HLU 1871 0 0 Ranunculus arvensis Crespigny, E. de 21 MANCH 1871 0 0 Ranunculus arvensis Crespigny, E. de 21 MANCH 1871 0 0 Potamogeton friesii Crespigny, E. de Tottenham,Lea Canal 21 MANCH 1872 0 0 Galium tricornutum Crespigny, E. de Croydon 17 MANCH 1872 0 0 Potamogeton crispus Crespigny, E. de Tottenham 21 MANCH 1872 0 0 Potamogeton lucens Crespigny, E. de Tottenham,Lea Canal 21 MANCH 1873 0 0 Schoenoplectus x carinatus Crespigny, E. de Mortlake 17 MANCH 1873 0 0 Anemone nemorosa Crespigny, E. de Hampstead Heath 21 MANCH 1873 0 0 Anemone nemorosa Crespigny, E. de Pinner 21 MANCH 1874 0 0 Potamogeton berchtoldii Crespigny, E. de Woolwich 16 MANCH 1874 0 0 Campanula trachelium Crespigny, E. de Merstham 17 SLBI 1874 0 0 Dianthus deltoides Crespigny, E. de Thames Ditton 17 MANCH 1874 0 0 Carex pallescens Crespigny, E. de Pinner 21 MANCH 1874 0 0 Cochlearia anglica Crespigny, E. de Banks of the Thames, 16 HLU Woolwich, London 1874 6 0 Carex vesicaria Crespigny, E.
    [Show full text]
  • Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species
    Hind ile Scientific Volume 2018, Article ID 7958689, 18 pages https://doi.org/10.1155/2018/7958689 Hindawi Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species Daniel de la Torre Llorente© Biotechnology-Plant Biology Department, Higher Technical School of Agronomic, Food and Biosystems Engineering, Universidad Politecnica de Madrid, 28140 Madrid, Spain Correspondence should be addressed to Daniel de la Torre Llorente; [email protected] Received 22 June 2017; Accepted 28 December 2017; Published 30 January 2018 Academic Editor: Antonio Amorim Copyright © 2018 Daniel de la Torre Llorente. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis report reviews the European, National, and Regional catalogues of protected species, focusing specifcally on the Orchidaceae family to determine which species seem to be well-protected and where they are protected. Moreover, this examination highlights which species appear to be underprotected and therefore need to be included in some catalogues of protection or be catalogued under some category of protection. Te national and regional catalogues that should be implemented are shown, as well as what species should be included within them. Tis report should be a helpful guideline for environmental policies about orchids conservation in Spain, at least at the regional and national level. Around 76% of the Spanish orchid fora are listed with any fgure of protection or included in any red list, either nationally (about 12-17%) or regionally (72%).
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Polyploidy19 Program.Pdf
    Preface Yves Van de Peer The study of polyploidy dates back more than 100 years to the work of biologists such as Hugo de Vries and G. Ledyard Stebbins Jr. It has since then been realized that polyploidy is widespread and commonplace in plants. Although polyploidy is much rarer in animals, there are also numerous cases of currently polyploid insects, fishes, amphibians and reptiles. For a long time, ancient polyploidy events, dating back millions of years, were much less well documented and it was not until the advent of genomic technologies that conclusive evidence of ancient whole genome duplications (WGD) events became available and we now have evidence for tens, or even hundreds, of ancient WGD events. Explanations of the short-term success of polyploids are usually centered on the effects of genomic changes and increased genetic variation, which are mediated by changes in gene expression and epigenetic remodeling. Increased genetic variation, together with the direct cytogenetic conse- quences of genome doubling, can potentially affect the morphology and physiology of newly formed polyploids and could lead to alterations of ecologically and envi- ronmentally suitable conditions. For instance, it has repeatedly been proposed that polyploids have increased environmental robustness than do diploids, potentially leading to evolutionary advantages during periods of environmental turmoil. More- over, polyploidy has also sometimes been linked with higher diversification rates. Long(er)-term implications of WGD might be evolutionary innovation and increase in biological complexity by the biased retention of regulatory and developmental genes, which, given time, might diversify in function or cause rewiring of gene regulatory networks.
    [Show full text]
  • For the Flora of Central Asia
    ©Biologiezentrum Linz, Austria, download www.biologiezentrum.at KHASSANOV & RAKHIMOVA • The genus Iris in Central Asia STAPFIA 97 (2012): 174–179 Taxonomic revision of the genus Iris L. (Iridaceae Juss.) for the flora of Central Asia F. O. KHASSANOV* & N. RAKHIMOVA Abstract: A new conspectus of the genus Iris (including the genera Juno and Iridodictyum) is presented for the rich flora of Central Asia. Two new combinations as well as new epithetha for two species are proposed. Zusammenfassung: Die Gattung Iris (inklusive der Gattungen Juno und Iridodictyum) wurde für die reiche Flora Zentralasiens systematisch bearbeitet. Zwei neue Kombinationen, sowie neue Epitheta für zwei Arten werden vorgeschlagen. Key words: Taxonomy, Iris, Juno, Central Asia, nomenclature. * Correspondence to: [email protected] Introduction ulate bulb tunics. Amazingly that 36 species of Iris are endemic for this area (fig. 1–3). Nomenclature changes has been started by P. WENDELBO (1975). R. KAMELIN (1981) and later on T. Hall During the last 70 years in all floristic revisions for Central et A. SEISUMS (2011) made several new combinations from Juno Asia made by A. I. VVEDENSKY (1941, 1971) section Juno was restoring to Iris. Nevertheless, several taxa needed in nomen- treated as a separated genus. 30 species were mentioned and sev- clature correction as well new ones described recently from this eral new species were newly described in his last revision. In- area. No doubt, that Central Asia can be treated as one of the terestingly enough, that all other genera of Iridaceae (including largest centers of biodiversity of genus Iris L. and proposed con- Iris) has been revised in “Conspectus Florae Asiae Mediae” by spectus given below based on revisions of R.
    [Show full text]
  • Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
    Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems.
    [Show full text]
  • Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
    ! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance.
    [Show full text]
  • The Genus Crocus (Liliiflorae, Iridaceae): Lifecycle, Morphology, Phenotypic Characteristics, and Taxonomical Relevant Parameters 27-65 Kerndorff & Al
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 2015 Band/Volume: 0103 Autor(en)/Author(s): Kerndorf Helmut, Pasche Erich, Harpke Dörte Artikel/Article: The Genus Crocus (Liliiflorae, Iridaceae): Lifecycle, Morphology, Phenotypic Characteristics, and Taxonomical Relevant Parameters 27-65 KERNDORFF & al. • Crocus: Life-Cycle, Morphology, Taxonomy STAPFIA 103 (2015): 27–65 The Genus Crocus (Liliiflorae, Iridaceae): Life- cycle, Morphology, Phenotypic Characteristics, and Taxonomical Relevant Parameters HELMUT KERNDORFF1, ERICH PASCHE2 & DÖRTE HARPKE3 Abstract: The genus Crocus L. was studied by the authors for more than 30 years in nature as well as in cultivation. Since 1982 when the last review of the genus was published by Brian Mathew many new taxa were found and work dealing with special parameters of Crocus, like the Calcium-oxalate crystals in the corm tunics, were published. Introducing molecular-systematic analyses to the genus brought a completely new understanding of Crocus that presents itself now far away from being small and easy-structured. This work was initiated by the idea that a detailed study accompanied by drawings and photographs is necessary to widen and sharpen the view for the important details of the genus. Therefore we look at the life-cycle of the plants as well as at important morphological and phenotypical characteristics of Crocus. Especially important to us is the explained determination of relevant taxonomical parameters which are necessary for a mistake-free identification of the rapidly increasing numbers of discovered species and for the creation of determination keys. Zusammenfassung: Die Gattung Crocus wird seit mehr als 30 Jahren von den Autoren sowohl in der Natur als auch in Kultur studiert.
    [Show full text]