Division of Plant Exploration and Germplasm Collection 1

Total Page:16

File Type:pdf, Size:1020Kb

Division of Plant Exploration and Germplasm Collection 1 okf"kZd izfrosnu Annual Report 2015-16 HkkÑvuqi&jk"Vªh; ikni vkuqOakf'kd Laklk/u C;wjks (Hkkjrh; Ñf"k vuqLak/ku ifj"kn) iwlk ifjlj] ubZ fnYyh&110 012 ICAR-NATIONAL BUREAU OF PLANT GENETIC RESOURCES (Indian Council of Agricultural Research) Pusa Campus, New Delhi - 110 012 Supervision and Guidance : Dr KC Bansal, Director Dr SC Dubey, Director (Acting) and Chairman, Publication Committee Compiled and Edited by : Dr Kavita Gupta, Principal Scientist Dr Anjali Kak, Principal Scientist Dr Vandana Tyagi, Principal Scientist Dr MK Rana, Principal Scientist Dr TV Prasad, Senior Scientist Dr K Pradheep, Senior Scientist Citation : Anonymous (2016). Annual Report of the ICAR-National Bureau of Plant Genetic Resources 2015-16, NBPGR, Pusa Campus, New Delhi, India, 195 + x p. This report includes unprocessed or semi-processed data, which would form the basis of scientific papers in due course. The material contained in the report therefore may not be made use of without the written permission of the Director, ICAR-National Bureau of Plant Genetic Resources, New Delhi except for quoting it for scientific reference. Published by the Director, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi-110 012, and Printed at Alpha Printographics (India), New Delhi-110 028. Tel.: 9999039940, 9811199620 CONTENTS Preface v Acronyms and Abbreviations vii-x dk;Zdkjh lkjka'k 1-6 Executive Summary 7-13 Introduction 14-18 1 Division of Plant Exploration and Germplasm Collection 19-27 2 Germplasm Exchange Unit 28-33 3 Division of Plant Quarantine 34-49 4 Division of Germplasm Evaluation 50-59 5 Division of Genomic Resources 60-71 6 Division of Germplasm Conservation 72-77 7 Tissue Culture and Cryopreservation Unit 78-82 8 PGR Policy Planning Unit 83-85 9 Agricultural Knowledge Management Unit 86-89 NBPGR Regional Stations/Base Centres 10 Regional Station, Akola 90-93 11 Regional Station, Bhowali 94-100 12 Base Centre, Cuttack 101-107 13 Regional Station, Hyderabad 108-113 14 Regional Station, Jodhpur 114-117 15 Base Centre, Ranchi 118-121 16 Regional Station, Shillong 122-125 17 Regional Station, Shimla 126-130 18 Regional Station, Srinagar 131-134 19 Regional Station, Thrissur 135-140 20 Trainings and Capacity Building 141-146 21 General Information 147-186 21.1 Institute Management Committee (IMC) 147 21.2 Research Advisory Committee (RAC) 147 21.3 Institute Research Council (IRC) 147 21.4 Institute Joint Staff Council (IJSC) 148 21.5 Prioritization Monitoring and Evaluation (PME) Cell 148 21.6 Personnel 150 21.7 Staff Reservations 157 21.8 Staff Transferred/ Retired/ New Appointments 157 21.9 Awards/ Honours/ Prizes 158 20.10 Deputations Abroad 160 21.11 Library and Documentation Services 161 21.12 Germplasm Field Days Organized 162 21.13 PGR Awareness and Biodiversity Fairs 163 21.14 Participation of Staff in Seminars/ Symposia/ Conferences/ Workshops 166 21.15 Publications 169 21.16 Intellectual Property and Technology Management 185 21.17 Participation in International Comparative/ Proficiency Testings for Quality Assurance 186 and Global Harmonization 21.18 Distinguished Visitors 186 Annexure I : Meteorological Data of Regional Stations 187 Annexure II : RFD Documents for ICAR-NBPGR (2014-15) 188-195 PREFACE It gives me immense pleasure to place before you the Annual Report (2015-16) of the ICAR-National Bureau of Plant Genetic Resources (ICAR-NBPGR), a nodal organization mandated with planning, execution and coordination of all activities concerned with germplasm collection, introduction, quarantine, evaluation, conservation and documentation at national level. Since its establishment in 1976, ICAR-NBPGR has played a vital role in the management and utilization of plant genetic resources (PGR) for crop improvement. Taking into consideration the various suggestions of the Research Advisory Committee, Germplasm Advisory Committees and Workshops of All India Coordinated Research Networks (AICRN) on various crop groups, plant explorations were undertaken to collect trait-specific germplasm and wild relatives of crop plants, which constituted >50% of the total collections made during the year 2015. In addition, trait specific germplasm with improved nutritional quality, resistance to biotic and abiotic stresses, and transgenic material for research was also introduced from abroad and made available to the researchers after quarantine clearance. During the period, 9,473 accessions of various agri-horticultural crops comprising cereals, pulses, oilseeds, vegetables, potential crops, and medicinal and aromatic plants were grown at New Delhi for characterization, evaluation (including biotic and abiotic stresses), regeneration and multiplication. In addition, under NICRA project, a reference set of 348 wheat accessions for terminal heat tolerance has been grown under late sown conditions for identification of donors. Under CRP on Agro-biodiversity Component I, a total of 59,043 accessions were distributed for regeneration, characterization and evaluation; while under Component II, a total of 5,964 accessions comprising rice (1,000), wheat (1,483), finger millet (1,000), rapeseed mustard (1,000), chickpea (736) and okra (745), were evaluated at AICRP centres/hotspots for agronomic traits, biotic and abiotic stresses. A total of 11,581 new accessions of germplasm including varieties to be notified and released and trait-specific registered germplasm of various crops were received for long-term conservation in the National Genebank. In addition, 1,900 accessions belonging to fruit crops, bulb and tuber crops, medicinal, aromatic and rare/endangered plants, spices, plantation and industrial crops, and others were conserved as in vitro cultures. Significant progress was made in the development of protocols for cultivar identification in crops of national importance using molecular techniques like STMS, AFLP and ISSR markers. Varieties of different crops were fingerprinted and included in the database on DNA fingerprinting. Four M.Sc. and one Ph.D. student were awarded degrees in PGR from Post Graduate School, IARI, New Delhi during the year. I take this opportunity to place on record my sincere thanks and gratitude to Dr T Mohapatra, the Hon’ble Secretary, DARE and Director General, ICAR, and Dr S Ayyappan, Former Secretary, DARE and DG, ICAR, Dr JS Sandhu, DDG (Crop Science) and Dr JS Chauhan, ADG (Seed), ICAR for their continued guidance, encouragement and support in fulfilling the mandate of ICAR-NBPGR. Special thanks are due to Dr KC Bansal, Former Director, ICAR-NBPGR for steering the Bureau through the year under his dynamic and vibrant leadership. I thank the HoDs, Officers-in-charge, all the scientists, technical, administrative and audit, and supporting staff of NBPGR for their teamwork, efficiency and dedication. Sincere efforts of Drs Kavita Gupta, Anjali Kak, Vandana Tyagi, Mukesh Rana, TV Prasad and K Pradheep in compilation and editing the report are appreciated. June 22, 2016 SC Dubey New Delhi Director (Acting) PREFACE v vi ANNUAL REPORT 2015-16 ACRONYMS AND ABBREVIATIONS ABD Augmented Block Design ABS Access and Benefit-Sharing AICRP All India Coordinated Research Project AKMU Agricultural Knowledge Management Unit APAARI Asia-Pacific Association of Agricultural Research Institutions AVRDC Asian Vegetable Research and Developement Center BAP Blood Agar Plates BCH Biosafety Clearing House BRNS Board of Research in Nuclear Sciences BSMV Barley stripe mosaic virus BWC Biological Weapon Convention CBD Convention on Biological Diversity CCI Chlorophyll Content Index CGIAR Consultative Group on International Agricultural Research CGRFA Commission on Genetic Resources for Food and Agriculture ChiVMV Chilli veinal mottle virus CIARI Central Island Agricultural Research Institute CIMMYT International Maize and Wheat Improvement Center CITH Central Institute of Temperate Horticulture CLRV Cherry leaf roll virus CRP-AB Consortium Research Project on Agrobiodiversity CSIR Council of Scientific and Industrial Research CTCRI Central Tuber Crops Research Institute CWRs Crop Wild Relatives DACFW Department of Agriculture, Cooperation and Farmers' Welfare DAI Days After Inoculation DARE Department of Agricultural Research and Education DBT Department of Biotechnology DIHAR Defence Institute of High Altitude Research DNA Deoxyribonucleic Acid DPPQS Directorate of Plant Protection Quarantine and Storage DST Department of Science and Technology DWB Dry Weight Basis EC Exotic Collection EDCT Ethylene Dichloride-Carbon Tetrachloride ACRONYMS vii FAO Food and Agriculture Organisation FB Fruit Borer FGB Field Genebank FMS Financial Management System FSB Fruit and Shoot Borer GBPIHED G. B. Pant Institute of Himalayan Environment and Development GCLV Garlic common latent virus GFLV Grapevine fan leaf virus GHU Germplasm Handling Unit GPA Global Plan of Action HPV High Plains Virus HSI Heat Susceptibility Index HWT Hot Water Treatment IARI Indian Agricultural Research Institute IBSC Institute Biosafety Committee IC Indigenous Collection ICAR Indian Council of Agricultural Research ICARDA International Center for Agricultural Research in Dry Areas ICRISAT International Crops Research Institute for Semi-Arid Tropics ICRV Indian citrus ringspot virus IERP Integrated Eco-Development Research Programme IIHR Indian Institute of Horticultural Research IIPR Indian Institute of Pulses Research IJSC Institute Joint Staff Council IPGRI International Plant Genetic Resources Institute IRRI International Rice Research Institute ITC International Transit Centre
Recommended publications
  • Extensive Chromosomal Variation in a Recently Formed Natural Allopolyploid Species, Tragopogon Miscellus (Asteraceae)
    Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) Michael Chestera, Joseph P. Gallaghera, V. Vaughan Symondsb, Ana Veruska Cruz da Silvac,d, Evgeny V. Mavrodievd, Andrew R. Leitche, Pamela S. Soltisd, and Douglas E. Soltisa,1 aDepartment of Biology, University of Florida, Gainesville, FL 32611; bInstitute of Molecular Biosciences, Massey University, Palmerston North, 4442, New Zealand; cEmbrapa Tabuleiros Costeiros, CEP 49025-040, Aracaju-SE, Brazil; dFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and eSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved December 6, 2011 (received for review July 22, 2011) Polyploidy, or whole genome duplication, has played a major role after whole genome duplication (18). In some cases, the regularity in the evolution of many eukaryotic lineages. Although the of meiosis was found to increase rapidly in experimental neo- prevalence of polyploidy in plants is well documented, the molec- allopolyploids that were initially chromosomally unstable (21, ular and cytological consequences are understood largely from 22); for example, after just five selfed generations, Nicotiana newly formed polyploids (neopolyploids) that have been grown neoallotetraploids displayed bivalent pairing and >99% stainable experimentally. Classical cytological and molecular cytogenetic pollen (22).
    [Show full text]
  • Polyploidy19 Program.Pdf
    Preface Yves Van de Peer The study of polyploidy dates back more than 100 years to the work of biologists such as Hugo de Vries and G. Ledyard Stebbins Jr. It has since then been realized that polyploidy is widespread and commonplace in plants. Although polyploidy is much rarer in animals, there are also numerous cases of currently polyploid insects, fishes, amphibians and reptiles. For a long time, ancient polyploidy events, dating back millions of years, were much less well documented and it was not until the advent of genomic technologies that conclusive evidence of ancient whole genome duplications (WGD) events became available and we now have evidence for tens, or even hundreds, of ancient WGD events. Explanations of the short-term success of polyploids are usually centered on the effects of genomic changes and increased genetic variation, which are mediated by changes in gene expression and epigenetic remodeling. Increased genetic variation, together with the direct cytogenetic conse- quences of genome doubling, can potentially affect the morphology and physiology of newly formed polyploids and could lead to alterations of ecologically and envi- ronmentally suitable conditions. For instance, it has repeatedly been proposed that polyploids have increased environmental robustness than do diploids, potentially leading to evolutionary advantages during periods of environmental turmoil. More- over, polyploidy has also sometimes been linked with higher diversification rates. Long(er)-term implications of WGD might be evolutionary innovation and increase in biological complexity by the biased retention of regulatory and developmental genes, which, given time, might diversify in function or cause rewiring of gene regulatory networks.
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • CARBÓN PARCIAL DEL TRIGO Tilletia Indica Mitra Ficha Técnica
    CARBÓN PARCIAL DEL TRIGO Tilletia indica Mitra Ficha Técnica No. 24 Durán, 2008., Durán 2016., Castlebury & Shivas 2006. ISBN: Pendiente Mayo, 2019 Dirección: DGSV/CNRF/PVEF Código EPPO : NEOVIN. Fecha de actualización: Mayo, 2019. Comentarios y sugerencias enviar correo a: [email protected] CONTENIDO IDENTIDAD .................................................................................................................................................................................................... 1 Nombre científico ................................................................................................................................................................................ 1 Sinonimia .................................................................................................................................................................................................. 1 Clasificación taxonómica ................................................................................................................................................................ 1 Nombre común .................................................................................................................................................................................... 1 Código EPPO .......................................................................................................................................................................................... 1 Estatus Fitosanitario .........................................................................................................................................................................
    [Show full text]
  • Chemical Constituents and Biological Activities of Zanthoxylum Limonella (Rutaceae): a Review
    Supabphol & Tangjitjareonkun Tropical Journal of Pharmaceutical Research December 2014; 13 (12): 2119-2130 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v13i12.25 Review Article Chemical Constituents and Biological Activities of Zanthoxylum limonella (Rutaceae): A Review Roongtawan Supabphol1 and Janpen Tangjitjareonkun2* 1Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, 2Department of Basic Science and Physical Education, Faculty of Science at Si Racha, Kasetsart University, Si Racha Campus, Chonburi 20230, Thailand *For correspondence: Email: [email protected] Received: 9 December 2013 Revised accepted: 20 October 2014 Abstract Zanthoxylum limonella belongs to the family of aromatic deciduous trees and shrubs, Rutaceae. In traditional medicine practice, various parts of Z. limonella are used for the treatment of dental caries, febrifugal, sudorific, rheumatism, diuretic, stomach ache and diarrhea. Secondary metabolites have been isolated the stems, stem barks, and fruits. The plant contains alkaloid, amide, lignin, coumarin and terpenoid compounds. The extracts of the various parts, essential oil from the fruits and some pure compounds of Z. limonella have been found to have biological activities, for example, mosquito repellent and mosquito larvicidal, antimicrobial, antioxidant, and antitumour properties.
    [Show full text]
  • Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
    INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT Salix recurvigemmata A.K. Skvortsov f. variegata Schumikh., O.E. Epanch. & I.V. Belyaeva Biarmiae 2020 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ СПИСОК СЕМЯН И СПОР, ПРЕДЛАГАЕМЫХ ДЛЯ ОБМЕНА БОТАНИЧЕСКИМ САДОМ ИМЕНИ А.Г. ГЕНКЕЛЯ ПЕРМСКОГО ГОСУДАРСТВЕННОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА Syringa vulgaris L. ‘Красавица Москвы’ Пермь 2020 Index Seminum 2020 2 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ Дорогие коллеги! Ботанический сад Пермского государственного национального исследовательского университета был создан в 1922 г. по инициативе и под руководством проф. А.Г. Генкеля. Здесь работали известные ученые – ботаники Д.А. Сабинин, В.И. Баранов, Е.А. Павский, внесшие своими исследованиями большой вклад в развитие биологических наук на Урале. В настоящее время Ботанический сад имени А.Г. Генкеля входит в состав регионального Совета ботанических садов Урала и Поволжья, Совет ботанических садов России, имеет статус научного учреждения и особо охраняемой природной территории. Основными научными направлениями работы являются: интродукция и акклиматизация растений,
    [Show full text]
  • Boigu Islands, Form the Northern Island Group of Torres Strait, Located Approximately 150 Km North of Thursday Island (See Figure 1)
    PROFILE FOR MANAGEMENT OF THE HABITATS AND RELATED ECOLOGICAL AND CULTURAL RESOURCE VALUES OF DAUAN ISLAND January 2013 Prepared by 3D Environmental for Torres Strait Regional Authority Land & Sea Management Unit Cover image: 3D Environmental (2013) EXECUTIVE SUMMARY The granite rock pile that forms Dauan, along with nearby Saibai and Boigu Islands, form the Northern Island Group of Torres Strait, located approximately 150 km north of Thursday Island (see Figure 1). Whilst Saibai and Boigu Island are extensions of the alluvial Fly Platform, geologically part of the Papua New Guinea mainland, Dauan is formed on continental basement rock which extends northward from Cape York Peninsula to Mabadauan Hill on the south-west coast of Papua New Guinea. A total of 14 vegetation communities, within ten broad vegetation groups and 14 regional ecosystems are recognised on the island. The total known flora of comprises 402 species (14 ferns, 388 angiosperms), with 317 native and 85 naturalised species. Nine plant species are considered threatened at the commonwealth and state levels and a further 25 species considered to have significance at a regional level. As for the majority of Torres Strait Islands there is a lack of systematic survey of fauna habitats on the island. A desktop review identified 135 fauna species that are reported to occur on Dauan. This can be compared with the 384 terrestrial fauna species that have been reported for the broader Torres Strait Island group. The Dauan fauna comprises 20 reptiles, 100 birds, 3 frogs and 12 mammals. Of these, one reptile, one bird and four mammal species are introduced.
    [Show full text]
  • Tilletia Indica.Pdf
    Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA.
    [Show full text]
  • Tilletia Indica) of Wheat Prem Lal Kashyap 1, Satvinder Kaur 1, Gulzar S
    1873 Prem Lal Kashyap et al./ Elixir Agriculture 31 (2011) 1873-1876 Available online at www.elixirpublishers.com (Elixir International Journal) Agriculture Elixir Agriculture 31 (2011) 1873-1876 Novel methods for quarantine detection of karnal bunt (tilletia indica) of wheat Prem Lal Kashyap 1, Satvinder Kaur 1, Gulzar S. Sanghera 2, Santhokh S. Kang 1 and PPS Pannu 1 1 Molecular Diagnostic Laboratory, Department of Plant Pathology, Punjab Agricultural University, Ludhiana- 141004 2 SKUAST (K) - Rice Research and Regional Station, Khudwani, Anantnag, 192102, Jammu and Kashmir, India ARTICLE INFO ABSTRACT Article history: Prior knowledge about the presence of a plant pathogen in an infected plant material and Received: 8 December 2010; natural reservoir is the first requirement for a successful disease management strategy. This Received in revised form: becomes more crucial in case of quarantine pathogen like T. indica in order to alleviate 29 December 2010; unnecessary restrictions that prevent the movement of wheat across the globe and tells how Accepted: 1 February 2011; this pathogen hinders the wheat trade of India. More over the potential risk of its dissemination in international wheat trade and germplasm exchange, there is a need for quick, sensitive, Keywords reliable and alarming method to identify T. indica to facilitate implementation of specific Tilletia indica, disease control strategies and for accurately selecting areas for quarantine. The detection of Detection, Karnal bunt (KB) is based primarily on the presence of teliospores on wheat seeds. However, Karnal bunt, accurate and reliable identification of T. indica teliospores by spore morphology alone is not Wheat always possible. Research based on genomic advances and innovative detection methods as well as better knowledge of the T.
    [Show full text]
  • Indigenous Uses of Economically Important Flora of Margallah Hills National Park, Islamabad, Pakistan
    African Journal of Biotechnology Vol. 8 (5), pp. 763-784, 6 March, 2009 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2009 Academic Journals Full Length Research Paper Indigenous uses of economically important flora of Margallah Hills National Park, Islamabad, Pakistan Asma Jabeen1, Mir Ajab Khan2, Mushtaq Ahmad2, Muhammad Zafar2* and Farooq Ahmad2 1Fatima Jinnah Women University, Rawalpindi, Pakistan. 2Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Accepted 6 February, 2009 Informal interviews provided data about 245 useful plants of 77 families of 55 trees, 54 shrubs, 105 herbs, 15 climber, 10 grasses and 6 crops recorded from the Margallah Hills National Park, Islamabad. Two hundred and fifteen local/ vernacular names were noted of total plants. The inhabitants of the park have for a long time been dependent on surrounding plant resources for their food, health care, fodder, fuel wood and other cultural purposes. A list of plant species along with their local name, plant part/s used, popular uses (or troubles treated) are given. The pastoral nomads of the area make use of 159 (64.89%) as native medicine, 79 (32.24%) as fodder for their livestock, 47(19.18%) as fuelwood, 33 (13.46%) as food (fruits), 18 (7.34%) as vegetables, 14 (5.71%) as timber, 6 (2.44%) as industrial, 4 (1.63%) as tannin, 3 (1.22%) as gum and 2 (0.81%) as fiber. Medicinal uses of the 126 plant species have also been described. This information will serve as reference for the benefit of pharmacists, researchers, Hakims (herbalist), veterinarians and public at large.
    [Show full text]
  • Inhibitory Potential of Nine Mentha Species Against Pathogenic Bacterial Strains
    Pak. J. Bot., 47(6): 2427-2433, 2015. INHIBITORY POTENTIAL OF NINE MENTHA SPECIES AGAINST PATHOGENIC BACTERIAL STRAINS ALTAF HUSSAIN1*, NISAR AHMAD2, IQBAL AHMED QARSHI3, MUHAMMAD RASHID4, ZABTA K. SHINWARI5, 6 AND AZIZ-UL-IKRAM4 1Qarshi University, Lahore, Pakistan, 2Center for Biotechnology and Microbiology, University of Swat, Swat-1900, KPK, Pakistan, 3Qarshi Industries (Pvt.) Ltd, Lahore, Pakistan, 4Qarshi Industries (Pvt.) Ltd, Hattar, KPK, Pakistan, 5Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan 6Pakistan Academy of Sciences, Islamabad, Pakistan *Corresponding author’s e-mail: [email protected] Abstract Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens.
    [Show full text]
  • Backcross Compatibility in Hybrids Between Brassicoraphanus (Brassica Oleracea X Raphanus Sativus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants
    九州大学学術情報リポジトリ Kyushu University Institutional Repository Backcross Compatibility in Hybrids between Brassicoraphanus (Brassica oleracea X Raphanus sativus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants Long, Ming Hua Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University Okubo, Hiroshi Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University Fujieda, Kunimitsu Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University https://doi.org/10.5109/23996 出版情報:九州大学大学院農学研究院紀要. 37 (1), pp.41-50, 1992-12. 九州大学農学部 バージョン: 権利関係: J. Fat. Agr., Kyushu Univ., 37 (l), 41-50 (1992) Backcross Compatibility in Hybrids between Brassicoraphanus (Brassica oleracea X Raphanus satiuus) and Cruciferous Crops, and Clubroot Resistance in Their BC, Plants Ming Hua Long*, Hiroshi Okubo and Kunimitsu F’ujieda Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University 46-01, Fukuoka 812, Japan (Received April 30, 1992) All the F, hybrids between Brassicoruphunus ‘K-11’ and cruciferous crops showed very low pollen and seed fertility. Backcrossings of the F, hybrids with Raphunus sutiws and Brassica campestnk each were successful, whereas those with B. oleracea were almost unsuccessful under natural conditions. BC1 plants could be obtained through embryo culture when F, hybrids were backcrossed with B. oleracea. In the backcrossings with R. sativus and B. campestris each, seed fertility was improved as the backcross generation and selection of the plants advanced. One to three trivalents were observed in the PMCs of BC1 plants obtained by backcrossing F, hybrids with B. campestris. Clubroot resistant plants were obtained from BC, progenies derived from backcrossing of the BC, hybrids with R. sat&us and B.
    [Show full text]