Indigenous Uses of Economically Important Flora of Margallah Hills National Park, Islamabad, Pakistan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lactuca Sativa
Botanical Files on Lettuce (Lactuca sativa). On the chance for flow between wild and cultivated gene Lettuce (Lactuca sativa L. including L. serriola L., Compositae) and the generalized implications for risk-assessments on genetically modified plants by 12 2 ,3 F.T.+Frietema de Vriesi R. van der Meijdeni and W.A. Brandenburg , dit onderzoek werd door het Ministerie De opdracht tot gegeven van Volkshuisvesting, Ruimtelijke Ordening & Milieu, Directoraat-Generaal Milieu, Directie Stoffen, Veiligheid, Straling. De tekst het zal in de VROM/DGM Risico- van rapport verschijnen publicatiereeks beoordeling genetisch gemodificeerde organismen. This commissioned the Netherlands of report was by Ministry Housing, Spatial Planning and Environment, Directorate General for the Environment, Directorate for Chemicals, External Safety and Radiation Protection, P. O. Box 450, 2260 MB Leidschendam, The Netherlands. It will be published in the series Risk Assessment Genetically Modified Organisms. 1) Formerly F.T. de Vries 2) Rijksherbarium/Hortus Botanicus, Slate University Leiden, P.O. Box 9514, 2300 RA Leiden, The Netherlands 3) Centrum voor Plantenveredelings- en Reproduktieonderzoek, CPRO-DLO, P.O. Box 16, 6700 AA Wageningen,The Netherlands Contents Summary 3 1. Introduction 3 2. Lactuca serriolaL. and L. serriola L. in Western 6 Historical part: Europe... Introduction 6 Terminology 6 The genus Lactuca L 7 Genetics 8 Ancestors 9 Characters 9 3. Domestication of Lettuce 11 Introduction 11 Early domestication 11 of the different of cultivated lettuce Further development groups 12 4. Field trial 13 Introduction 13 Material 15 Methods 15 Observations 16 Herbarium material 16 Photography and microscopy 16 5. Results 17 Introduction 17 Results herbarium study 17 Results field trial 17 6. -
Pharmacognostic Investigation of the Leaves and Rhizome of Geranium
Journal of Medicinal Plants Research Vol. 6(3), pp. 504-509, 23 January, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR11.1342 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Pharmacognostic investigation of the leaves and rhizomes of Geranium wallichianum D. Don ex Sweet Muhammad Ismail1*, Muhammad Ibrar2, Shafiq ur Rahman1 and Uzma Niaz3 1Department of Pharmacy, University of Peshawar, Pakistan. 2Department of Botany, University of Peshawar, Pakistan. 3 University College of Pharmacy, University of the Punjab, Lahore, Pakistan. Accepted 8 November, 2011 Pharmacognostic investigation of the fresh powdered and anatomical section of the leaves and rhizomes of Geranium wallichianum was carried out to determine its morphological, histological and physicochemical characteristics. Macro and microscopic studies indicated that leaves are large, simple, petiolate, stipulate and palmatisect with five lobes. Lamina was 4 to 11 cm in diameter and green on the upper surface and light green on the lower surface. Venation was reticulate, multicostate and divergent. The upper epidermal cells were slightly larger then the lower ones. Orbicular anomocytic stomata were present on the lower epidermis. Below the upper epidermis was a single layered columnar celled palisade parenchyma filled with chloroplast pigments and contain aggregates of calcium oxalate crystals. Rhizomes were brown, stout, vertical, and 0.3 to 0.7 cm in diameter. Vascular bundles were about 6 to 8 groups, each consisting an outer phloem and inner radiate xylem. Physicochemical parameters such as total ash, water soluble ash and acid insoluble ash values were calculated. The results of the study will possibly provide diagnostic parameters for the quality, purity and correct identification of this plant material. -
The Effect of Datura Innoxia Seeds and Leaves Contents on Albino Wister Rats
1 The Effect of Datura Innoxia Seeds and Leaves Contents on Albino Wister Rats Journal of Pharmaceutical Research and Development Research Article Ali A Eltayeib1*, Siddigen ANT Matter2 *Correspondence author Ali A Eltayeib Department of Chemistry 1,2Department of Chemistry, Faculty of Science, Kordofan Faculty of Science University, Sudan Kordofan University Sudan Submitted : 31 Aug 2020 ; Published : 23 Sept 2020 Abstract The aim of the study was to evaluate the toxic effect of Datura innoxia seeds and leaves on experimental rats by determining the elements content of seeds and leaves, the chemical compounds in aqueous and methanolic extracts of seeds and leaves and the chemical compounds in the stomach content of rats. Seeds and leaves were collected from El-Obied, North Kordofan State, Sudan, in October, 2016. The aqueous and methanol extracts were carried out by using maceration method and soxhelt apparatus respectively. Sixty five male albino wister rats, three months old and with an average body weight ranged 110-120 g, were randomly divided into thirteen groups, consisting of five rats in each group. Group 1 served as control and fed with normal rats food and water for thirty days. Groups 2, 6 and 10 administered aqueous seeds extract, groups 4, 8 and 12 received methanol seeds extract, groups 3, 7 and 11 received aqueous leaves extracts, groups 5, 9 and 13 received methanol leaves extract, all the groups received the same type of extract were administered 40, 60 and 80 mg/ kg body weight respectively. The extracts administered to the rats intra gastrically using cathodal tube daily for thirty days. -
Chemical Composition of the Seeds of Datura Innoxia
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 2, February 2016. www.ijiset.com ISSN 2348 – 7968 Chemical composition of the seeds of Datura innoxia 1 2 1 2 Kendeson Anawuese ChristianaP ,P Iloka Gabriel SundayP ,P Bulama Joshua SamailaP P andP P Dashak Albert DayilP .P 1 2 P DepartmentP of Chemical Sciences, Federal University Kashere, P.M.B 0182, Gombe, Nigeria. P DepartmentP of Chemistry, University of Jos, P.M.B 2084, Jos, Nigeria. Correspondence Author: [email protected] Abstract The elemental analysis carried out on the seeds of the plant Datura innoxia showed the presence of phosphorus, nitrogen and chlorine. The moisture content was determined and found to be 6.61% ± 0.16. The ash content was 3.08% ± 0.13. The total carbohydrate and reducing sugar contents were determined and found to be 25.07% ± 0.88 and 21.69% ± 1.11 respectively. The lignin content was found to be 5.58% ± 0.16 while the crude fibre content was determined to be 42.42% ± 0.02. The percentage crude protein was found to be 8.64% ± 0.05, and the nitrogen content was determined to be 1.52% ±0.01. The non-polar and polar fat contents were found to be 18.24% ± 0.33 and 23.51% ± 0.25 respectively. The mineral composition of the Datura innoxia was determined and found to contain Ca, Mg, K, Na, Cu, Zn, Mn, Fe, Ni, Cd and Pb. The K, Mg and Ca contents were found to be 3450, 2500, and 2000 mg/100g respectively. -
Guideline 410 Prohibited Plant List
VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C. -
Genetic Variability and Distance Between Lactuca Serriola L
Acta Bot. Croat. 77 (2), 172–180, 2018 CODEN: ABCRA 25 DOI: 10.2478/botcro-2018-0019 ISSN 0365-0588 eISSN 1847-8476 Genetic variability and distance between Lactuca serriola L. populations from Sweden and Slovenia assessed by SSR and AFLP markers Michaela Jemelková1, Miloslav Kitner1, Eva Křístková1, Ivana Doležalová2, Aleš Lebeda1* 1 Palacký University in Olomouc, Faculty of Science, Department of Botany, Šlechtitelů 27, 783 71 Olomouc, Czech Republic 2 Department of Genetic Resources for Vegetables, Medicinal, and Special Plants of Crop Research Institute in Olomouc, Šlechtitelů 29, 783 71 Olomouc, Czech Republic Abstract – The study involved 121 samples of the common weed, Lactuca serriola L. (prickly lettuce), represent- ing 53 populations from Sweden and Slovenia. The seed materials, originating from different habitats, were re- generated and taxonomically validated at the Department of Botany, Palacký University in Olomouc, Czech Re- public. The morphological characterizations of the collected plant materials classified all 121 samples as L. serriola f. serriola; one sample was heterogeneous, and also present was L. serriola f. integrifolia. Differences in the amount and distribution of the genetic variations between the two regions were analyzed using 257 ampli- fied fragment length polymorphism (AFLP) and 7 microsatellite (SSRs) markers. Bayesian clustering and Neigh- bor-Network were used for visualization of the differences among the samples by country. Under the Bayesian approach, the best partitioning (according to the most frequent signals) was resolved into three groups. While the absence of an admixture or low admixture was detected in the Slovenian samples, and the majority of the Swedish samples, a significant admixture was detected in the profiles of five Swedish samples collected near Malmö, which bore unique morphological features of their rosette leaves. -
Germination and Emergence of Prickly Lettuce (Lactuca Serriola L.) and Its Susceptibility to Selected Herbicides
Germination and emergence of prickly lettuce (Lactuca serriola L.) and its susceptibility to selected herbicides J. Mikulka, D. Chodová Research Institute of Crop Production, Prague-Ruzyně, Czech Republic ABSTRACT Three-year trials were conducted to study germination and emergence of prickly lettuce (Lactuca serriola L.) achenes, increments of shoot dry matter and susceptibility of the weed to selected herbicides. The germination rates of achenes at 10°C (92%), 20°C (97%) and 30°C (95%) did not indicate any significant differences within 20 days from sowing. The highest percentage emergence of prickly lettuce achenes was determined after their sowing into a depth of 1 mm. Differ- ences from the variants of sowing onto the soil surface (0 mm), into a depth of 10 and 20 mm were significant. There were no differences in the emergence rates from a depth of 10 and 20 mm. The highest increments of shoot dry matter were observed when prickly lettuce plants were grown for 4–7 weeks after sowing at 20°C. The effect of selected herbi- cides on prickly lettuce plants treated at the stage of 2–3 true leaves was evaluated on the basis of a change in the content of shoot dry matter. A significant decrease in dry matter against the control was recorded in all variants after herbicide application. The effect (expressed by a lower dry matter content) was significantly higher after the combination ami- dosulfuron + iodosulfuron-methyl + mefenpyr-diethyl (10 + 2.5 + 25 g/ha) was used than after the application of tribe- nuron (10.85 g/ha) and picolinafen + cyanazine (120 g + 480 h). -
Conservation of Biodiversity of Highly Important Medicinal Plants of India Through Tissue Culture Technology
AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2010.1.5.827.833 © 2010, ScienceHuβ, http://www.scihub.org/ABJNA Conservation of biodiversity of highly important medicinal plants of India through tissue culture technology- a review Sudhir Sharma1*, Neelima Rathi1, Barkha Kamal2, Dipika Pundir3, Baljinder Kaur4 and Sarita Arya4 1Tissue Culture Discipline, Botany Division, Forest Research Institute, Dehradun (Uttarakhand)-248006-INDIA 2S.B. S. PG College of Biomedical Science, Dehradun (Uttarakhand)-INDIA 3SAI Institute of Paramedical and Allied Sciences, Dehradun (Uttarakhand)-INDIA 4Forest Genetics and Tree Breeding Division, Arid Forest Research Institute, Jodhpur (Rajasthan)-342005-INDIA Author for correspondence: [email protected], Contact no. +919927832700 ABSTRACT According to the Red List of threatened species 44 plant species are critically endangered, 113 endangered and 87 vulnerable (IUCN, 2000). Many medicinal plants are also in trouble from over harvesting and destruction of habitat. Population growth, urbanization and the unrestricted collection of medicinal plants from the wild is resulting in an over-exploitation of natural resources. Therefore, the management of traditional medicinal plant resources has become a matter of urgency. An ever increasing demand of uniform medicinal plants based medicines warrants their mass propagation through plant tissue culture strategy. Tissue culture technology is potent and has opened extensive areas of research for biodiversity conservation. Tissue culture protocols have been developed for a wide range of medicinal plants, which includes endangered, rare and threatened plant species. Some of these medicinal plants are Saussaurea lappa, Picorrhiza kurroa, Ginkgo biloba, Swertia chirata, Gymnema sylvestre, Tinospora cordifolia, Salaca oblonga, Holostemma, Celastrus paniculata,, Oroxylum indicum, Glycyrrhiza glabra, Tylophora indica, Bacopa mooniera, Rauwolfia serpentina. -
Confidentialconfidential
Page 1. CALL TO ORDER 2. APPROVAL OF THE AGENDA 3. APPROVAL OF THE MINUTES 3-7 a) Approval of the Minutes 4. AGRICULTURAL COMMUNICATION COMMITTEE MEMBERS REPORTS 5. PRESENTATIONS 9 a) Go East RTO - 10:30 a.m. 6. BUSINESS ARISING FROM THE MINUTES 11-16 a) 2015 Awards 7. NEW BUSINESS 17-25 a) 2016 Wall of Honor and Century Farm Awards Banquet 27 b) 2016 Budget Recommendation 8. INFORMATION 29-56 a) Information 9. NEXT MEETING DATE(S): 10. ADJOURNMENT CONFIDENTIALCONFIDENTIAL Page 1 of 56 Page 2 of 56 AgendaItem#3a) <><> CAMROSE COUNTY AGENDA ITEMS Meeting: Agricultural Communications Committee - 23 Meeting Date: 23 Sep 2015 Sep 2015Agricultural Communications Committee Agenda Item No: AGD - 1986 Confidential: Originated By: Mark Millang Title: Approval of the Minutes ACTION / RECOMMENDATION: - That the minutes of the Agricultural Communications Committee meeting held April 8, 2015 be approved as presented. BACKGROUND INFORMATION: Policy, Bylaws, Provincial Acts or Regulations: Financial Implications: Alternatives to the Recommendation: Pro's: Con's: Communication: Documentation: DISCUSSION: County Adminstrator Signature: Approval of the Minutes Page 3 of 56 AgendaItem#3a) MINUTES OF A MEETING OF THE AGRICULTURAL SERVICE BOARD OF CAMROSE COUNTY HELD ON WEDNESDAY, APRIL 8, 2015 AT 10:00 AM. PRESENT REGRETS Chairman - Doug Lyseng Don Gregorwich Greg Gillespie Bev Ames Chuck Erman Nan Shute Bernard Rostaing Jennifer Filip John Reist Blaine Fenske Stan Johnson Brian Pederson Neil Orr Alan Johnson Doug Jensen Brad Schneider Bernie Von Tettenborn Cindy Trautman Marian Williams Also Present Mark Millang, Manager of Agricultural Services Teresa Gratrix, Corporate Services Manager Anjah Howard, Manager of Planning and Development CALL TO ORDER Chairman Doug Lyseng called the meeting to order at 10:06 a.m. -
Vascular Plants of Williamson County Lactuca Serriola − PRICKLY LETTUCE, COMPASS PLANT [Asteraceae]
Vascular Plants of Williamson County Lactuca serriola − PRICKLY LETTUCE, COMPASS PLANT [Asteraceae] Lactuca serriola L., PRICKLY LETTUCE, COMPASS PLANT. Annual, somewhat spinescent, taprooted, rosetted, 1(−several)-stemmed at base, unbranched below inflorescence or old plants branched from base, ± highly branched in inflorescence, erect, 15–120+ cm tall; shoots with basal leaves and ascending to erect cauline leaves, especially basal leaves dead at flowering, leaves rough and prickly, often grayish green and ± glaucous; latex milky, copious. Stems: inconspicuously ridged, to 15 mm diameter, with 2 faint ridges descending from each leaf (sometimes aging as a shallow groove), soon becoming light silver-gray, glabrous or commonly bearing broad-based, radiating prickles (bristles) to 3 mm long; solid. Leaves: helically alternate, unlobed or pinnately lobed with 1−3 pairs of lateral lobes, sessile and clasping, stipules absent; blade oblanceolate to obovate (lower leaves) and oblanceolate or oblong to lanceolate (upper leaves), 15–195 × 3–75 mm, clasping with equal or unequal basal lobes to 25 mm long, lateral lobes alternate to subopposite, spreading or somewhat backward-pointing and acute to acuminate at tips, sinuses broad and roundish and typically not reaching midrib, terminal lobe 10−20 mm long, conspicuously toothed with 1–5 small, closely spaced teeth between larger teeth on margins, sometimes ± crisped, the teeth with bristlelike points, pinnately veined with only whitish midrib raised on both surfaces, rough and bristly-hispid to -
Monographs on Datura Stramonium L
The School of Pharmaceutical and Biomedical Sciences Pokhara University, P. O. Box 427, Lekhnath, Kaski, NEPAL Monographs on Datura stramonium L Submitted By Bhakta Prasad Gaire Bachelor in Pharmaceutical Sciences (5th Batch) Roll No. 29/2005 [2008] [TYPE THE COMPANY ADDR ESS ] A Plant Monograph on Dhaturo (Datura stramonium L.) Prepared by Bhakta Prasad Gaire Roll No. 29/2005 Submitted to The School of Pharmaceutical and Biomedical Sciences Pokhara University, Dhungepatan-12, Lekhnath, Kaski, NEPAL 2008 ii PREFACE Datura was quite abundantly available in my village (Kuwakot-8, Syangja) since the days of my ancestors. Although it's medicinal uses were not so clear and established at that time, my uncle had a belief that when given along with Gaja, it'll cure diarrhea in cattle. But he was very particular of its use in man and was constantly reminding me not to take it, for it can cause madness. I, on the other hand was very curious and often used to wonder how it looks and what'll actually happen if I take it. This curiosity was also fuelled by other rumours floating around in the village, of the cases of mass hysteria which happened when people took Datura with Panchamrit and Haluwa during Shivaratri and Swasthani Puja. It was in 2052 B.S (I was in class 3 at that time) when an incident happened. One day I came earlier from school (around 2'0 clock), only to find nobody at home. The door was locked and I frantically searched for my mother and sister, but in vain. -
Biochemical and Genetic Characterization of Rubber Production In
BIOCHEMICAL AND GENETIC CHARACTERIZATION OF RUBBER PRODUCTION IN PRICKLY LETTUCE (Lactuca serriola L.) By JARED L. BELL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Molecular Plant Sciences Graduate Program MAY 2013 © Copyright by JARED LARS BELL, 2013 All Rights Reserved © Copyright by JARED LARS BELL, 2013 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of JARED LARS BELL find it satisfactory and recommend that it be accepted. ___________________________________ Ian C. Burke, Ph.D., Chair ___________________________________ Michael M. Neff, Ph.D., Co-Chair ___________________________________ Kimberly A. Garland-Campbell, Ph.D. ___________________________________ John K. Fellman, Ph.D. ii ACKNOWLEDGMENTS The collaborators of this research are grateful for funding provided by the United States Department of Agriculture Aegilops cylindrica – Biomass for Biofuels and Bioproducts from Weedy Plants (NIFA/USDA special grant) special grant. Work on this project has also been made possible by the technical support and expertise of the following people: Lydia Baxter- Potter, Nick Boydston, Arron Carter, Madeline Jacobson, Misha Manuchehri, Dennis Pittmann, Alan Raeder, Dilpreet Riar, Sachin Rustgi, Sherri Rynearson, Deven See, Jamin Smitchger, Randy Stevens all of the Crop and Soil Science Department, Washington State University. Assistance with NMR analysis was given by Bill Hiscox at the Washington State University NMR Center. NMR equipment was supported by NIH grants RR0631401 and RR12948, NSF grants CHE-9115282 and DBI-9604689 and the Murdock Charitable Trust. Rubber physical property analysis was performed with the guidance and support of Dr.