Polyploidy19 Program.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Polyploidy19 Program.Pdf Preface Yves Van de Peer The study of polyploidy dates back more than 100 years to the work of biologists such as Hugo de Vries and G. Ledyard Stebbins Jr. It has since then been realized that polyploidy is widespread and commonplace in plants. Although polyploidy is much rarer in animals, there are also numerous cases of currently polyploid insects, fishes, amphibians and reptiles. For a long time, ancient polyploidy events, dating back millions of years, were much less well documented and it was not until the advent of genomic technologies that conclusive evidence of ancient whole genome duplications (WGD) events became available and we now have evidence for tens, or even hundreds, of ancient WGD events. Explanations of the short-term success of polyploids are usually centered on the effects of genomic changes and increased genetic variation, which are mediated by changes in gene expression and epigenetic remodeling. Increased genetic variation, together with the direct cytogenetic conse- quences of genome doubling, can potentially affect the morphology and physiology of newly formed polyploids and could lead to alterations of ecologically and envi- ronmentally suitable conditions. For instance, it has repeatedly been proposed that polyploids have increased environmental robustness than do diploids, potentially leading to evolutionary advantages during periods of environmental turmoil. More- over, polyploidy has also sometimes been linked with higher diversification rates. Long(er)-term implications of WGD might be evolutionary innovation and increase in biological complexity by the biased retention of regulatory and developmental genes, which, given time, might diversify in function or cause rewiring of gene regulatory networks. Lastly, the impact of polyploidy on the adaptive potential of clonal systems seems to be greater than was initially appreciated. Adaptive effects of polyploidy in prokaryotes might, through increased mutational robustness, contribute to the direct survival of the individual. In many multi-cellular organisms, polyploidy does not generally affect whole organisms but arises, as part of normal development, in the somatic cells of otherwise diploid organisms. Unprogrammed polyploidy also occurs and, for instance, characterizes a substantial proportion of human tumours. In short, polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. It is clear that the consequences of polyploidization are complex and variable, operate at different evolutionary time-scales and can differ greatly between systems and species. All this, and much more, will be discussed at this sixth International Conference on Polyploidy, where we welcome about 180 participants of more than 26 different countries. We wish you all a very inspiring and fun meeting! Yves Van de Peer VIB/GhentUniversity, BE on behalf of the scientific committee: Malika Ainouche { University of Rennes, FR Mike Barker { The University of Arizona, US Visnja Besendorfer { University of Zagreb, HR Andrew Leitch { Queen Mary University of London, UK Maurine Neiman { The University of Iowa, US Polina Novikova { VIB/UGent Center for Plant Systems Biology, BE Eric Schranz { Wageningen University Research, NL Pamela S Soltis { University of Florida, US Jonathan Wendel { Iowa State university, US Arthur Zwaenepoel { VIB/UGent Center for Plant Systems Biology, BE i ii International Conference on Polyploidy June 11th { 14th (Ghent, Belgium) Tuesday June 11(1) Registration and Poster set-up 15:30 - Welcome and Introduction 16:00-16:10 Plenary session: Jonathan Wendel - Iowa State University, US 16:10-17:00 The wondrous cycles of polyploidy in plants Poster set-up & Welcome reception 17:00-19:00 Wednesday June 12 Session 1: Evolutionary and ecological significance of polyploidy 09:00-12:30 Part 1: Short-term/micro-evolutionary Douglas Soltis - University of Florida, Florida MNH, Gainesville, USA 09:00-09:30 Is there a single polyploidy paradigm? Tia-Lynn Ashman - University of Pittsburgh, USA 09:30-10:00 Ecological and evolutionary advantages of polyploidy revealed by strawberries Coffee break 10:00-10:30 Justin Conover - Iowa State University, US 10:30-10:45 Deleterious mutation accumulation during cotton allopolyploidization, speciation, and domestication Polina Novikova - VIB-UGent Center for Plant Systems Biology, BE 10:45-11:00 Polyploidy and adaptation in Australian burrowing frogs Neobatrachus Levi Yant - University of Nottingham, GB 11:00-11:15 Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa David Sankoff - University of Ottawa, CA 11:15-11:30 Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignments Matthias Hartmann - Institute of Botany Czech Acedemy of Science, Pruhonice, CZ 11:30-11:45 When triploids take over: phylogeography of geographical parthenogenesis in Hieracium alpinum Filip Kol´aˇr - Charles University, CZ 11:45-12:00 Adaptation and genotype-environment interaction in polyploid populations: lessons from primary contact zones Lei Gong - Northeast Normal University, CN 12:00-12:15 Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces Kentaro Shimizu - University of Zurich, CH 12:15-12:30 Are homeologs redundant? Resequencing of the allotetraploid Arabidopsis kamchatica using subgenome classification approaches (1)Please find the complete abstract book on the USB flash drive in your conference bag. 1 Lunch 12:30-14:00 Session 2: Evolutionary and ecological significance of polyploidy 14:00-17:30 Part 2: Long-term/macro-evolutionary Martin Lysak - CEITEC, Masaryk University, CZ 14:00-14:30 Post-polyploid diploidization and karyotype evolution Rie Shimizu-Inatsugi - University of Z¨urich,CH 14:30-15:00 From Genome to Ecology: niche separation in genus Cardamine through polyploidization Coffee break 15:00-15:30 Michael Barker - University of Arizona, US 15:30-15:45 Impact of polyploidy on the genetic diversity of vascular plants G¨okce Ak¨oz - Gregor Mendel Institute and Vienna Graduate School of Population Genetics, AT 15:45-16:00 The Aquilegia genome reveals a hybrid origin of core eudicots Rob Denton - University of Minnesota Morris, US 16:00-16:15 The evolutionary history of nuclear genomes trapped in a polyploid salamander lineage Kira Zadesenets - The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, RU 16:15-16:30 Genome reorganization after whole genome duplication in evolution of free-living flatworms of the genus Macrostomum R. Shawn Abrahams - University of Missouri, US 16:30-16:45 Gene Duplication in the Evolution of the Glucosinolate Biosynthesis Pathway Mathieu Rousseau-Gueutin - INRA, FR 16:45-17:00 Co-evolution of chloroplast and nuclear genomes in flowering plants and impact of allopolyploidy on fine-tuned cytonuclear interactions Jonathan Spoelhof - University of Florida, US 17:00-17:15 Does reproductive assurance explain the incidence of polyploidy in plants and animals? Victor Albert - University at Buffalo, Nanyang Technological University, US 17:15-17:30 Deep-time morphological stasis in the carnivorous plant genus Drosera despite different trajectories of genomic upheaval Poster session & networking reception 17:30-20:00 Thursday June 13 Session 3: Genetics, epigenetics, and physiology of polyploidy 09:00-12:30 Christian Parisod - University of Bern, CH 09:00-09:30 Integration of genomic and ecological changes in polyploids Maurine Neiman - University of Iowa, US 09:30-10:00 Does polyploidy influence genomic accumulation of repetitive elements? Coffee break 10:00-10:30 Mimmi Eriksson - University of Vienna, AT 10:30-10:45 Transposable elements and early stages of polyploid evolution. A perspective from sibling allopolyploid marsh orchids (Dactylorhiza). Ning Li - Northeast Normal University, CN 10:45-11:00 2 DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids Clayton Visger - California State University Sacramento,, US 11:00-11:15 Integrating multiple RNA-seq normalizations to assess the impact of autopolyploidy and drought stress on gene expression in Tolmiea Guanjing Hu - Iowa State University, US 11:15-11:30 Chromatin structure and evolution of duplicate gene expression Armel Salmon - University of Rennes 1 - UMR CNRS ECOBIO, FR 11:30-11:45 Small-RNAs and PAH-stress tolerance in polyploid Spartina species (Poaceae) Eric Jenczewski - Institut Jean Pierre Bourgin, INRA, FR 11:45-12:00 Evolution by gene loss: meiotic recombination genes could have their say Anne-Marie Ch`evre - INRA, FR 12:00-12:15 A reshuffling machinery for generating new diversity in a polyploid context: Model Brassica napus Elvira Hoerandl - University of Goettingen, DE 12:15-12:30 The interplay of polyploidy, epigenetic patterns, niche shifts and apomixis in plants Lunch 12:30-14:00 Session 3: Genetics, epigenetics, and physiology of polyploidy 14:00-15:00 Simon Sandve - Norwegian University of Life Sciences, Aas, NO 14:00-14:30 Gene regulatory evolution following whole genome duplication Rebecca Heald - University of California, USA 14:30-15:00 Investigating the link between genome size and cell size and physiology using amphibian systems Coffee break & poster session (continued) 15:00-16:00 Boat tour & conference dinner (registration required) 16:15 - Friday June 14 Session 4: `Somatic' polyploidy
Recommended publications
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Extensive Chromosomal Variation in a Recently Formed Natural Allopolyploid Species, Tragopogon Miscellus (Asteraceae)
    Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) Michael Chestera, Joseph P. Gallaghera, V. Vaughan Symondsb, Ana Veruska Cruz da Silvac,d, Evgeny V. Mavrodievd, Andrew R. Leitche, Pamela S. Soltisd, and Douglas E. Soltisa,1 aDepartment of Biology, University of Florida, Gainesville, FL 32611; bInstitute of Molecular Biosciences, Massey University, Palmerston North, 4442, New Zealand; cEmbrapa Tabuleiros Costeiros, CEP 49025-040, Aracaju-SE, Brazil; dFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and eSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved December 6, 2011 (received for review July 22, 2011) Polyploidy, or whole genome duplication, has played a major role after whole genome duplication (18). In some cases, the regularity in the evolution of many eukaryotic lineages. Although the of meiosis was found to increase rapidly in experimental neo- prevalence of polyploidy in plants is well documented, the molec- allopolyploids that were initially chromosomally unstable (21, ular and cytological consequences are understood largely from 22); for example, after just five selfed generations, Nicotiana newly formed polyploids (neopolyploids) that have been grown neoallotetraploids displayed bivalent pairing and >99% stainable experimentally. Classical cytological and molecular cytogenetic pollen (22).
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Molecular Phylogeny and Evolutionary Trends in Hieracium (Asteraceae, Lactuceae)
    Charles University in Prague, Faculty of Science Department of Botany Molecular phylogeny and evolutionary trends in Hieracium (Asteraceae, Lactuceae) Molekulární fylogeneze a evoluční trendy v rodě Hieracium (Asteraceae, Lactuceae) Karol Krak Ph.D. thesis Prague, May 2012 Supervised by: Dr. Judith Fehrer Content Declaration.........................................................................................................1 Acknowledgements............................................................................................2 Sumary...............................................................................................................3 Introduction.........................................................................................................4 Aims of the thesis.............................................................................................14 References.......................................................................................................15 Papers included in the thesis 1. Intra-individual polymorphism in diploid and apomictic polyploid.................22 hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. Fehrer J., Krak K., Chrtek J. BMC Evolutionary Biology (2009) 9: 239 2. Genome size in Hieracium subgenus Hieracium (Asteraceae) is...............45 strongly correlated with major phylogenetic groups. Chrtek J., Zahradníček J., Krak K., Fehrer J. Annals of Botany (2009) 104: 161–178 3. Development of novel low-copy nuclear markers
    [Show full text]
  • Asteraceae) from Central and Southeastern Europe
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 53/1: 102–110, 2011 DOI: 10.2478/v10182-011-0014-3 CHROMOSOME NUMBERS IN HIERACIUM AND PILOSELLA (ASTERACEAE) FROM CENTRAL AND SOUTHEASTERN EUROPE TOMASZ ILNICKI1* AND ZBIGNIEW SZELĄG2** 1Department of Plant Cytology and Embryology, Jagiellonian University, Grodzka 52, 31-044 Cracow, Poland, 2Institute of Botany, Jagiellonian University, Kopernika 31, 31-501 Cracow, Poland Received March 20, 2011; revision accepted April 29, 2011 Chromosome numbers of 46 Hieracium L. and Pilosella Vaill. taxa from Austria, Bulgaria, Czech Republic, Macedonia, Montenegro, Poland, Romania, Serbia and Slovakia are presented. Chromosomes numbers are given for the first time for Hieracium amphigenum Briq. 2n = 3x = 27, H. bohatschianum Zahn 2n = 4x = 36, H. borbasii R. Uechtr. 2n = 4x = 36, H. cernuum Friv. 2n = 2x = 18, H. hazslinszkyi Pax 2n = 3x = 27, H. mirekii Szeląg 2n = 4x = 36, H. polyphyllobasis (Nyár. & Zahn) Szeląg 2n = 3x = 27, H. porphyriticum A. Kern. 2n = 4x = 36, H. racemosum Waldst. & Kit. ex Willd. subsp. racemosum 2n = 3x = 27, H. scardicum Borm. & Zahn 2n = 4x = 36, H. sparsum subsp. ipekanum Rech. fil. & Zahn 2n = 4x = 36, H. sparsum subsp. peristeriense Behr & Zahn, H. sparsum subsp. squarrosobracchiatum Behr & al. 2n = 3x = 27, H. tomosense Simk. 2n = 4x = 36, H. tubulare Nyár. 2n = 4x = 36, H. werneri Szeląg 2n = 3x = 27 and Pilosella fusca subsp. subpe- dunculata (Zahn) Szeląg, as well as five species of Hieracium sect. Cernua R. Uechtr. not described to date and a hybrid between H. bifidum s. lat. and H. pojoritense Woł. Key words: Asteraceae, chromosome numbers, Europe, Hieracium, karyotypes, Pilosella. INTRODUCTION In the genus Pilosella, determining the mode of reproduction on the basis of ploidy level is more com- Hieracium L.
    [Show full text]
  • Nested Whole-Genome Duplications Coincide with Diversification And
    ARTICLE https://doi.org/10.1038/s41467-020-17605-7 OPEN Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae Nora Walden 1,7, Dmitry A. German 1,5,7, Eva M. Wolf 1,7, Markus Kiefer 1, Philippe Rigault 1,2, Xiao-Chen Huang 1,6, Christiane Kiefer 1, Roswitha Schmickl3, Andreas Franzke 1, Barbara Neuffer4, ✉ Klaus Mummenhoff4 & Marcus A. Koch 1 1234567890():,; Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phy- logenetic genome-wide association studies to analyze the evolution of morphological form and function. 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 2 GYDLE, 1135 Grande Allée Ouest, Québec, QC G1S 1E7, Canada. 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
    [Show full text]
  • Chromosomenzahlen Von Hieracium (Compositae, Cichorieae) – Teil 5
    Berichte der Bayerischen Botanischen Gesellschaft 80: 141-160, 2010 141 Chromosomenzahlen von Hieracium (Compositae, Cichorieae) – Teil 5 FRANZ SCHUHWERK Zusamenfassung: Erstmals festgestellte Chromosomenzahlen (die Unterart steht in Klammern, wenn die Ploidiestufe auch für die Sammelart neu ist): Hieracium atratum ssp. atratum und ssp. zin- kenense: 2n = 36, H. benzianum: 2n = 36, H. dentatum ssp. basifoliatum: 2n = 27 und 36, H. den- tatum (ssp. dentatum, ssp. expallens und ssp. prionodes): jeweils 2n = 36, H. dentatum ssp. oblongifolium: 2n = 27, H. dollineri (ssp. dollineri): 2n = 18, H. glabratum (ssp. glabratum): 2n = 27 und 36, H. glabratum ssp. trichoneurum: 2n = 36, H. jurassicum ssp. cichoriaceum: 2n = 27, H. leucophaeum: 2n = 27, H. pallescens ssp. muroriforme: 2n = 36, H. pilosum ssp. villosiceps: 2n = 27, H. porrectum: 2n = 45, H. pospichalii (ssp. pospichalii): 2n = 27, H. scorzonerifolium (ssp. fle- xile): 2n = 36, H. scorzonerifolium ssp. pantotrichum und ssp. triglaviense: jeweils 2n = 27, H. subspeciosum (ssp. subspeciosum): 2n = 27 und („ssp. lantschfeldense“): 2n = 36, H. umbrosum (ssp. oleicolor): 2n = 27, H. valdepilosum ssp. oligophyllum: 2n = 27, H. valdepilosum ssp. ra- phiolepium: 2n = 36, H. valdepilosum (ssp. subsinuatum): 2n = 18, H. villosum ssp. glaucifrons: 2n = 27. Erstmals aus den Alpen insgesamt wird ein pentaploides, erstmals aus den Nordalpen ein di- ploides Eu-Hieracium nachgewiesen. Zur Unterscheidung von H. subglaberrimum von ähnlichen Arten wird eine Tabelle vorgelegt. Die ostalpischen Sippen von H. chondrillifolium werden als getrennt zu behandelndes H. subspe- ciosum vorgeschlagen (eine Umkombination: H. subspeciosum ssp. jabornegii). Für Hieracium scorzonerifolium ssp. pantotrichum wird erstmals die Verbreitung in Bayern dargestellt. Summary: For the first time determined chromosome numbers: Hieracium atratum ssp.
    [Show full text]
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]
  • Backcross Compatibility in Hybrids Between Brassicoraphanus (Brassica Oleracea X Raphanus Sativus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants
    九州大学学術情報リポジトリ Kyushu University Institutional Repository Backcross Compatibility in Hybrids between Brassicoraphanus (Brassica oleracea X Raphanus sativus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants Long, Ming Hua Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University Okubo, Hiroshi Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University Fujieda, Kunimitsu Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University https://doi.org/10.5109/23996 出版情報:九州大学大学院農学研究院紀要. 37 (1), pp.41-50, 1992-12. 九州大学農学部 バージョン: 権利関係: J. Fat. Agr., Kyushu Univ., 37 (l), 41-50 (1992) Backcross Compatibility in Hybrids between Brassicoraphanus (Brassica oleracea X Raphanus satiuus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants Ming Hua Long*, Hiroshi Okubo and Kunimitsu F’ujieda Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812, Japan (Received April 30, 1992) All the F, hybrids between Brassicoruphunus ‘K-11’ and cruciferous crops showed very low pollen and seed fertility. Backcrossings of the F, hybrids with Raphunus sutiws and Brassica campestnk each were successful, whereas those with B. oleracea were almost unsuccessful under natural conditions. BC1 plants could be obtained through embryo culture when F, hybrids were backcrossed with B. oleracea. In the backcrossings with R. sativus and B. campestris each, seed fertility was improved as the backcross generation and selection of the plants advanced. One to three trivalents were observed in the PMCs of BC1 plants obtained by backcrossing F, hybrids with B. campestris. Clubroot resistant plants were obtained from BC, progenies derived from backcrossing of the BC, hybrids with R. sat&us and B.
    [Show full text]
  • New National and Regional Vascular Plant Records, 9
    Turkish Journal of Botany Turk J Bot (2020) 44: 455-480 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1908-41 Contribution to the flora of Asian and European countries: new national and regional vascular plant records, 9 1, 2 2 3 4 Marcin NOBIS *, Jolanta MARCINIUK , Paweł MARCINIUK , Mateusz WOLANIN , Gergely KIRÁLY , 5,6 7 1 8 Arkadiusz NOWAK , Beata PASZKO , Ewelina KLICHOWSKA , Gonzalo MORENO-MORAL , 9 10 1 11 12 Renata PIWOWARCZYK , Óscar SÁNCHEZ-PEDRAJA , Anna WRÓBEL , Irina N. EGOROVA , Pavol Eliaš JUN. , 11 13 14 15 1 Denis A. KRIVENKO , Igor V. KUZMIN , Georgy A. LAZKOV , Giacomo MEI , Agnieszka NOBIS , 16 17 18 19 13 Marina V. OLONOVA , Robert J. SORENG , Adriano STINCA , Vladimir M. VASJUKOV , Nikita A. VERSHININ 1 Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland 2 Institute of Biology, Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland 3 Department of Botany, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland 4 Institute of Silviculture and Forest Protection, Faculty of Forestry, University of Sopron, Hungary 5 Botanical Garden-Center for Biological Diversity Conservation, Polish Academy of Sciences, Warsaw, Poland 6 Opole University, Opole, Poland 7 Department of Vascular Plants, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland 8 Santa Clara, Santander (Cantabria), Spain 9 Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski
    [Show full text]
  • Evolution of a Horizontally Acquired Legume Gene, Albumin 1, in the Parasitic Plant Phelipanche Aegyptiaca and Related Species
    UC Davis UC Davis Previously Published Works Title Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species Permalink https://escholarship.org/uc/item/7q1242t0 Journal BMC Evolutionary Biology, 13(1) ISSN 1471-2148 Authors Zhang, Yeting Fernandez-Aparicio, Monica Wafula, Eric K et al. Publication Date 2013-02-20 DOI http://dx.doi.org/10.1186/1471-2148-13-48 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Zhang et al. BMC Evolutionary Biology 2013, 13:48 http://www.biomedcentral.com/1471-2148/13/48 RESEARCH ARTICLE Open Access Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species Yeting Zhang1,2, Monica Fernandez-Aparicio3,4, Eric K Wafula5, Malay Das3, Yuannian Jiao5, Norman J Wickett5,6, Loren A Honaas5, Paula E Ralph5, Martin F Wojciechowski7, Michael P Timko8, John I Yoder9, James H Westwood3 and Claude W dePamphilis1,2,5* Abstract Background: Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. Results: Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses.
    [Show full text]
  • Remarks on Brassica
    International Journal of AgriScience Vol. 3(6): 453-480, June 2013 www.inacj.com ISSN: 2228-6322© International Academic Journals The wild and the grown – remarks on Brassica Hammer K.¹*, Gladis Th.¹ , Laghetti G.² , Pignone D.² ¹Former Institute of Crop Science, University of Kassel, Witzenhausen, Germany. * Author for correspondence (email: [email protected]) ²CNR – Institute of Plant Genetics, Bari, Italy. Received mmmm yyyy; accepted in revised form mmmmm yyyy ABSTRACT Brassica is a genus of the Cruciferae (Brassicaceae). The wild races are concentrated in the Mediterranean area with one species in CE Africa (Brassica somaliensis Hedge et A. Miller) and several weedy races reaching E Asia. Amphidiploid evolution is characteristic for the genus. The diploid species Brassica nigra (L.) Koch (n = 8), Brassica rapa L. emend. Metzg. (n = 10, syn.: B. campestris L.) and Brassica oleracea L. (n = 9) all show a rich variation under domestication. From the naturally occurring amphidiploids Brassica juncea (L.) Czern. (n = 18), Brassica napus L. emend. Metzg. (n = 19) and the rare Brassica carinata A. Braun (n = 17) also some vegetable races have developed. The man-made Brassica ×harmsiana O.E. Schulz (Brassica oleracea × Brassica rapa, n = 29, n = 39), or similar hybrids, serve also for the development of new vegetables. Brassica tournefortii Gouan (n = 10) from another Brassica- cytodeme, different from the Brassica rapa group, is occasionally grown as a vegetable in India. Brassica has developed two hotspots under cultivation, in the Mediterranean area and in E Asia. Cultivation by man has changed the different Brassica species in a characteristic way. The large amount of morphologic variation, which exceeded in many cases variations occurring in distinct wild species, has been observed by the classical botanists by adding these variations to their natural species by using Greek letters.
    [Show full text]