<<

CentreforIntegratedAnalysis

ForecastingtheEcologicalFootprintofNations: ablueprintforadynamicapproach ISAResearchReport0701 WithaforewordbyMathisWackernagel

ISA,CentreforIntegratedSustainabilityAnalysisattheUniversityofSydney, SchoolsofBiologyandChemistryattheUniversityofSydney,Australia StockholmEnvironmentInstituteattheUniversityofYork,UK DepartmentofBiologyattheUniversityofYork,UK ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 2

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 3

CentreforIntegratedSustainabilityAnalysis

ForecastingtheEcologicalFootprintofNations: ablueprintforadynamicapproach

Authors

Manfred Lenzen, ISA, A28, The University of Sydney NSW 2006, Australia Tommy Wiedmann, Stockholm Environment Institute, University of York, York YO1 5DD, UK Barney Foran, ISA, A28, The University of Sydney NSW 2006, Australia Christopher Dey, ISA, A28, The University of Sydney NSW 2006, Australia Asaph Widmer-Cooper, School of Chemistry, F11, The University of Sydney NSW 2006, Australia Moira Williams, School of Biological Sciences, A08, The University of Sydney NSW 2006, Australia Ralf Ohlemüller, Department of Biology, University of York, PO Box 373, York YO10 5YW, UK FirstrevisionJune2007 Thisreportisfreelyavailableat http://www.isa.org.usyd.edu.au/publications/DEF.pdf Forfurtherinquiriespleasecontact ManfredLenzen TommyWiedmann ISA,A28 SEI OntheExec.SummaryandSection2.1.2: TheUniversityofSydney TheUniversityofYork BarneyForan, [email protected] NSW2006,AUSTRALIA YorkYO15DD,UK OnSections2.2.1and2.7:MoiraWilliams, [email protected] [email protected] [email protected] OnSection2.2.2:AsaphWidmerCooper, Phone:+61/2/93515985 Phone:+441904432899 [email protected] Fax:+61/2/93517725 Fax:+441904432898 OnSection2.3.1:ChristopherDey, [email protected] OnSections2.5and2.6:RalfOhlemüller, [email protected]

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 4

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 5

1050 Warfield Avenue Oakland, CA 94610 U.S.A. Phone: +1.510.839.8879 Fax: +1.510.251.2410 www.footprintnetwork.org

Foreword

IamdelightedaboutManfredLenzenandTommyWiedmann’sinitiativetocreatea DynamicEcologicalFootprintapproach.TheideaistoequiptheEcologicalFootprint withtechniquesthataresimilartowellestablishedproceduresintheclimatedebate: climate science needs robust accounts for carbon, temperature, and atmospheric carbonconcentrationtodocumentoutcome;andsuchoutcomemeasuresneedtobe complementedwithdynamicclimatemodelstofindoutwhatthesetrendsmightmean forthefuturewellbeingofhumanityandtheasawhole.

Thereisnodoubt:wetoo,intheFootprintworld,needcomplementarytoolstothe staticEcologicalFootprintaccounts.Weneedtoolsthatcanexplorehowpasttrends and human interactions with the biosphere might shape our future and Footprints.ThisiswhattheDynamicFootprintattemptstodo.

I welcome this innovative work and look forward to others joining the debate. Dynamic Footprints are by nature more speculative than ex-post accounts like the static Footprint. But as in the aforementioned climate models, they are needed for spelling out the implications of current actions. Further, as more of these models emerge, they can be tested against each other. This will strengthen the science of understanding present and future biocapacity constraints. And possibly most importantly,DynamicEcologicalFootprintmodelssuchasthisveryfirstoneopenthe debatewedesperatelyneed:howcanweplotacoursethatleadstohighqualityoflife forallwithinthemeansofouroneplanet?

Warmestwishes

MathisWackernagel ExecutiveDirector GlobalFootprintNetwork

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 6

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 7

TableofContents ExecutiveSummary ...... 9 1 Introduction ...... 11 1.1 TheneedforadynamicEcologicalFootprintmethod...... 11 1.2 Aimofthiswork...... 13 2 Interactionsof,landuse,greenhousegasemissions,and bioproductivity–aliteraturereview ...... 15 2.1 Humanconsumptionandlanduse...... 15 2.1.1 and affluence growth ...... 15 2.1.2 Agricultural output ...... 16 2.1.3 Yield ...... 18 2.1.3.1 Livestock systems ...... 18 2.1.3.2 Crop systems ...... 21 2.2 Landuse,biodiversityandfunctioning...... 22 2.2.1 Insights from ...... 22 2.2.2 Insights from Life-Cycle Assessment ...... 23 2.2.3 Insights from cross-country analyses ...... 24 2.2.4 Quantitative factors linking land use and biodiversity ...... 28 2.3 Humanconsumptionandgreenhousegasemissions...... 28 2.3.1 Fuel combustion ...... 29 2.3.2 Agriculture, , and forest conversion ...... 33 2.4 Greenhousegasemissionsandtemperatureincrease ...... 33 2.5 Temperatureincreaseandbioproductivity...... 34 2.6 Temperatureincreaseandbiodiversity...... 35 2.7 Biodiversityandbioproductivity ...... 36 3 Analyticalmethodsanddatasources ...... 39 3.1 Temporalanalysis...... 39 3.2 MonteCarlosimulation...... 43 3.3 StructuralAnalysis ...... 44 3.4 Multiregiontradebalances ...... 45 3.5 StructuralPathAnalysis...... 45 4 ForecastingtheEcologicalFootprintofNations ...... 46 4.1 Climateanalysis...... 46 4.2 AnalysisofEcologicalFootprintsandtheirdrivers ...... 48 4.2.1 Regional analyses ...... 50 4.3 StructuralDecompositionAnalysis ...... 58 4.4 MonteCarlosimulation...... 59 4.5 Corporateandothersubnationalapplications ...... 60 4.6 NationalAccounts,tradebalancesandStructuralPathAnalyses...... 63 4.6.1 2050 Ecological Footprint ...... 63 4.6.2 2050 Biocapacity – Ecological Footprint gap ...... 67 5 Discussion ...... 71 6 Conclusions ...... 73 Acknowledgements ...... 76 References ...... 76 Appendix:Listofcountries ...... 88

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 8

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 9

ExecutiveSummary ThisreportprovidesthetheoreticalbaseandanexampleforexpandingthestaticEcologicalFootprint accounting method into a dynamic forecasting framework which is forward looking to 2050, incorporatingbiodiversityamongstotherfactors,intoacausalnetworkofdrivingforces,andtaking intoaccountglobalisedtradewithitscomplexsupplychains.Itachievestheseobjectivesbyapplying stateoftheart numerical techniques such as multiregion inputoutput analysis, finitedifference temporaliteration,spatialautocorrelationanalysis,MonteCarlosimulation,StructuralDecomposition AnalysisandStructuralPathAnalysis. This worldfirst Dynamic Ecological Footprint connects the original Ecological Footprint method withsomemodificationsthatwereanchoredatdifferentpointsofthecausalnetwork,suchaslanduse and,speciesdiversity,andpollution.Itthusdemonstratesaneffectiveandelegantmeans forunifyingarangeofmethodologiesandobjectivesintoonframeworkwhileretainingtheresearch questionandmetricoftheoriginalapproach. Aswiththestaticmethod,thedynamicmethodmeasurestheamountofbioticneededto meet humankind’s demand of , timber etc, and the response to humanity’s greenhouse gas emissions.ThequantitycentraltotheEcologicalFootprintconceptis bioproductivity ,whichisthe outputofrenewablebioticresourcesharvestedbyhumans.Theworldeconomyisexertingpressure ontheglobe’sbioproductivityashumanpopulationandeconomicactivitycontinuetoexpand.Thus, theglobalEcologicalFootprintcontinuestogrow,withthedifferencebetweentheglobe’sinherent (its biocapacity )andhumankind’sEcologicalFootprintbecomingnarrowereachyear. The results of this first ‘blueprint’ analysis are intriguing, particularly in three areas. First, the convergenceofEcologicalFootprintandbiocapacitytrajectoriesconfirmstheWorldWideFundfor Nature’s 2006 whichsuggeststhat–inthelongterm–humankind’sdemands havebeenexceedingtheworld’sbiocapacitysince1980.Weestimatethatpopulationincreaseand economicgrowtharelikelytohalvethegapbetweentheEcologicalFootprintandbiocapacitywithin thiscentury.Thisparallelsdourprognosesforgreenhouseemissionsandclimatechange. Second,thecombinedeffectsofnegativedriversofthebiocapacityEcologicalFootprintgap,suchas populationgrowth,affluencegrowth,landdegradationandbiodiversitydecline,areprojectedtobe twicethoseofpositivedrivers,suchasimprovedyieldsandcarbondioxidefertilisation.Amongstthe negativedrivers,biodiversitydeclineispoisedtobecomethestrongestinfluenceby2050inreducing biocapacity,thusonceagainreinforcingthemessageofthe Living Planet Report . The third result shows that consumption in highincome countries is the most significant driver, throughworldtrade,forbothEcologicalFootprintsandratesofclosingthegapbetweenbiocapacity andtheEcologicalFootprintinlowincomecountries.ForexamplewhiletheEcologicalFootprintof theconsumptionofCanada,theRussianFederation,USA,SwedenandmanyotherEuropeannations isincreasing,theyareabletomaintainaconstantremainderofavailablebiocapacity,becausethey trade and purchase biocapacity from countries such as Brazil, Congo, Venezuela, Australia, Indonesia,Malaysia,EcuadorandGabon,whereremainingbiocapacityisrapidlyshrinking. Whilethisstudyhasmanycaveats,betterdataandimprovedequationsmaynotqualitativelychange the prime conclusion: that population growth, economic growth, and world trade are literally consuming the living fabric of the . In the global climate change conundrum driven by greenhousegasemissions,thesedrivingforcesarestilltobeacknowledgedandconstrained.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 10

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 11

1 Introduction Since the Ecological Footprint was invented (Rees 1992; Wackernagel 1994) it has experiencedtremendoussuccessincommunicatingtheconceptoflimitedworldresourcesto governmentsandthegeneralpublicalike.TheEcologicalFootprintmeasures–intermsof bioproductivity –theamountofbioticresourcesneededtomeethumanity’sdemandforfood, timber etc, and to compensate for humanity’s CO 2 emissions from use. This bioproductivity is expressed in “global hectares”, representing an area of worldaverage biologicalproductivity,includingbothlandand.Globalhectaresarecalculatedfrom actualhectaresbyweightingwithyieldfactorsandequivalencefactors(Wackernagel et al. 2005). Avarietyofmodificationshavebeensuggested.1The EcologicalFootprintmethodhas been and is still subject to ongoing discussion, the details of which have been published previously. 2A standardisation process is currently underway in order to unify diverging methodologies. 1.1 TheneedforadynamicEcologicalFootprintmethod Thereissubstantialevidencethatinthelongterm, diminished ecosystem functioning will deterioratetheserviceshumansareabletoderivefromnaturalandartificiallandscapes,for exampleagriculturalbioproductivity.Accordingtotheliterature,ecosystemfunctioning,in turn, is influenced by a multitude of impact pathways, amongst which the perhaps more prominentinvolvelanduseandconversion,andclimate change (see Pimentel et al. 1976; Naeem et al. 1999;Armsworth et al. 2004;Asner et al. 2004;Spangenberg2007,Fig.1). 15 landuseand ecosystem, 11 conversion 5 8 genetic, functional loss, diversityetc 1 fragmentation, 10 ecosystem 4 degradation, 14 productivity functioning pollution human 2 9 species 12 consumption 6 diversity greenhousegas climate 3 emissionsand change sinks 7 13

Pressure.Dynamic Endpoint.Ecological conceptstartshere. Footprintmeasureshere. Fig.1:Impactpathwayslinkinghumanconsumptionandagriculturalbioproductivity. 1Bicknell et al. 1998;Simmons et al. 2000;Ferng2001;Luck et al. 2001;Ferng2002;Stöglehner2003;Ferng 2005; Venetoulis and Talberth 2006; Venetoulis and Talberth 2007 and Lenzen and Murray 2001; 2003; McDonaldandPatterson2003;ChenandChen2006;Gao et al. 2006;ChenandChen2007;Peters et al. 2007. 2Levett 1998; van den Bergh and Verbruggen 1999; Ayres 2000; Costanza 2000; Opschoor 2000; Rapport 2000;vanKootenandBulte2000;Lenzen et al. 2007a;WiedmannandLenzen2007.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 12

Apartfromtheobviouslinks(1and3)thesepathwaysrepresent 3 2. theemissionofpollutantsintosoil,waterandair,includingfertilisers, 4. theemissionofgreenhousegasesduetolandusechanges(forexampleclearing), 5. the fragmentation and degradation of habitat as a result of conversion of land for humanpurposes, 6. thedisappearanceofhabitatbecauseofchangingclimaticconditions, 7. theceasingofcertainecosystemfunctionsbecauseofclimaticchanges, 8. thedecreaseandlossofecosystemdiversitybecauseofhabitatloss, 9. thedecreaseandlossofspeciesdiversitybecauseofhabitatloss, 10. theceasingofcertainecosystemfunctionsbecauseofthedisappearanceofthevery ecosystem, 11. and 12. diminished ecosystem functioning because of decreased ecosystem and speciesdiversity, 13. changesinbioproductivityasadirectconsequenceofclimatechange, 14. changesinbioproductivityasadirectconsequenceofbiodiversitychanges,and 15. changes in bioproductivity as a direct consequence of agricultural practices, for examplethroughsalinisation,nutrification,eutrophication,orerosion. Inthisview,humanconsumptionexertsthe pressure ,actingvialanduseandgreenhousegas emissions to biodiversity and ecosystem functioning, with bioproductivity being the end pointofimpacts,or state .Toclosetheloop,availablebioproductivity(biocapacity)willin turnlimitwhathumanscanconsume. Itappearsthatlanduseandconversion,andbiodiversityconstitutedriversofdelayedchanges inecosystemfunctioning,justasemissionsconstituteadriverfordelayedglobalatmospheric temperatureandsealevels.Inotherwords,today’sbiodiversityandhabitatlosswillhavea profoundeffectonfuturebioproductivitylevels.Inbothcases,therelationshipsarelikelyto behighlynonlinearandmayinvolvethresholdeffects. Research that explores and understands these causal links is needed in order to make informed decisions for a sustainable future. 4Consider the analogy of climate change: If governmentsonlymonitored,andactedonsignsforclimatechange(forexampletemperature levels)inpolicymaking,ratherthanongreenhouse gasemissions,decisionmakers would justbestartingtosuspectpotentiallydangerousprocesses,sinceanthropogenicinfluenceson 3NotethatFig.1servessolelytoexplainthemotivationofthiswork,andisinnowaytheonlyandthemost generalrepresentationofthesecausallinks.Moreover,therearecertainlylinkswhicharenotshowninFig.1 such as the loss of species as a directconsequence of changed climatic conditions, that is without involving habitatloss,andthedecreaseofbioproductivityasadirectconsequenceoflanddegradation,withoutinvolving ecosystemfunctioning. 4Arrow et al. 1995(p.93)makesthispointfortheexampleofecosystemresilience:“Amoreusefulindexof environmental sustainability is ecosystem resilience. One way of thinking about resilience is to focus on ecosystemdynamics[…].Eventhoughecosystemresilienceisdifficulttomeasureandeventhoughitvaries fromsystemtosystemandfromonekindofdisturbancetoanother,itmaybepossibletoidentifyindicatorsand earlywarningsignalsofenvironmentalstress.Forexample,thediversityoforganismsortheheterogeneityof ecologicalfunctionshavebeensuggestedassignalsofecosystemresilience.[…]thesignalsthatdoexistare oftennotobserved,orarewronglyinterpreted,orarenotpartoftheincentivestructureofsocieties.Thisisdue toignoranceaboutthedynamiceffectsofchangesinecosystemvariables.[…]Thedevelopmentofappropriate institutionsdepends,amongotherthings,onunderstandingecosystemdynamicsandonrelyingonappropriate indicatorsofchange.Aboveall,giventhefundamentaluncertaintiesaboutthenatureofecosystemdynamics and the dramatic consequences we would face if we weretoguess wrong,itis necessarythat weactin a precautionarywaysoastomaintainthediversityandresilienceof.”

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 13 global temperatures and sea levels have only been acknowledged relatively recently. We knowtodaythatitisalreadytoolatetoavoidlongtermclimatechangeperse,howeveritis the knowledge that emissions drive temperature levels thatalarmedpeopleaboutpotential climatechangemorethantwenty yearsago. Therefore,intermsofFig.1,policyneedsto investigate"earlywarning"driversthataffectbioproductivity. 1.2 Aimofthiswork Theprevioussectionpointstothefollowingissuesthatneedtobeaddressed: – ThestaticEcologicalFootprintmethodmeasurestheendpointofthecausalchainin Fig.1(bioproductivity).Itisbackwardlookingaccountingofwhatoccurred,notan extrapolation of how it could affect the future. It thus does not contain an “early warning”signal:Bythetimebioproductivityhasdecreasedbecause of biodiversity loss,habitatloss,and/orlandandsoildegradationduetounsustainableagricultural practices,itmaybetoolateforabatementaction.Therefore,policyneedsmodelsthat dealwiththepressurevariablesinFig.1,andlinkthemtothebioproductivityend point. 5 – ThestaticEcologicalFootprintmethodexaminesaquestion(iehowmuch bioproductivity do we have and how much do we use?) without asking about ecologicalorotherdrivingforcesthatultimatelysupportbioproductivity.Pursuingthe resource question in isolation from ecological factors can lead to outcomes that actually deteriorate ecosystems (Lenzen et al. 2007a). 6This is because taking our resourcebaseasa yardstickprovidesincentivesforexpandinghighyieldcroplands and at the expense of natural ecosystems. Incorporating ecological variables into the Ecological Footprint method avoids these counterproductive incentives. – The static Ecological Footprint method lumps together two components: land and greenhouse gas emissions. Both quantities are associated with impacts that have significantly different lifetimes: While land and ecosystems may recover or be restoredoverdecadesafteraninitialdisturbance,greenhousegasemissionswillhave aneffectforcenturies.Asaresult,entitiesabatingthelonglivedcomponentearlier will cause less future impacts. This circumstance has significant implications for policy and negotiations about sharing the burden of climate change (Lenzen et al. 2004b): Ignoring temporal issues can lead to serious distortions in allocations of Footprints to national or subnational entities (such as companies). 7 A dynamic, temporallyexplicitmethodcanovercomesuchdistortions. Thus,thisworkhasthebroaderaimofattemptingageneraloutlineofadynamicEcological Footprintmethodforforecastingandpolicyanalysisthatcanbecomeacomplementarytool totheexistingmethod.Morespecificallyweproposeto: 5The works of McDonald and Patterson 2003, Lenzen and Murray 2001; 2003 and Peters et al. 2007 are predecessorstothedynamicframeworkpresentedinthisworkastheycover pathways16inFig.1.Thedynamic methodconnectstheseapproachestoacommonendpoint(bioproductivity). 6Alsoat www.isa.org.usyd.edu.au/publications/documents/ISA&WWF_Bioproductivity&LandDisturbance.pdf . 7 Thishasbeenamplydemonstratedforthecaseofclimatechange:CH 4andCO 2havedifferentatmospheric lifetimes,andtheeffectthatabatingentitieshaveonthefutureclimatedoesnotonlydependontheamountsof emissionsreduced,butonthetemporalprofileofreductions(RosaandSchaeffer1995;RosaandRibeiro2001; Rosa et al. 2004).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 14

a) incorporatebiodiversityvariablesasdrivingfactorsoffutureEcologicalFootprints, b) shift the point of data input towards the pressure variables in Fig. 1, and link a quantitativeanalysisthroughtotheendpointbioproductivity. Thus,thebioproductivityendpoint(referredtoasthe“EcologicalFootprint”)coincideswith themetricofthestaticmethod,butitisinfluencedbydrivervariablesinadynamicway. 8 Thedescriptionofouranalysiswillproceedasfollows:wepickoutanumberofthepathway nodesinFig.1,andinSection2wereviewthequantitativeestimatesthathavebeenattached totheirlinks.InSection3wethenventureaboldattemptatfindingthe“best”compromiseof acountrylevelsetofquantitativeparametersfortheselinks. In Section 4.2 we apply these in a temporal analysis of countrylevel consumption, production,landuse,greenhousegasemissions,speciesdiversity,andbioproductivityupto 2050.Section4.3quantitativelydecomposestheglobaltrendofnarrowingthebiocapacity EcologicalFootprintgapintoacceleratingandretardingdrivingforces.Section4.4qualifies theseresultsbyacomprehensiveappraisalofuncertainties.Section4.5providesapractical example for how the dynamic method may be applied to subnational entities such as corporations.InSection4.6wepresentcountryaccountsrankingsintermsoftheendpoint (Ecological Footprint and biocapacity) for 2050. These accounts and rankings thus complementexistingstaticcountrylevelEcologicalFootprintaccounts(Loh2006). In Section 5 we list shortcomings that necessarily arise for a forwardlooking dynamic method.Section6concludesandprovidesanoutlook.

8Using the IMAGE landuse and landcover model, van Vuuren and Bouwman 2005 already presented a dynamic Ecological Footprint forecast until 2050. However these authors do not cover biodiversity and degradationeffects,whichareattheheartofthisanalysis.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 15

2 Interactionsofconsumption,landuse,greenhousegas emissions, biodiversity and bioproductivity–aliteraturereview

2.1 Humanconsumptionandlanduse The amount of land humans require depends on a number of factors, of which the more important are probably 1) population, 2) living standards (affluence), 3) agricultural production,and4)agriculturalyields.Moreprecisely,landuse Lcanbewrittenasafunction ofpopulation P,grosseconomicoutputpercapita( x,$/cap),agriculturalproductionpergross economicoutput( o,tonnes/$PPP),andproductivity( p,tonnes/hectare)as L= Px o / p . 2.1.1 Population and affluence growth Agrowingpopulationcertainlyexertsapressuretoincreaselandoccupation,especiallywhen this population is striving towards higher living standards at the same time. The latter is reflectedinthefactthatgrowthratesofpercapitarealGDPhavenotshownanyremarkable trends since 1970,but rather fluctuated around a mean of about +1.5% per year (Fig. 2). Regressing a 35year history, growth rates can be modeled to grow for North America (+0.013% year 1),Africa(+0.013% year 1)andOceania(+0.024% year 1),anddecreasefor SouthAmerica(–0.063%year 1),Europe(–0.053%year 1)andAsia(–0.011%year 1). 9Based 1 onthesetrends,percapitaandtotalrealGDP(netbothinflation)issettogrow2 /2folduntil 2050(Fig.3,comparewithforecastsinTilman et al. 2001a,p.282).

10 10% North America Oceania 9 Oceania Europe Latin America Asia 8% Asia Africa 8 Africa World Europe 7 Latin America 6% North America 6 4% 5 2% 4

3 0% Population (billion)

2 Per-capitaGDP growth -2% 1 - -4% 1950 1970 1990 2010 2030 2050 1970 1980 1990 2000 Year Year Fig.2:Historyandforecastofworldpopulation(left, compiled after U.S. Census Bureau 2006),andhistoryofpercapitaGDPgrowth(right,compiledafterUnitedNations StatisticsDivision2007b)

9Regressingonlytheperiod1990to2005confirmsthemagnitudeofalltrendsexceptforSouthAmerica,which hasexperiencedaslightgrowthofgrowthratesduringthepast15years.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 16

$100,000 North America $80,000 Oceania Oceania Europe Asia World $80,000 Africa Latin America Europe Asia Latin America Africa $60,000 North America $60,000

$40,000 $40,000

$20,000 GDP(1990 US$ billion) $20,000 Per-capitaGDP (1990 US$)

$- $- 1970 1990 2010 2030 2050 1970 1990 2010 2030 2050 Year Year Fig. 3: History and forecast ofpercapita real GDP (left) and total real GDP (right, net of inflation,compiledafterUnitedNationsStatisticsDivision2007b). 2.1.2 Agricultural output The real GDP growth in the righthand graph in Fig. 3 forms a strong driver for resource requirements,amongstwhichisagriculturalproduction.Ononehand,agriculturaloutput(in tonnes, say) can be expected to grow proportionally with population. On the other, agriculturaloutputwillnotfollowpercapitaGDP:Associetiesbecomemoreaffluent,the basket changes to incorporate a higher proportion of manufactured goods and services,bothofwhichrequireonlyminoragriculturaloutput(Figs.4and5).

30 30 World World 25 Developed countries 25 Developed countries Developing countries Developing countries 20 20

15 15 %AgGDP = 3179 x GDP /cap -0.73 R 2 = 0.91 10 10

5 5 Agricultural GDP (% of total GDP) - Agricultural GDP (% of total GDP) - 1970 1980 1990 2000 $- $5,000 $10,000 $15,000 $20,000 Year Per-capita GDP (1990 US$) Fig.4:AgriculturalGDPasapercentageoftotalGDP,asatimetrend(left)andanaffluence trend(right).CompiledafterFAOStatisticsDivision(FAOSTAT)2007a. Infact,duringthepast35years,agriculturalGDPasapercentageoftotalGDPhasdecreased inallworldregions,whichcanbeseenasatimetrendaswellasanaffluencetrend(Fig.4).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 17

Asimilartrendcanbeobservedfrommicrolevelpaneldatareferringtojustoneyearand one country: The intensity of agricultural and forestry output per unit of household consumptioncanbecalculatedfordifferentincomeclasses(Fig.5).Aswiththeglobaldata inFig.4,theAustralianpaneldatashowsamarkeddecreaseofthematerialintensityofthe commoditybasketasconsumersbecomemoreaffluent. Thismaterialintensitycanbeanalysedusingtheconceptofelasticity.Theelasticity ηyofthe percapita material requirement M with respect to the percapita expenditure on consumer ∂M ∂y items yforexampleisdefinedas η = .Avalueof ηy=0.9,forexample,meansthat, y M y fora100%increaseinexpenditure,thematerialrequirementincreasesbyonly90%.When expressed using the elasticity concept, the material requirement can be written as

()y=1 η y M ()y=1 η y −1 M = M y ,andthematerialintensityis m = = M y .Onceagain,avalueof ηy y =0.9,forexample,meansthat,fora100%increaseinexpenditure,thematerialintensity decreasesby ηy–1=–10%. Comparing Figs. 4 and 5 shows thatthe elasticities are of the time series and panel data analysesarequitesimilarat ηy–1≈–0.7,or ηy≈0.3.Hence,forevery10%increaseinper capitaGDP,agriculturaloutputhastoincreasebyonly3%,orinotherwords,demandfor agriculturaloutputisrelativelyinelastic.Thisisnotsurprisingsincefoodisanecessitythat saturates at relatively low incomes. 10 In fact, applying a 3% elasticity to Europe’s forecast percapitaincomeandpopulationgrowthputs2050agriculturaloutputatlessthan1%over thatof2005,whichisinreasonableagreementwiththe20%– +30% range estimatedby Rounsevell et al. 2005.

0.5

0.4 m = 7.61 x Inc /cap -0.67 R 2 = 0.82 0.3

(kg/A$) 0.2

0.1

0.0 Material intensity of agricultural output $0 $200 $400 $600 Weekly per-capita income (1999 A$) Fig.5:Materialintensity ofagriculturaloutputas a function of weekly percapita income across Australia. Compiled by applying generalised inputoutput analysis (AustralianBureauofStatistics2004;Lenzen et al. 2006)toAustralianagricultural production statistics (Australian Bureau of Agricultural and Resource Economics 2004),andthentoAustraliandataonhouseholdexpenditure(AustralianBureauof Statistics2000). 10 Formoredetailsonthistypeofcalculation,seeWier et al. 2001;Lenzen et al. 2004a;Lenzen et al. 2006.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 18

2.1.3 Yield In a final step, we examine the relationship between agricultural output and land requirements.Duringthepastdecades,productivity(yields)inallagriculturalsystemshas increasedworldwideasaresultofimprovementsofagriculturaltechniques,fertiliseruse,and otherintensificationtrends(Fig.6).Wehavefittednonlinearsaturatingcurvesinorderto indicatelimitstoyieldimprovements.Theselimitsareduetocomplexrelationshipsbetween thelivestockandcropsystems,whichwewillexamineinthefollowingtwoSubsections.It is clear that – in light of these complex causal patterns – our elasticity representation is simplified.Notethatourforecastofabout8%productivityincreasebetween2005and2050 ismoreconservativethantheestimateof20%80%byRounsevell et al. 2005.Wecomment furtheronthisdiscrepancyinSection4.2.1.

5.6 1.02 0.021 0.06

p = 4.35 t )

) 2 -1 )

-1 R = 0.65 -1

5.2 0.96 0.020

4.8 0.90 0.019

0.05 p = 0.86 t 0.08 Crop productivity ha (t p = 0.02 t Dairy productivity ha (t 2 R = 0.68 2

Ruminant productivity (t ha R = 0.73 4.4 0.84 0.018 1989 1994 1999 2004 1989 1994 1999 2004 1989 1994 1999 2004 Year Year Year Fig.6:Worldcrop,dairyandruminantlivestockyieldsovertime.Compiledfromcountry leveldataobtainedfromFAOStatisticsDivision(FAOSTAT)2007bandLivestock InformationandPolicyBranch2007. 2.1.3.1 Livestock systems Global animal production is composed of two distinct parts: a ruminant system of cows, sheepandgoatswhichdirectlyoccupiesland,andthemonogastricsystemofpigsandpoultry withlargeindirectlandusethroughtheglobaltradeflowsofanimalfodder.Thetwosectors aredepictedwellinFig.7,whereruminants(whichareeffectivelylandandclimatelimited) haveexperienceddecreasingproduction,whilemonogastricsproductionhasincreased.The latter increase has led to intensified food chains, involving more grain and often animal proteinsupplements. 11 Theincreaseinmonogastricproductionorthe‘nextfoodrevolution’(Delgado et al. 2001) hasbeendrivenbypopulationandincomegrowthparticularlyinAsiawhereintensiveanimal systems,bothatsmallholderlevelandlargeindustrialisedfoodcomplexes,fitwellintoperi

11 Thedairyandcattlefeedlotsectorsaresomewhatinbetween,ashightechdairyingandfinishingbeefcattle requiressupplementfoodmostlyderivedfromcropconcentrates.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 19 urban areas around large . The larger scale systems mostly rely on animal feeds importedfromcheapproductionzones.ThecurrentfocusisonsoyproductionfromBrazil and 12 ,butintensiveanimalproductionhaslongusedfishmeal(Kristoferssonand Anderson 2006) for example as a protein supplement, so indirectly linking landbased productionsystemswithdeclineofregionalfisheries.Whilecountrieswithlowpopulation densities can support intensive animal production with their own feed resources, many developedanddevelopingcountriesimportlargevolumes,particularlyofproteinrichgrains sourcedfromthecheapestandlargestsuppliers.

200 1.0 180 160 0.8 140 120 Feed 0.6 Feed 100 Monogastrics 80 0.4 Monogastrics

(kg/ cap) Ruminants (ha cap) / 60 Ruminants 40 0.2 20 Land inthe livestock system 0 0.0 Productionin the livestocksystem 1995 1998 2001 2004 1995 1998 2001 2004 Year Year

1.2 5 1.0 4 0.8 Feed 3 Feed 0.6 Monogastrics (Gt)

(Gha) Monogastrics Ruminants 2 0.4 Ruminants

0.2 1 Landin the livestocksystem 0.0 0 Production in thelivestock system 1995 1998 2001 2004 1995 1998 2001 2004 Year Year Fig.7:Productionandlandintheworld’slivestock system. Compiled from countrylevel data obtained from FAO Statistics Division (FAOSTAT) 2007b and Livestock InformationandPolicyBranch2007.Massvaluesforconcentrate/grain feedwere calculatedusingauniformfeedtolivestock(liveweight)ratioof3:1,andaddedto livestockvalues(Allameh et al. 2005;ReynoldsandO'Doherty2006).Areavalues werethencalculatedfromthemassvaluesusingcropandgrazingyields.

12 ForeignAgriculturalService2004;Pengue2004.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 20

Consideringthatruminantanimalsarenowlandlimited, and monogastric animals rely on croplandoftenfarremovedfromthesourceofsupply,itisreasonabletoexpectthattechnical efficiencies of animal production (meat produced per unit of food eaten) will continue to improve(Bradford1999).Thisincludestherefinementofanimalgenetics,betterorganisation ofthefullproductionchain,animalhealthandsoon.However,therearelogisticalandsocial limitswhichcouldseeglobalproductivitytending to saturate perhaps by the decade 2030 whenglobalfoodproduction,thoughnotpotential, might stabilise due to difficulties with organisationandpolitics,aswellastheabilityofarablelandstomaintainincreasinggrain supplies. Theworldcanprobablyexpectthatpotentialyieldofgraincrops(thegermplasmpotential rather than infield actual production) that underpin monogastric meat production will continuetogrowoutto2050andbeyond.Thusmonogastricmeatproductionshouldnotbe physically limited, although social and political constraints may bite 13 . Total global grain production has tripled in the last 60 years to reach 2,000 million tonnes in 2006. In that period, the per capita grain production has oscillated between 300 and 350 kilograms per person.Howevertheyear2006sawtheworldwithgrainstocksbufferoflessthan60daysof worldconsumption,thelowestithadbeensincetheearly1970s.Thisprobablyreflectsan organisationalissueratherthanabiophysicaltippingpoint.Howeveritiswisetobecautious in expecting that the technological supremacy of the last half century will continue uncheckedforthenexthalfcentury. Foursignificantuncertaintiesexistforthecontinuingexpansionofglobalmeatproduction. Thefirstistheemergenceofhumandiseaseslinkedtointensiveanimalproductionsystems, whichinfluenceswillingnesstoconsumeanimalproducts.Themostrecentexampleisbird flu 14 which regularly requires the slaughter of large of poultry and exclusion policies to quarantine the affected region and even country from trading activities. The secondisconstraintsinsuppliesofoilandnatural gas which are expected to peak before 2020 (Robert et al. 2006;Government AccountabilityOffice2007). Apart from breaks in transport and distributional chains, the central issue is nitrogen fertiliser currently manufacturedfromcheapandplentifulnaturalgas.Withoutcheapfertiliser,intensiveanimal production chains currently fed by cheap grains, willreducetheirproductivityandhuman dietsmayhavetobecomemorevegetarian.Ifissuesoneandtwocombinewithaseriesof global economic shocks and regional meltdowns the third issue may develop, where the increasingly integrated system of globalised trade may lose its justintime fluency, and becomemorebrittleanderratic.Theoverarchingfourthissueisthatofglobalchangewhich mayadvantageproductionsystemsinnorthernlatitudeswhiledisadvantagingequatorialand southernlatitudes. These issues could affect land use and biodiversityimpactsintwoways.Onecouldbea reductionintheanimalproportionsofhumandiets, a reduction in global flows of animal feeds and a reduced footprint associated with changedhumandiets.Asglobalmarketsfor meat decline, the second mediumterm option might see longerlived grazing ruminants retainedlonger,therebymaintainingpressuresuntilthegrazingsystemcrashesandthenstarts theslowprocessofrefurbishment. 13 The social limits are well documented in Peter Singer’s book The Way We Eat; Why Our Food Choices Matter (SingerandMason2006,p.328ff)wherepopulations will no longer accept many processes that lie behindtheintensiveanimalproductionchain. 14 WorldOrganisationforAnimalHealth2007.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 21

2.1.3.2 Crop systems Moderneconomiesarebasedonthebeliefofcontinuingtechnicalprogressandespeciallyin theagriculturalsectorwherethewellpublicised‘greenrevolution’ledtolargeincreasesin grainproductionforkeystaplessuchasrice,wheatandmaize.Figure6showsthecontinuing echoofthegreenrevolutionwithrisingyieldsperunitareaofoverthelastquartercentury.A commonmisconceptionisthatthegreenrevolutionwasavirtual‘brainled’one.Inreality, therevolutionwasbasedonsubstantialchangestothewholefarmingsystemwithalterations toplantgenetics(thebrainpart)whichrequiredadditionsofpesticides,fertilisers,irrigation andimprovedmanagementpracticesfortheimprovedgeneticstoshowtheirpotential.Some literature suggests that global agriculture is failing to maintain growth rates that match population and affluence growth rates 15 and that a “second green revolution” is required (Wollenweber et al. 2005). Most insiders in agriculture and plant protection are optimistic that food production will maintainpacewithrisingfooddemand(RosegrantandRingler1997),andthatifregional optionsareconstrained,thenglobaltradeflowswillhelp.Supportingthepositivecaseare recentstudiesprojectinga50%increaseinyieldof23croptypesby2050(Balmford et al. 2005),thusallowinghumanfoodsuppliestobemaintainedaspopulationclimbstoabout ninebillionby2050,andthenstartstodeclineduetothedemographictransitionandageing. Inthedevelopedworld,particularlyEuropeandNorthAmerica,therearelargeareasofland ‘setaside’toreduceoverallproductionlevels.Additionallyrisingglobaltemperatureswill bring many northern latitude lands into advantaged plant production windows. South Americastillhassignificantareasofreasonablesoil,whichifdeveloped,willunderpinpart ofglobalgrainsupplies. Howeveronthenegativesizethereisalitanyofissueswhichchallengeamoreoptimistic future. Two nonland issues are that of organisation (the ability to supply food easily to people who need it) and trade fragilities (dumping of surplus food and destroying local supplychains).Threeimportantlandissues,notoftenbroughtintooptimisticdeliberations, are as follows. The first is overharvesting of plant production resources where south and centralAsiauseover70%ofnetprimaryproductivity(Imhoff et al. 2004),thuslimitingthe fraction left to preserve ecosystem function. Many irrigation areas that form the strong motors of global grain production have a declining water resource (Global International Assessment2006)andsoilsalinisation.Thirdly,globalchangewillnegativelyaffect cropyieldsinmanyequatorialregions,atbest,addingstresstoworldtradearrangements,or at worst increasing food scarcity. Dominating all of these issues is the supply of cheap nitrogenfertilisermadefromnaturalgas.Asgassuppliesdwindlepast2020,orareheldby onlyafewsuppliers,theabilitytosupply‘growthfromafertiliserbag’willstarttoaffect local supplies and world trade. Vaclav Smil’s story of innovation in humankind’s modificationoftheglobalnitrogencyclesuggeststhatwithoutindustrialnitrogenfixation, globalfoodproductioncouldonlysupportamaximumpopulationofthreebillionundera semiorganicagriculture(Smil2004).

15 ConwayandToenniessen1999;Mann1999;Tilman et al. 2002.ComparealsowithSection4.3inthiswork onStructuralDecompositionAnalysis.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 22

2.2 Landuse,biodiversityandecosystemfunctioning

2.2.1 Insights from Ecology

Ecosystemsprovidearangeofgoods(ecosystempropertiesthathavedirectmarketvalues, e.g food, construction materials) and services (e.g. maintaining hydrological cycles, regulatingclimate,storingandcyclingofnutrients)thatdirectlyorindirectlybenefithumans (Christenesen et al. 1996,Daily1997).Understandingtheinfluenceoflandusechangeand changestobiodiversityontheabilityofecosystemstocontinuetoprovidetheseresourcesis criticaltoassessingthesustainabilityofhumanactivities.Landusechangeispredictedto havethelargestglobalimpactonbiodiversitybytheyear2100(Sala et al. 2000)andland transformationto yield goodsisnotedasthemost substantial human alteration of Earth’s ecosystems(Vitousek et al. 1997).Declinesinbiodiversityarealreadyevidentinmanyareas particularly where natural systems have been converted to croplands, timber plantations, aquaculture and other managed ecosystems (Naeem et al. 1999). Threeprimary reasons to maintainhighbiodiversityincludedefendingagainstriskfromdisturbance,extendingtheuse of resources and providing multiple goods and services (Hooper et al. 2005). Increasing species richness can also decrease temporal variability in ecosystem processes (McGrady Steed et al. 1997; Naeem and Li 1997; Emmerson et al. 2001) which is important for bufferingtheeffectsofdisturbance,andcanensurethatresourceprovisioniscontinual.The abilitytoresistdisturbanceisespeciallycriticalgiventhecurrentclimateofincreasedland usechange. Therelationshipbetweenbiodiversityandecosystemfunctionisnotclearcutandover50 patterns have been proposed (Loreau 1998; Naeem 2002). Establishing the link between biodiversity and ecosystem functioning is difficult as the loss of species is usually accompaniedbydisturbancesuchashabitatconversionthatdirectlyaffectsmanyecological processesandcandisguisetheimpactsofspecieslossonfunctioning(Naeem et al. 1999; Hooper et al. 2005). The idea that loss in plant species is detrimental to ecosystem functioning remains contentious (Aarssen 1997; Grime 1997; Huston 1997). However, evidencefromexperimentalandobservationalstudiessuggestthatalargesuiteofspeciesis requiredtomaintainecosystemfunctioninareasincreasinglysubjectedtohumanimpacts (Loreau et al. 2001).Reductionsinregionalandlocaldiversitycanleadtodeclinesinplant production,reducedecosystemresistanceandincreasingvariabilityinecosystemprocesses suchassoilnitrogenlevels,wateruseandpestanddiseasecycles(Naeem et al. 1999). Itisdifficulttoquantifythelinkbetweenbiodiversityand ecosystemfunctionbecausethe roleofspeciesinecosystemfunctioningencompassestheirdiversity,evennessandidentity (Naeem et al. 1999,PurvisandHector2000,Aarssen2001),notsolely their number. The natureoftherelationshipwillalsodependonthedegreeofbythespecieslost,the strengthofinteractionswithotherspeciesandthefunctionaltraitsofspecieslostandthose remaining(VitousekandHooper1993;Lawton1994;Naeem1998).Functionaldiversityisa major determinant of ecosystem properties (Chapin et al. 1997; Chapin et al. 2000) and knowing which species or functional types are presentisatleastasimportantasknowing howmanyarepresent(Aarssen2001,Hooper et al. 2005).Functionaldiversityincreasesthe stabilityofecosystempropertiesasasuiteofspeciesthatuseresources differentlywillbe able to respond to a range of disturbance types (Hooper et al. 2005). For example, MacGillivrayandGrime1995showedthatdifferencesintheresponsesoffiveecosystemsto frost,drought,andburningwerepredictablefromthefunctionaltraitsofthedominantplants butwereindependentofplantdiversity.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 23

Secondly,notallspeciesarecreatedequalandsomespecies,knownaskeystonespecies,can haveadisproportionateeffectonecosystemfunction,relativetotheir(Power et al. 1996).Theinfluenceofasinglespeciesonthefunctionofanecosystemhasbeenclearly illustrated by extensive research on invasive organisms. Species or functional groups can have a large influence on ecosystem properties (Levine et al. 2003). Similarly the loss of keystonespeciescandramaticallyalterecosystemfunction(BrowneandHeske1990).Costs incurred by society are difficult to predict when the relationship between biodiversity and ecosystem functioning is nonlinear. The loss of keystone species can result in sudden declinesinfunctionduetoathresholdeffect(Chapin et al. 2000). 2.2.2 Insights from Life-Cycle Assessment Overthepast10yearstherehasbeenextensivedebatewithintheLifeCycleAnalysis(LCA) onhowbesttoquantifylanduseimpacts.16 Whilesomeimpactsoflanduseare already consistently treated within LCA, including climate change, eutrophication and acidification,andtoxicity,consensushasyettobereachedonthebestwayofincorporating impactsonmoredirectaspectsofecosystemfunctioning,suchasbiodiversityandsoilquality (JollietandMüllerWenk2004;UdodeHaesandHeijungs2004;MilàiCanals et al. 2007). The Land Use taskforce within the UNEPSETAC Life Cycle Initiative (http://www.uneptie.org/pc/sustain/lcinitiative/ ) recently recommended that characterisation factors for land use impacts should embody all the following information: impacts on biodiversityandsoilquality;impactsfromclimatechange,eutrophicationandacidification, toxicityetc.;whethertheimpactisfromtransformationoroccupation;thesizeoftheimpact relativetoasuitablereferencestate(dependsoncoverageandintensityoflanduse,andthe biogeographicalconditionsofthearea);andthetimedependenceoflanduseonimpact. 17 Giventhelackofsuchdetaileddataonaglobalscale,itisnotcurrentlypossibletoachieve thisideal.However,anumberofsimplifiedweighting schemes for land use impacts have beensuggestedovertheyearsasafirstapproximation.Whatfollowsisabriefsummaryof methods for which some characterisation factors havebeenpublished.Discussionofother methodscanbefoundinthereferencescitedabove. Lindeijer2000aprovidesanextensivereviewofmethodsforweightinglanduseimpactsand tabulatesvaluesfor5proposedsystems.ThreeofthesecomefromKnoepfel1995andare based on: the degree of biological accumulation (Whittaker and Likens 1973) defined as gross primary production; natural regeneration time (Hampicke 1991); and people’s perceptionofthevalueofeachlanduseclass(Jarass et al. 1989;BradleyandPeter1998). Thetwoothersystemsarebasedonmultiplecriteria.Auhagen1994useacombinationof naturalness, species diversity, rareness of biotopes, and density of individual plants and animals, while Felten and Glod 1995 reduce this to two criteria, the Simpson index for 16 Blonk et al. 1997;Heijungs et al. 1997;Baitz et al. 1998;Ekvall1998;MüllerWenk1998;Swan1998;van Dobben et al. 1998;Köllner2000;Lindeijer2000a;b;Mattsson et al. 2000;GoedkoopandSpriemsma2001; Schenck2001;WeidemaandLindeijer2001;Brentrup andKüsters2002;UdodeHaesandHeijungs2004; Geneletti2007;MilàiCanals et al. 2007. 17 SeeMilài Canals et al. 2007,andacritiquebyUdodeHaes2006.UdodeHaesandHeijungs2004cite strongsitedependenceasbeingoneofthemainchallengesinincorporatinglanduseintoLCA,inparticular whenchanginglandusetype.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 24 biodiversity(Simpson1949) andanindicatorbasedontheIUCNRedListforendangered species. SwanandPettersson1998usebioproductivityandbiodiversitymeasurestocharacterisethe ‘actualstate’(1–p)ofland,whilevanDobben et al. 1998andKöllner2000approximate ecosystemqualitybythespeciesdiversityofvascularplants,becausetheyaremostreadily abletobesurveyed,andprovidehabitatandfoodto other species. Based on speciesarea relationships,thelattertwoauthorsdefinethe‘species richness’ ( α) and the ‘speciespool effectpotential’(SPEP)asafunctionofthenumberofspeciesonaparticularlandtypeand theaveragenumberofspeciesinthesurroundingreferenceregion. Whileaconsiderablenumbersofmethodsforcalculatingcharacterisationfactorshavebeen proposed,mostofthemstillsufferfromalackofdatatomakethemoperationalonaglobal scale.Asapossiblesolutiontothis,Lindeijer2000bhassuggestedusingacombinationof two indicators, the density of vascular plant species and fNPP. 18 For both indicators, referencevalueswere generatedonaglobalscalebasedonaliteraturereviewofthemost recent (at the time) scientific measurements. A few sample impact factors are given for specific mining and logging operations, however it is noted that more data needs to be gatheredforamoregeneraluseofthemethod.Finally,itissuggestedthattheseindicatorsbe complementedwithawaterresourceindicatorandaclimatechangeindicatortocapturethe fullimpactoflanduse. In order to give a more complete indication of biodiversity impacts, Cowell 1998 has proposedcombiningthediversityofspecieswiththreeadditionalindicatorstherelativearea ofaspecificecosystemtype,thenumberofrarespecies,andtheNPP 18 asanindicatorforthe numberofindividuals–butprovidesnoactualcharacterisationfactors. Along similar lines, Weidema and Lindeijer 2001 propose using two indicators: NPP for ecosystemproductivityandlifesupport,andacompositevariableforbiodiversitybasedon speciesrichness,ecosystemscarcity and ecosystemvulnerability.Theyalsoprovideglobal reference values for NPP and the diversity of vascular plant species, together with global averagesforoccupationimpactontheseindicatorsforaselectionoflanduses. More recently, Wagendorp et al. 2006havesuggestedsomenovelindicatorsbasedon the theory that ecosystems maximise their dissipation of external 19 fluxes through maximizingtheirinternalexergystorageintheformof,biodiversityandcomplex trophicalnetworks.Itissuggestedthathumanimpactswilldecreasethisecosystemexergy levelviasimplification,e.g.bydecreasingbiomassanddestroyingtheinternalcomplexityof the ecosystem. One of the indicators investigated is the thermal response number (TRN), whichcanbecomputedfromthermalremotesensingdataandradiationmeasurements,and soatleastintheoryisavailableonaglobalscale. 2.2.3 Insights from cross-country analyses

Anumberofstudieshaveemergedthatseektoidentifythreatsfromaglobalperspective,by examining countrylevel data and searching for statistical determinants of the number of 18 Freenetprimarybiomassproduction(fNPP)istheamountofbiomass whichnaturecanapply foritsown development,i.e.netproducedbiomass(NPP)minushumanconsumptionofbiomass. 19 Definedasenergyabletodowork,i.e.subtractedofitsentropiccontent.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 25 threatened species. One reason for global assessments is to find drivers of species threats beyondtheplethoraoflocallyspecificcircumstances,inordertoinformpolicymakingatthe nationalandinternationallevels. PopulationdensityandpercapitaGrossDomesticProduct(GDP)arefrequentlyamongstthe determinants tested, with many authors searching for an invertedU relationship, or an “environmental Kuznets curve” (Naidoo and Adamowicz 2001; AsafuAdjaye 2003; McPherson and Nieswiadomy 2005; Pandit and Laband 2007a; b). 20 The results of these studies show a high variability, and a generally weakconnectionbetweenexplanatoryand explainedvariables.Inmostofthesestudies,typicalsignificantcorrelationcoefficientsrange around ±0.3to ±0.5,andtypicalregression R2arearound0.5.Noneofthestudiesresembles anotherintheirchoiceoffunctionalspecification,setofcountries,orselectionofexplanatory variables,sothatdirectcomparisonsarenotpossible. The work by Pandit and Laband 2007a; b and McPherson and Nieswiadomy 2005 is particularly interesting in that it is one of the few that demonstrate the importance of consideringthatfactorsinfluencingspeciesimperilmentinonecountrymayalsoinfluence speciesimperilmentinneighbouringcountries.Bothteamsexploitspatialautocorrelation 21 in ordertoincorporatecrossbordereffectsintotheirregressionmodels.Inaddition,Panditand Laband2007bexperimentwithdifferentlyweightedadjacencymatricesinordertouncover specificreasonsforcrossborderspilloverthreats. Instead of socioeconomic and demographic variables, Lenzen et al. 2007b use land use informationaspotentialdeterminantsofspeciesthreats,becauselanduseisacloserproxyto causesforbiodiversitylossthanforexamplepopulationdensityorGDP. 22 Theyarguethat for example in the case of Australia, even though population density is extremely low especiallyinruralareas,thelatterareusedintensivelyforcroppingandgrazingforexports, leadingtosignificantbiodiversityloss(Glanznig1995).Similarly,wealthycountriessuchas may preserve their own biodiversity relatively well through displacing any environmentally damaging domestic production by shifting to or importing from other countries (Muradian et al. 2002). In explaining the number of threatened species in one country, Lenzen et al. 2007b explicitly use information on land use patterns in all neighbouringcountries,andontheextentofthecountry’sseaborder.Theirresultsshowthat crossborderlandusepatternshaveasignificantinfluenceonspeciesthreats,andthatland usepatternsexplainthreatenedspeciesbetterthanlessproximatesocioeconomicvariables. 20 Proponents of the environmental Kuznets hypothesis argue that with increasing development and wealth, environmentalpressureandimpactinitiallyincrease,butthendecreaseagainoncesocietieshaveattainedalevel of prosperity that allows them to improve environmental conditions. For further reading see Pearson 1994; SeldenandSong1994;Shafik1994;GrossmanandKrueger1995;Stern et al. 1996;Cole et al. 1997;Ekins 1997;EhrhardtMartinez et al. 2002;Stern2003. 21 Spatialautocorrelationcanbemodelledeitherinaspatiallagmodelwheretheexplainedvariableappearsalso asa(spatiallyweighted)dependentvariable,togetherwithotherdeterminants,orinaspatialerrormodel,where theerrortermassumesaparticularspatiallyautoregressiveshape. 22 This agrees with the assessment of Kerr and Currie 1995, that “it seems unlikely that […] socioeconomic variables are the proximate influences on species extinction. Rather, species survival is probably most often endangeredbyspecifichumanactivitiessuchashabitatmodification,hunting,andsoforth”.Similarly,Asafu Adjaye2003indicatesthatavariablesuchasthepercentageofGDPinagricultureisonlyaproxyforhabitat conversion,whichinturnisoneofthemajorthreatstobiodiversity.Landuseintensityandlandusechangesare themostfrequentlylisteddirectdrivingforceforbiodiversitylossinSpangenberg2007,andinaSpecialIssue of Basic and (Poschlod et al. 2005). Socioeconomic and demographic variable have been showntohaveaninfluenceonlandusepatterns(Deacon1994),whichinturnaffectspecies.Eppink et al. 2004 andMattisonandNorris2005argueforanintegrationoflanduseeconomicsandbiodiversityecology.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 26 Study Lenzen et al. Lenzen et al. Lenzen et al. Swanand vanDobben et al. WeidemaandLindeijer Reidsma et al. 2007b 2007b 2007b Pettersson1998 1998 2001 2006 Spatiallevel World World World Notdefined The World World European Union Variable Percentageof Percentageof Percentageof Bioproductivity Speciesdiversity NPPh Biodiversityi Ecosystem threatened threatened threatened andbiodiversity, ofvascularplants, quality birds mammals plants 1–p 1– α e Method Multiple Multiple Multiple Guesstimates Expertjudgement Estimatesderivedfrom Literature regression a regression a regression a publisheddata review j Builtupland 0.46±0.18 0.05±0.34 0.44±0.14 0.99 1.0 0.86 1.00 Permanent 0.37 1.00 0.8±0.15 k 0.51±0.07 0.67±0.14 0.18±0.03 crops 0.76 b 0.6 f Permanent 0.14 0.34 0.73±0.13 k 0.09±0.01 0.09±0.02 0.01±0.01 pasture Non permanent 0.00±0.03 0.08±0.05 0.04±0.02 0.2 c–0.34 d arable Timber 0.45±0.07 0.72±0.13 0.13±0.07 0.85 0.2 plantations Natural 0.03±0.01 0.11±0.02 0.00±0.01 0.04 forest 0.0 g Nonarable 0.00 l 0.02±0.01 0.12±0.02 0.05±0.01 land Tab.1:Summaryofcharacterisationfactorsoflandusedocumentedintheliterature. aWeightedLastSquares,linearspecification,standarddeviationof regressioncoefficientsobtainedusing ttest; b“normalagriculture”; c“sustainedforestry”, d“productivityforestry; ebasedonnumberofvascularplant species per km 2 in the Netherlands (Witte and van der Meijden 1995); f “intensive agriculture”; g “pristine”; h NPP values for broadly categorized terrestrialecosystems(AmthorandMembersoftheEcosystemsWorkingGroup1998); iexisting(USGS 23 )andpotential(Prentice et al. 1992)biome areas, and species richness per biome (Barthlott et al. 1996); j to determine the doseeffect relationship of the intensity of agricultural land use on biodiversity; kfullranges; l“naturalgrassland”.

23 SourcedfromtheUSGSwebsite http://edcwww.cr.usgs.gov/eroshome.html. ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 27 Study Köllner2000 Knoepfel1995 Auhagen1994 FeltenandGlod 1995 Spatiallevel Germanyand World Unknown s Unknown s Unknown s Unknown s Switzerland m Variable Speciesdiversityof Biological Regeneration Private Naturalness,speciesdiversity, Biodiversity, vascularplants, accumulation time perceptionof rarenessofbiotopes,densityof endangered SPEP n landvalue plantsandanimals species Method Linearregression Basedon Basedon BasedonJarass Unknown s Unknown s Whittakerand Hampicke1991 et al. 1989& Likens1973 Bradleyand Peter1998 Builtupland 1.0 0.95 0.9996 0.71 0.94 0.85 Permanent 0.55 crops 0.90 p 0.9953 p 0.48 p 0.82 p 0.51 p Permanent 0.51 pasture Non permanent 0.33 o 0.00 q 0.83 q 0.16 q 0.65 q 0.15 q arable Timber plantations Naturalforest 0.00 Nonarable 0.00 r 0.00 r 0.00 r 0.00 r 0.00 r land Tab.1(cont.):Summaryofcharacterisationfactorsoflandusedocumentedintheliterature; mappliedtoSpainbyAntón et al. 2007; nnormalisedto builtup=1; o“lessintensivemeadow”; p“cultivatedsystem(intensive)”; q“cultivatedsystem(extensive)”; r“naturalsystems”; sunabletoobtainthe originaldocument.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 28

2.2.4 Quantitative factors linking land use and biodiversity Land use characterisation factors for a range of different LCA and nonLCA methods are summarisedandcomparedinTable1.Notethatdifferentauthorsusedifferentclassification schemesforlandtypes.Herewehaveusedareducedsetof7landtypesandusedpersonal judgment to determine their equivalences to other classification schemes in the literature. Rangeshavebeengivenwheremorethanonelandtypefromtheliteraturewasjudgedtolie withinoneofourspecifiedlandtypes.Wealsoattempted to find compromise values for factors obtained from those studies dealing with biodiversity variables (Tab. 2). These compromisevalueswillbeusedinourtemporalanalysisinSection4. Landusetype Characteri Standard sationfactor deviation Builtupland 0.86 ±0.19 Permanentcrops 0.62 ±0.23 Permanentpasture 0.32 ±0.28 Timberplantations 0.42 ±0.40 Nonpermanentarable 0.47 ±0.22 Tab.2:AveragesandstandarddeviationsforasubsetofcharacterisationfactorsfromTab.1, dealingwithbiodiversityvariables(allstudiesexceptWeidemaandLindeijer2001, Knoepfel1995,andReidsma et al. 2006). Thepurpose of land use characterisation factors is to enable landusespecific estimates of biodiversityimpacts,wherespeciesdataatthelandusetypeleveldoesnotexist.Applying these factors therefore involves a tradeoff betweena) apotentiallypoorproxy (landuse) based on good data, and b) a direct representation of species diversity based on underreported,orotherwisepoordata(comparewithVoigtländer et al. 2004). 2.3 Humanconsumptionandgreenhousegasemissions Theamountofgreenhousegasesemittedbyhumansdependsonfactorsthataresimilartothe landuseanalysisinSection2.1.Here,theseare,amongstothers,population,livingstandards (affluence),energyconsumption,greenhousegascontentsoffuels,thenumberoflivestock units,theareaoflandcleared,etc.Forexample,CO 2emissions Gefromenergyusecanbe writtenasafunctionofpopulation P,grosseconomicoutputpercapita( x,$PPP/cap),energy intensity( e,Megajoule/$PPP),andgreenhousegascontent( g,tonnes/Megajoule)as Ge= Px e g . Similarly, CH 4 and N 2O emissions are proportional to agricultural output. Common driversforalltypesofemissionsarepopulationandgrosseconomicoutput;thesehavebeen dealtwithinSection2.1.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 29

2.3.1 Fuel combustion The most important component of global greenhouse gas emissions is CO 2 from the combustionoffossilfuels.Aswithmaterialintensities, energy intensities can be analysed usingtheconceptofelasticity(seeSection2.1).Lenzen et al. 2006poolandregresscross countrydataonpercapitaenergyintensities e,andfind η(x) =0.963–0.022ln( x),where xis inunitsof‘000$PPP/cap(‘Regr’and‘eta’inFig.8).24,25 Theirresultsareinbroadagreement with1997datareportedbyAngandLiu2006. 1.4 AUS 98 BR 95 DK 95 1.2 IND 94 JP 99 1.0 US 61 UK 68 US 72 0.8 N 73 NZ 80

Energyintensity, indexed NL 92 0.6 AUS 93 Regr eta 0.4 0.1 1. 10. 100. Expenditure ('000$PPP/cap) Fig. 8: Comparison of energy intensities as a function of household expenditure (‘000$PPP/cap). Values are indexed to the average energy intensity of all observationsbetween6,000$PPP/capand9,000$PPP/cap.ResultsfromLenzen et al. 2006(largesymbols):Australia(AUS98),Brazil(BR95),(DK95),India (IND94),andJapan(JP99).Resultsfromotherstudies(greysmallsymbols):US 1961 (Herendeen and Tanaka 1976), UK 1968 (Roberts 1975, p. 766), US 1972 (Herendeen et al. 1981),Norway1973(Herendeen1978),NewZealand1980(Peet et al. 1985),Netherlands1992(VringerandBlok1995),Australia1993(Lenzen1998). ‘Regr’denotesaregressionofalldataintheform e = e(y=1) yη ( y) ,with‘eta’beingthe elasticity η(y).

24 The World Bank (http://www.worldbank.org/depweb/english/modules/glossary.htm#ppp) defines PPP as “a method of measuring the relative purchasing power of different countries’ currencies over the same types of goodsandservices.Becausegoodsandservicesmaycostmoreinonecountrythaninanother,PPPallowsusto makemoreaccuratecomparisonsofstandardsoflivingacrosscountries.” 25 Lenzen et al. 2006usedoublelogspecificationsinordertoimposecorrectasymptoticrestrictions,thatisto avoid negative values for energy consumption (de Bruyn 2000, p. 94; Stern 2003, p. 6). An expenditure elasticityoftheform η(y)= η0+ η1 ln( y)(“eta”inFig.8)thenresultsfromaregressionaccordingtoln( e)= k+ 2 η0 ln( y)+ η1 ln( y) + ΣΣΣiFi,where yispercapitaexpenditure.Fixedcountryeffectsaretakencareofbythe inclusionofdummyvariables Fi,where Fi=1forcountry i,and0otherwise.Finalconsumptionexpenditure y isroughlyproportionaltogrosseconomicoutput x,sothatroughlythesameelasticityshouldapply.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 30

Lenzen et al. 2006stressthat–strictlyspeaking–theirdatadoesnotsupporttheexistenceof asingle,uniformcrosscountryrelationshipbetweenenergyrequirementsandGrossNational Expenditure: Instead, elasticities vary across countries, even after controlling for socioeconomicdemographicvariables.Thisresultconfirmspreviousfindingsinthattrends are unique to each country, and determined by distinctive features such as resource endowment,historicalevents,socioculturalnormsorpoliticalsystem. Incontrasttoagriculturaloutputthereareeconomiesofscaleforenergyuse,because–like food–peopleareabletoshareenergy,forexampleinformofelectricityforappliancesand lighting.Accordingly,intheirstudyoffivecountries,Lenzen et al. 2006foundasignificant albeitweakpopulationeffect.

90

80

70 60 India 50 40 World

30 Australia USA 20

Energy intensity (MJ/US$) Germany 10 Switzerland

0 1990 1992 1994 1996 1998 2000 Year Fig.9:Energyintensitytrendsofseveralcountries(primaryenergyMJper2000$US;World ResourcesInstitute2006). Atthecountrylevel,conversionefficienciesandcarboncontentsofenergytechnologiesvary greatly.Themostimportantfactorsareavailabilityofenergyresources,combustedfueltype and quality, the mix of electricity conversion technologies (for example coalfired versus nuclearpower),ageandsophisticationofelectricityinfrastructure,geographyandelectricity gridlosses,extentoftheutilisationofwasteheat,enduseefficiencyofenergyuse,climate, transport infrastructure, and vehicle size and efficiency. Energy intensities ( e) are strongly relatedtolevelofdevelopment,asshowninthedecadaltrendinFig.9.Rapidlydeveloping countriessuchasChinaandtoalesserextentIndia,showextremefallsinenergyintensityin the main expansionary phase of economic development. Despite these trends, energy intensitiesofthesecountriescanstillbeanorderofmagnitudehigherthanthoseforthemost developedserviceeconomies,suchasSwitzerland.Carbonintensitiesfollowsimilartrendsas forenergyintensity,butwithdifferencesdueprimarilytotheoverallgreenhousegascontent oftheenergymix(Fig.10).Forexample,ChinaandIndiahavesignificantcoalreservesand substantialcoalfiredelectricitygenerationcapacity(Graus et al. 2007).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 31

6

5 -e/US$) 2 4 China India 3 Australia World 2 USA Bangladesh 1 Carbonintensity (kg CO Germany

0 Switzerland 1990 1992 1994 1996 1998 2000

Year Fig.10:Carbonintensitytrendsofseveralcountries(energyrelatedcarbondioxideemissions per2000$US;WorldResourcesInstitute2006). Forthepurposeofprojectingenergyrelatedgreenhouseemissions,themostimportanttrend isthegreenhousegascontent g(thecombinationofdatainFigs.9and10,showninFig11), which is influenced by a range of factors specific to a country’s stage of economic development(compareMielnikandGoldemberg1999withAng1999).26 Thestrongestdriver ofabsolutevalueof gisthelocalavailabilityofenergysources,particularlycoalcompared withnaturalgasforelectricitygeneration.Changesinenergyquality,primarilyanincreasein the proportion of electricity (and its generation efficiency) compared with thermal and transport energy use, also affect g (Graus et al. 2007). Further, since carbon contents are strongly dependent on electricity infrastructure andacountry’senergyresourcebase,both withgenerallylongtimeframes,changesincarboncontentarelessdramaticthanenergyand carbonintensitychanges.

26 Theapparentcontradictionoftheseviewscanperhapsbeexplainedbythe“threelawsofenergytransitions” byBashmakov2007:“thelawofstablelongtermenergycoststoincomeratio;thelawofimprovingenergy quality;andthelawofgrowingenergyproductivity”.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 32

80

Australia 70 China Germany -e/MJ)

2 60 USA World 50 India Switzerland 40 Bangladesh GHGcontent (gCO 30

20 1990 1992 1994 1996 1998 2000

Year Fig.11:Greenhousegascontenttrendsofseveralcountries(energyrelatedcarbondioxide emissionsperprimaryenergyuse;WorldResourcesInstitute2006). Plotted againstper capita figures for 2002 (Fig. 12), the carbon content reveals a classical invertedUUUKuznetsform 20 .Inthisview,thedecarbonisationofenergyuseisaconsequence ofincreasingwealth,bringingaboutincreasinguseofrenewableandlowcarbonsources.As withKuznets’initialhypothesisaboutincomeequality(Kuznets1955),carboncontentsare settoincreaseduringtheinitialstagesofdevelopment,buteventuallydeclineascountries havecompletedtheirtransitionstoaffluentsocieties.

90

80

70 -e/MJ) 2 60

50

40

30

20 2

GHGcontent CO (g g = -5E-08 GDP + 0.0018 GDP + 44.25 10 R 2 = 0.10 0 0 10,000 20,000 30,000 40,000 50,000

GDP per capita (2000US$/cap) Fig.12:Percapitagreenhousegascontentin2002(energyrelatedcarbondioxideemissions per2000$US)bycountry(WorldResourcesInstitute2006).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 33

2.3.2 Agriculture, forestry, and forest conversion Enteric fermentation in livestock and animal manure are major global sources of CH 4 and N2O.Intheirreportingguidelines,theTaskForceonNationalGreenhouseGasInventories 1996oftheIntergovernmentalPanelonClimateChange(IPCC)providesacalculationrecipe fornationalemissionsfromthesesources,whichisbasedonthenumberoflivestock,and regionandclimatespecificemissionfactors.Inthisworkweattempttoforecastlivestock numbersbasedonpopulationanddemand,andconvertto greenhouse gasesfollowingthe IPCCprocedures.Accordingly,wedistinguishbeefcattle,dairycattle,sheep,goats,pigsand poultry,andsevendifferentanimalwastemanagementsystems. Emissionsfromlandusechangesoccurwhenlandis clearedforagriculture:theremoved biomassispartlyimmediatelyburnedorpartlydecaysovermany years,andthedisturbed soilemanatesCO 2over20yearsorso.Thesesourcesarepossiblytheleastunderstoodand mostuncertainofall.Inthisworkweattempttomodelonlyforestandgrasslandconversion, which causes CO 2 emissions during burning of aboveground biomass, delayed decay of abovegroundbiomassover10years,anddelayedbelowgroundexponentialreleasesofsoil carbonover20years.Today,themainclearingactivitiesoccurintropicalareas. Finally,plantationsandmanagedforeststakeupCO2throughharvestingoftimberfornon fuel uses. Here we estimate CO 2sequestration ofcommercialandnoncommercial forests basedonannualvolumetricincrements,acarbonfractionof50%drymatter,andconversion ratesofbetween0.9and1.0tonnesdrymatterpercubicmetrecommercialroundwood(Task ForceonNationalGreenhouseGasInventories1996). 2.4 Greenhousegasemissionsandtemperatureincrease Theemissionofgreenhousegasescausesglobalwarmingthroughbuildingupatmospheric concentrations,andresultingincreaseinradiativeforcing,whichinturnhasadelayedeffect on global temperature rise. This is a complex causal chain that involves many nonlinear and/or feedback effects, which Global Circulation Models aim to capture. A workable EcologicalFootprintmethodwouldbenefitnotonlyfromasimplificationofthesemodels, butalsofromaformulationthatcouldisolatetheeffectofaparticular“parcel”ofgreenhouse gasemissionsataparticularpointintimeonfuturetemperaturechanges.Thisisexactlywhat theauthorsoftheBrazilianproposaltotheIPCC(FederativeRepublicofBrazil1997)hadin mindwhentheyarguedthattheresponsibilityofcountriesforclimatechangeshouldnotbe measured as contributions to greenhouse gas emissions, but as contributions to global warming. Measured as such, developed countries would have to shoulder additional responsibility for historical emissions, because these greenhouse gases have resided in the atmosphere for much longer than more recent emissions from developing countries, thus causingmoreradiativeforcing. Inordertobeabletoquantifythecontributionsofsinglecountriestoglobalwarming,the effectofemittingentitiesontemperaturechangeshastobeapproximatedbyformulatinga separableemissionstemperaturerelationship(MeiraandMiguez2000)byimposingaddition

invariance as T(G1 + G2 ,t) = T(G1,t)+ T(G2 ,t). While this approximation ignores non linearities, the authors argue that it represents a fairer “policymaker model” than the conventionalGlobalWarmingPotentials,becauseitadequatelyreflectstemporaleffects(see

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 34

Rosa and Schaeffer 1993; 1995). Following the separability condition above leads to a simplified mathematical expression linking greenhouse gas emissions and temperature increase(seeSection3.1). 2.5 Temperatureincreaseandbioproductivity Future climate change will directly affect the productivity of both natural and agricultural ecosystems (path 13). There are many factors involved leading to changes in different directions,dependingontheregion(IPCCWorkingGroup II2007). Increasedagricultural yields can be expected through warmer days and nights in colder environments, whereas yieldsandbioproductivityingeneralarelikelyorverylikelytodecreasethroughheatwaves, droughts,fire,soilerosion,flooding,extremeweathereventsorsalinisation. Changesintemperatureandprecipitationregimesaswellasdirecteffectsofgreenhousegas emissions through CO 2 fertilisation are recognised as the major drivers of changes in ecosystem productivity. However, their relative role and strength are still debated and unclear,inparticularwhenvegetationclimatefeedbacksareconsidered(Fung et al. 2005). Dataonobservedpastandmodeledfuturechangesinproductivityindicatethatbothdirection andsizeofthiseffectarelikelytovarygreatlybetweenregions:regionsnotlimitedbywater availability have experienced an increase of forestproductivityinthepast(Boisvenueand Running2006)andarelikelytoexperienceanincreaseinnetprimaryproductivity (NPP) with increasing temperatures in the future (Thuiller et al. 2006; Morales et al. 2007) in regionslimitedbywateravailability,productivity islikelytodecrease, potentiallymaking ecosystemsintheseregionscarbonsources(Fung et al. 2005;Morales et al. 2007). Despiteregionaldifferences,netbiomeproductivityislikelytoincreaseattheglobalscale (Gitay et al. 2002).Globalecosystemnetprimaryproductivityispredictedtoincreasebyca. 40% (average of six global vegetation models) between 2000 and 2100 for a projected temperature increase of about 3.9ºC over the same period (Cramer et al. 2001).Usingten regionalclimatemodels,Morales et al. 2007predictanaverageincreaseinNPPofca.18% foraprojectedtemperatureincreaseofca.4.6ºCinEurope’secosystemsbetweenthe1961 1990andthe20712100period.Ewert et al. 2005estimatea30%increaseincropyieldsif present CO 2 concentrations were doubled. These ecosystemwide, largescale studies use models of the potential distribution of natural ecosystems and biomes to assess future changesinproductivity andtheirresultsarethereforeonlyoflimiteduseforestimatesof changeinproductivityinagriculturalsystems. ItisvalidtoassumethatifNPPisprojectedtoincreaseforallvegetationtypes,itisalso likelytoincreaseforcrops.Agriculturalyieldhasindeedsteadilyincreasedoverthelast50 years or so but it is likely that not only climate change and CO 2 fertilisation but also socioeconomicaswellasagriculturalandotherlandusefactorshavecausedthistrend(Long et al. 2006; Ewert et al. ; Long et al. 2007). The Fourth Assessment Report of the IPCC (IPCCWorkingGroupII2007)concludesthatglobally,thepotentialforfoodproductionis projected to increase with increases in local average temperature over a range of 13°C. Commercialtimberproductivityisalsoprojectedtorisemodestlywithclimatechangeinthe shorttomediumterm,withlargeregionalvariabilityaroundtheglobaltrend.However,the assessment report also concludes that above 3°C production is projected to decrease. At

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 35 lowerlatitudes,especiallyseasonallydryandtropicalregions,cropproductivityisprojected todecreaseforevensmalllocaltemperatureincreases(12°C)duetoheatanddrought. 27 Amultipleregressionanalysisofthedataprovidedby(Morales et al. 2007)suggeststhata 1ºC temperature increase alone accounts for a 3% increase in productivity. The very comprehensivestudyonglobalestimatesforprojected(20002100)NPPusingsixdifferent vegetation models (Cramer et al. 2001)suggestsanevenhigherincreaseofabout10% in NPPper1ºCtemperaturerise.InSection3,weuseacompromiseofthetwostudiesasa workingequationinthisworkanddefinealinearrelationshipofthedp/p–d T/Tcoefficient todecreasefrom6%at0.5ºCtemperatureanomalyto0at3ºCtemperatureanomaly. 2.6 Temperatureincreaseandbiodiversity Climateistheultimatedriverofspeciesdistributionsandspeciesdiversitypatternsatlarge spatial scales. Species persist in climatic conditions in which they can establish viable populationsgivenotherconstrainingfactorssuchasnutrientavailability,disturbanceregimes and biotic interactions. The geographic distributions of species, species assemblages and species diversity has shifted under changing climates in the past. There is already ample evidence(Hickling et al. 2006;Menzel et al. 2006)forrecentrangeshiftsandphenological changes in a large number of taxonomic groups and regions. These changes in species occurrenceandperformancewillultimatelyleadnotonlytochangesinbiodiversitybutalso tofunctionalshiftsandrelatedchangestoecosystemservices.Underthevalidassumption thatclimateisoneofthemaindriversofspeciesdistributions,itisclearthatfutureclimate change will affect species distributions. Currently recognised biomes and centres of high speciesdiversityareprojectedtobeatriskfrom land use and climate change (Sala et al. 2000;MA2005). Currentestimatesoffutureextinctionratesunderclimatechangeoftenemploythespecies area relationship to assess species loss as a function of change in projected climatically suitableareaperspeciesdirectly( et al. 2004;Thuiller et al. 2005)orasafunctionof change in projected biome area (Malcolm et al. 2006; van Vuuren et al. 2006). The uncertainties and shortcomings associated with these approaches are now widely acknowledged(PearsonandDawson2003;Hampe2004;GuisanandThuiller2005;Araújo andRahbek2006;Dormann2007);theyincludeamongothers:i)disequilibriumofcurrent vegetationandclimate.ii)limitedknowledgeofindividualspeciesbehaviour(, dispersal, biotic interactions), iii) unknown species response curves. In addition to these uncertaintiesassociatedwithfutureprojectionsofspeciesdistributions,therelativerolesof 27 InitsFourthAssessmentReport,theIPCCWorkingGroupII2007writes“Cropproductivityisprojectedto increaseslightlyatmidtohighlatitudesforlocalmeantemperatureincreasesofupto13Cdependingonthe crop,andthendecreasebeyondthatinsomeregions(5.4)…Atlowerlatitudes,especiallyseasonallydryand tropicalregions,cropproductivityisprojectedtodecreaseforevensmalllocaltemperatureincreases(12C), whichwouldincreaseriskofhunger(5.4)...Globally,thepotentialforfoodproductionisprojectedtoincrease withincreasesinlocalaveragetemperatureoverarangeof13C,butabovethisitisprojectedtodecrease(5.4, 5.ES)…Adaptationssuchasalteredcultivarsandplantingtimesallowlowand mid tohighlatitudecereal yieldstobemaintainedatorabovebaselineyieldsformodestwarming(5.5)…Increasesinthefrequencyof droughtsandfloodsareprojectedtoaffectlocalproductionnegatively,especiallyinsubsistencesectorsatlow latitudes (5.4, 5.ES) … Globally, commercial timber productivity rises modestly with climate change in the shorttomediumterm,withlargeregionalvariabilityaroundtheglobaltrend(5.4)…Regionalchangesinthe distribution and production of particular fish species are expected due to continued warming, with adverse effectsprojectedforaquacultureandfisheries(5.4.6).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 36 past vs. current climate and ecological vs. evolutionary factors in explaining largescale diversity patterns is still unclear (Kreft and Jetz 2007; Rahbek et al. 2007). This further complicates the formulation of current climatediversity relationships and resulting future projectionsofdiversitychangeunderclimatechange. Analternativeapproachforquantifyinglevelsofrisktobiodiversityunderclimatechangeis toquantifythemagnitudeandgeographicshiftsin climate space and relate these shifts to biodiversity information directly. This approach has the potential to offer biologically meaningfulriskassessmentoflargeareaswhilepotentiallycuttingoutsomeofthesourcesof uncertainty described above. The rationale underlyingthisapproachistheassumptionthat speciesoccurringatalocationareadaptedtotheclimaticconditionsofthatlocation.Ifthese conditionschangeinthefuture,thespecieswilleitheri)havetoadapttothenewconditions, ii) disperse and migrate in order to find otherareas with climate conditions analogous to thosetheyareusedto,oriii)goextinctfromthatlocation.Underthisreasoning,theriskto biodiversityatalocationishighifthefutureclimateconditionsarefaroutsidetheircurrent boundsandifthereisnooronlysmallareaswith analogous climate conditions to which species could potentially migrate too. These measures of climate risk have recently been quantifiedforEurope(Ohlemüller et al. 2006)andglobally(Williams et al. 2007). Here we suggest a way of how such climate risk surfaces might potentially be used to quantifyfuturerisktobiodiversity.BasedonWilliams et al. 2007(Fig.4B,p.5741),we deriveagenericglobalrelationshipbetweenprojectedchangesinglobaltemperatureandthe percentagegloballandareawithdisappearingclimatesby2100.Followingwellestablished speciesareaapproaches,wethentranslatelossesinclimaticallyanalogousareaintoexpected lossesinspeciesrichness.Assumingthat15%oftheglobalterrestrialareawithdisappearing climatesundera2ºCtemperatureincreaseequatestoathreatto15%oftheearth'sspecieswe inferaglobaltemperaturespeciesthreatrelationshipas S=(0.268* T)–0.137,thatisa1ºC temperatureincreasewillleadto13.1%oftheworld'slandareatohaveaclimatethatis outsidecurrentconditions,therebypotentiallythreatening13.1%oftheworld'sspecies.This is a bold assumption given the uneven distribution of both climate disappearance and biodiversity:Mostoftheclimatedisappearanceseemstooccurinbiodiversityhotspots(see mapsinWilliamsetal.2007).Nevertheless,ourestimateisalsoinlinewiththeIPCCFourth Assessment Report on impacts of climate change (IPCC Working Group II 2007) that concludesthatapproximately2030%ofplantandanimalspeciesassessedsofararelikelyto beatincreasedriskofextinctionifincreasesinglobalaveragetemperatureexceed1.52.5ºC. Our approach makes a number of assumptions which should be kept in mind when interpreting the results. Firstly it assumes that all change is bad for species living at a location.Inreality,somespeciesmayactuallybenefitfromchangingclimateconditionsat locationswheretheycurrentlyare.Secondly,asappliedhere,weassumeuniformchangesin disappearingclimatesacrosstheearth’slandmasses.Thisisclearlynotthecase(Williams et al. 2007)andestimatesshouldpreferablybecalculatedatgridcellorcountrylevel.Keeping thisinmind,webelievethatourapproachcangivesomeindicationastohowmuchand whichareasonEarthwillfacehighlevelsofrisksfromshiftsinclimatespaceandassociated risksforbiodiversity. 2.7 Biodiversityandbioproductivity

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 37

Thereisstrongevidencefromexperimentalstudiesthatincreasesinplantdiversityleadto greaterproductivity (path 8/9,Naeem et al. 1994;Naeem et al. 1995; Tilman et al. 1996; Tilman et al. 1997a;Tilman et al. 2001b).Oneofthebetterknownreferencessupportingthis view is probably Naeem et al. 1999,whoconcludethat“plantproductionmaydecline as regional and local diversity declines; ecosystem resistance to environmental perturbations, suchasdrought,maybelessenedasbiodiversityisreduced;ecosystemprocessessuchassoil nitrogenlevels,wateruse,plantbioproductivity,andpestanddisease cyclesbecomemore variable as diversity declines”. These authors also confirm that “biodiversity declines are alreadypronouncedinmanyareas,especiallywherenaturalecosystemshavebeenconverted tocroplands,timberplantations,aquacultureandothermanagedecosystems”.Withregardto distinguishingpaths8and9inFig.1theywrite:“Determiningwhetherbiodiversityperseis important to ecosystem functioning has been difficult, partly because many of the factors suchashabitatconversionthatreducelocalbiodiversityalsodirectlyaffectmanyecological processes,maskingthemoresubtleimpactsofspecieslossonfunctioning”.Separatingthe biodiversity effect out from other effects requires monitoring species diversity and productivityin–generallysmallscale–fieldexperiments.Interestingly,thisreferenceisalso oneofthemoreheavilycriticized(Naeem2000;Tilman2000;Wardle et al. 2000). Hector et al. 1999 found significant reductions in above ground plant biomass with reductionsinplantspeciesandfunctionaldiversity in a grassland experiment. The authors foundevidenceforalinearrelationshipbetweenproductivity andthenaturallogarithmof plantspecies,leadingtoaruleofthumbthathalvingspeciesdiversityleadstoa10%to20% reduction in productivity (Tilman 1999). Costanza et al. 2007 also found evidence for a strong positive relationship between biodiversity and net primary productivity in North Americanecosystems,butonlyathightemperatures(13ºCaverage).Inthehightemperature range,biodiversity explained26%ofthevariation innetprimaryproductivityanda10% change in biodiversity corresponded to a 1.73% change in productivity (Costanza et al. 2007). Increases in species or functional richness have also been shown to increase stability in productivity (McNaughton 1977; 1993) and resistance to drought (Tilman and Downing 1994). However, many of these findings have been heavily debated on experimental and statistical grounds (Guterman 2000; Hector et al. 2000; Huston et al. 2000). A major criticismofsuchstudiesisthatthemethodofrandomspeciesadditionorremovaltypically useddonotmimicnaturalorhumaninducedspecieslossoradditionandthereforehavevery little biological relevance (Huston et al. 2000). Evidence for increased productivity with increased diversity is contrary to observations in nature where the most productive ecosystems are often low in species diversity (Huston 1994, Grime 2001). Variations in productivityataglobalscalearedrivenbyvariationinresourcesratherthandifferencesin species diversity (Huston 1994). High plant diversity may in fact be a response to high productivityratherthanthecauseofit. Understandingthemechanismsbehindobservedproductivitypatternsisatthecentreofthe debate. Loreau et al. 2001 grouped these mechanisms into two main classes. Firstly, processessuchasnichedifferentiationandfacilitationbetweenplantspecieswhichcanraise productivity beyond that which is achieved when species are grown alone. Differences in resourcerequirementsbyspeciesandpositiveinteractionsbetweenthem(Mulder et al. 2001) isthoughttoallowmanyspeciestocoexistandleadtogreaterproductivityathigherdiversity levels (Tilman et al. 1997b). Alternatively, stochastic processes involved in community assembly may have a dominant role. During experimental studies, random sampling of

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 38 specieswithinplotscanrepresentthesestochasticprocesses.Samplingofhighlydominant speciescanresultinincreasedprimaryproduction(Huston1997).Inthiscase,increasesin productivity are not driven by increases in diversity per se, but rather by the increased likelihood of sampling highly productive species (Aarssen 1997, Wardle 1999). Despite debateregardinguncertaintiesinmethodologyitisclearthatbiodiversityservesanimportant roleinbufferingecosystemproductivityagainstharmfulchanges.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 39

3 Analyticalmethodsanddatasources 3.1 Temporalanalysis A temporal analysis of pathways 1, 2, 4, 5/9, 12/14 and 15 in Fig. 1 was carried out as specifiedbythefollowingsystemofequations 28 : & Population: P = ρ P P (1) & Percapitaconsumption(GNE): y = ρ y y (2) Percapitagrossoutput(GNT): x = (I − A)−1 y (3) r r r & ∇p = p + ∇ S p + ∇T p Agriculturalproductivity(yield): (4) p ˆ −1 = ρ Lp +ηt +ηS pS + p()T r r t −r 1990 r r ∇L j = ∇ PL j + ∇ xL j + ∇oL j + ∇ pL j Landuse: (5) ˆ −1 −1 −1 −1 = L j P + L j xˆ + ()ηo −1 L j xˆ + L jpˆ j r r r c 2 CO 2efficiencyofenergyuse: ∇c = c& + ∇ c =η + ∇ (ax + bx + c) (6) x e t −1990 x r r r r r ∇G j=fuel = ∇ PG j + ∇ xG j + ∇eG j + ∇cG j ˆ −1 −1 & −1 = G j P +η g , jG j xˆ + G jc j r r r ˆ −1 −1 Greenhousegasemissions: ∇G j=livestock = ∇ PG j + ∇ xG j = G j P +η g , jG j xˆ (7)

G forestry = − pnat.forest Lnat.forest − pplantation Lplantation t & G LUC = − f LUCΦ f ()()t − t' Lnat.forest t' dt' ∫t o t' −t" t−t' t t'  −  −  σ j β j τ l Temperatureanomaly: T ()t = G ()t"  f e jr  s e τ s  dt"dt' (8) j C ∫ ∫ j ∑ jr ∑τ  −∞− ∞  r  r s  ˆ ˆ −1 Percentageofthreatenedspecies: S = χ(XS)+ ∑λ j L j L + S(T) (9) j 1 ˆ ˆ Biocapacity: B = ∑L jp0 jp (10a) p all j ˆ ˆ B = ∑L jp0 jp (10b) all j 1 ()p ˆ ˆ EcologicalFootprint(production): E = ∑L jp0 jp (11a) p j in use ( p) ˆ ˆ E = ∑L jp0 jp (11b) j in use EcologicalFootprint(consumption): E(c) = q(I − A)−1 y = E( p)xˆ −1 (I − A)−1 y (12) 28 ⋅⋅⋅ Allboldvariablesarevectorsover239countries(seelistinAppendix),a“r ”(dot)ontopofavariable(for exampleś)denotesatemporalderivative,andthegradientsymbol ∇ x standsforthevector{∂/∂ xi}.Ourmodel issimilarinitsstructureandformulationtopreviouslyemployedmodels,forexamplethemoredetailedmicro modelofbiodiversityandlandusebyEppink et al. 2004.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 40

Thissystemofequationscontains: 1. Eqs.1and2are1st orderdifferentialequationsforthestandardexponentialgrowth model with variable growth rates, applied to population P and to percapita consumption yin$PPP/capita.Populationforecasts ρρρPupto2050forevaluatingEq.1 arepublishedbytheU.S.CensusBureau2006.HistoricalGDPgrowth ρρρyratesare availablefromtheUnitedNationsStatisticsDivision2007b.Bothequationsrepresent exogenousdriversintermsoftheentry(pressure)pointinFig.1. 2. Eq.3isthestandardLeontiefquantitymodel(Leontief1986),deducinggrossoutput responses as a result of final consumption changes. x holds gross output (Gross National Turnover) in $PPP/capita; A is the direct requirements matrix of a multi regioninputoutputtableoftheworldeconomy,and Iistheidentitymatrix.Notethat all assumptions of classical inputoutput theory apply, such as absence of capacity constraints,homogeneityofproductionsectors,fixedproductionrecipe,etc. x, Aand y were constructed from data on Gross Domestic Product by country (Central Intelligence Agency 2006) and on international commodity trade (United Nations StatisticsDivision2007a). 3. Agriculturalproductivity(Eq.4)wasmodeledaunitlessindexto2005states,using a)alineartimetrendwithcountryspecificratesρρρLdescribingdecliningproductivity asaresultofongoinglanduse(path15),b)anonlinearsaturatingtimetrendwitha uniform elasticity ηt describing technological improvements over time (exogenous, seeSection2.1.3),c)a ηS–elasticresponsetobiodiversitychanges(path12/14,see Section2.7),andd)alinearestimatefortheeffectofclimatechangeofproductivity (path 13). Yield declines ρρρL and initial states as of 2005 were constructed from country estimates of productivity reductions (land and soil degradation) due to deforestation, , erosion and pollution (GLASOD weights in International Soil Reference and Information Centre (ISRIC) and United Nations EnvironmentProgramme2000). ηtisestimatedinFig.6. ηS=0.173wastakenfrom Costanza et al. 2007, who take nonthreatened species density as a proxy for the biodiversity variable in Tilman 1999. The linear relationship between temperature anomaly T and productivity p was modeled using a dp/p – d T/T coefficient that decreasesfrom6%/ºCat0.5ºCtemperatureanomalyto0at3ºCtemperatureanomaly, which is a compromise between the studies of Morales et al. 2007 (3%/ºC) and Cramer et al. 2001(10%/ºC). 4. Eq. 5 describes requirements of productive land L of type j for populations P producinggrossoutput x,inunitsofhectares,usinganelasticity ηoinordertolink percentagechangesinpercapitagrossoutputtopercentagechangesoflanduse(path 1). L = L is total land use. Increases of productive land come at the cost of ∑ j j unoccupiednonpermanentarableland(assumed50%oftotalnonpermanentlandat 2005),andnaturalforest.Dataon2005landuse Ljoftype jbycountrywassourced fromonlinedatabasesoftheFAOStatisticsDivision(FAOSTAT)2004,andfrom theGlobalForestAssessmentdatabase(FAOStatisticsDivision(FAOSTAT)2001), 29 thelatterrelyingonsatelliteimagery(GlobalLandCoverFacility(GLCF)2002). ηo was taken from Figs. 4 and 5. For countries where recent land clearing rates were available(fromTaskForceonNationalGreenhouseGasInventories1996,Tab.54), ηowasadjustedsoourmodelwouldreproducetheserates.Thisadjustmentleadstoa downward adjustment of ηo for grazing land, and an upward adjustment of ηo for permanent crops, thus naturally reflecting the response of countries facing land 29 Nonarablelandwascalculatedastheremainderoftotallandareaandlandtypes.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 41

limitationsinswitchingfrompasturelivestocktowardsfeedlotandmonogastricsplus associated feedcropproduction.Notethat wehaveignoredtraderesponsestoland limitations,withtheresultthatsomecountries,especiallysmallislandstates,simply “runout”oflandbefore2050. 5. Eq. 6 describes the combined effect c of technological improvements in energy efficiency, and changes in the carbon content of fuels through fuel mix changes, indexedto2005.Forenergyintensities,weusecountryspecificηe–elastictimetrends (modeledfromdatainWorldResourcesInstitute2006,seeFigs.911), andforthe carboncontentweassumeauniformKuznetsrelationshipwithcoefficients a, band c (Fig.12). 6. Eq.7describesemissions Gjofgreenhousegas jforpopulations Pproducinggross output x,inunitsoftonnes(paths2and4).ForCO 2emissionsfromfuelcombustion andCH 4andN 2Oemissionsfromlivestock(entericfermentationandmanure),weuse an elasticity ηg in order to link percentage changes in percapita gross output to percentagechangesinemissions(path2).CO 2sequestrationofcommercialandnon commercial forests is coupled to the land area changes of plantations and natural forest. Within land use changes, we consider CO 2 emissions during land clearing (burning of aboveground biomass, decay of aboveground biomass over 10 years, and belowground exponential releases of soil carbon over 20 years), and model decays and uptakes with convolution integrals containing normalised response functions Φforthevariousprocesses.Initial2000emissionswereconstructedfrom fuel combustion CO 2 data (International Energy Agency 2004), from countrylevel livestock unit numbers by animal type (Livestock Information and Policy Branch 2007),andfromregionspecificemissionfactorsforentericfermentationandmanure, andforforestburning,decayandsoilcarbon(Task Force on National Greenhouse GasInventories1996).ForCH 4andN 2Oemissionsweassumed ηg= ηo,whilefor fuelcombustionFig.8shows ηg(x) =0.963–0.022ln( x).Landusechangefactors fLUC forforestburning,decayandsoilcarbonweretakenfromIPCCGuidelines(Task ForceonNationalGreenhouseGasInventories1996).Landusechangesandforestry source andsink factors wereweightedby country withecosystemtype percentages (World Resources Institute 2005b) in order to account for the type of natural vegetationburnedorsequestering. 7. Eq.8wastakenstraightoutoftheBrazilianproposaltotheIPCC(MeiraandMiguez 2000, Eq. 14). It links the projected global temperature anomaly Tj (in ºC) to emissions Gjofgreenhousegas j. CistheheatcapacityoftheEarth’sclimatesystem, σjisthechangeinradiativeforcingperunitofadditionalconcentrationofgreenhouse gas j, βjistheincreaseintheconcentrationofgreenhouse gas jperunitofannual emissionsofthatgas, rcountsthenumberofatmosphericdecayfractions(weighted fjr )ofthesamegas jwithdifferentlifetimes τjr ,and scountsthenumberofclimate responsefractions(weighted ls)withdifferentlifetimes τs.Eq.8wasevaluatedusing emissionprofilesresultingfromEq.7,aswellas constants taken from Rosa et al. 2004(CO 2),BlasingandSmith2006(CH 4andN 2O),andHoughton et al. 1996(all gases). The average global temperature change resulting from summing Tj over all greenhouse gases j was finally distributed across countries (yielding a vector T) basedonclimatemodelresultsfromCubasch et al. 2001.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 42

8. Eq.9describesthepercentageofthreatenedspecies 30 asafunctionoflandusepattern andthreatenedspeciesinneighbouringcountries(path 5/9), as well as temperature changeduetoglobalwarming(path6/9).Thefirst componenttakestheformof a spatiallagmodel,asusedforexamplebyMcPhersonandNieswiadomy2005;Pandit andLaband2007a;b. χand λiarecharacterisationfactorsforspatialautocorrelation andlanduse. Xisanormalisedadjacencymatrixcontainingpercentagesofshared ˆ −1 borders(CliffandOrd1981),and L j L isthepercentagelandusepattern.Dataon thenumberofthreatenedplants,mammals,birds,reptiles, amphibians and fish ( S) weretakenfromTheIUCNRedListofThreatenedSpecies2006.Threatenedspecies arethoselistedas“CriticallyEndangered”(CR),“Endangered”(EN)or“Vulnerable” (VU). 31 Allspeciesnumberswereconvertedinto percentages, using the number of total species recorded in each of the taxonomic groups, as reported in the World ResourcesInstitute’sBiodiversityOverview(WorldResourcesInstitute2005a)32 .The autoregressioncoefficient χ wastakenfrommultipleregressionanalysesinLenzen et al. 2007b, and characterisation factors λi are an average over LCA studies as documentedinTab.2.Theadjacencymatrix Xwasconstructedbysimplyplacingthe 33 borderlengthinkilometresofeachcountry iwithallitsneighbours jincells Xij . Informationonthelengthofinternationalbordersandcoastlineswastakenfromthe CIA’sWorldFactbook(CentralIntelligenceAgency2006).Thesecond component was estimated by regressing data on relationship between global mean annual warming and the fractional global area with novel and disappearing climates (Williams et al. 2007).Forsimplicityweassumealinearrelationship between the proportionoflandareawithdisappearingclimatesandtheproportionofspeciesat risk.Apowerrelationship( S= Area z)mightbemoreappropriate.Although zvalues canbecalculatedfromcountrylevelinformationonspeciesnumbersandlandarea, theshapeofthespeciesareacurvefordifferenttaxaattheglobalscaleisuncertain. Note that we have added changes in both components, because of a lack of informationontheoverlapoflandusandclimatechangeeffects.

30 Strictly speaking, the species portion we relate to disappearing climates does not adhere to the IUCN definition of a "threatened" species. Our combined measure S is perhaps better termed as "species at risk". However,forthesakeofsimplicity,weretaintheIUCNterm. 31 Thenumberofthreatenedspeciesexcludesintroducedspecies,specieswhosestatusisinsufficientlyknown (categorizedbyIUCNas“datadeficient”),thoseknowntobeextinct,andthoseforwhichstatushasnotbeen assessed(categorizedbyIUCNas“notevaluated”).Speciesareclassifiedasvulnerableorendangeredifthey face a risk of extinction in the wild in the immediate future (critically endangered), in the nearterm (endangered),orinthemediumterm(vulnerable).Threatcategoriesareassignedbasedontotalpopulationsize, distribution,andratesofdecline(TheIUCNRedListofThreatenedSpecies2006).Notethatcetaceansarenot assigned to particular countries except for inshore or coastal species, and are therefore missing from this analysis. Similarly, only vascular plants are considered, only landnesting or –breeding marine species are counted,andmarineturtlesandmostmarinefishareexcluded(cf.NaidooandAdamowicz2001). 32 TheTotalNumberofKnownSpeciesreferstothetotalnumberofaparticulartypeofspeciesinagiven country.Dataonknownmammalsexcludemarinemammals.Dataonknownbirdsincludeonlybirdsthatbreed inthatcountry,notthosethatmigrateorwinterthere.Thenumberofknownplantsincludeshigherplantsonly: fernsandfernallies,conifersandcycads,andfloweringplants.Thenumberofknownspeciesiscollectedbythe UnitedNations(UN)EnvironmentProgrammeWorldConservationMonitoringCentre(UNEPWCMC)froma variety of sources, including, but not limited to, national reports from the Convention on Biodiversity, other nationaldocuments,independentstudies,andothertexts.Dataareupdatedonacontinualbasisastheybecome available;however,updatesvarywidelybycountry.Whilesomecountries(WCMCestimatesabout12)have datathatwereupdatedinthelastsixmonths,otherspeciesestimateshavenotchangedsincethedatawerefirst collectedin1992. 33 A simpler alternative is a binary contiguity matrix, which just contains elements valued 1 for pairs of borderingcountries,and0otherwise.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 43

9. Eq. 10 describes biocapacity as available annual biomass production for human purposes, in units of global hectares (10a) or tonnes (10b), from all land types.

pˆ 0 j holds 2005 yields (in units of t/ha, not indexed) as measured for land type j, derived from data in FAO Statistics Division (FAOSTAT) 2007b, Livestock Information and Policy Branch 2007, FAO Statistics Division (FAOSTAT) 2007c, andFAO2007.Weexpressbiocapacityinglobalhectaresaswellasinphysicalmass units. Conversion between the two proceeds simply by dividing by worldaverage yield p (average over all countries and all land types). The vector p0/ p holds the productofcountryandcropspecificyieldandequivalencefactors(seeWackernagel et al. 2005). 10. TheEcologicalFootprintofproductioninEq.11isasubsetofbiocapacityinEq.10, spanningonlyareasusedbyhumans,thusexcluding natural forest and unoccupied nonpermanent arable land from the sum. Once again, it can be expressed either in global hectares (11a) or tonnes (11b). Note that fisheries are excluded from our analysis.WhileinthestaticEcologicalFootprintmethodfishproteinisaddedasan equivalentofterrestriallivestockbasedprotein,itcannotbeincludedinthesameway inthisdynamicapproach,becausethemagnitudeoffishharvestsdoesnotimpingeon landrequirements. 11. TheEcologicalFootprintofconsumptioninEq.12iscalculatedusingonceagainthe standard Leontief quantity model (Leontief 1986), deducing Ecological Footprint requirements of final consumption levels y. The terms q = E( p)xˆ −1 represent direct Ecological Footprint intensities, while the E( p)xˆ −1 (I − A)−1 are called multiregional Leontiefmultipliers. Ouranalysiswascarriedoutonasetof239countries, which are listed in the Appendix. Differential equations were solved iteratively by using a simple Laspeyrestype finite differencescheme,forexampleforEq.5: ∂L ∂L ∂L ∂L L = L + ij,t P + ij,t p ij,t o + ij,t p ij,t ij,t−1 ∂P ,ti ∂p ,ti ∂o ,ti ∂p ,ti ,ti ,ti ,ti ,ti , (13) Lij,t−1 Lij,t−1 Lij,t−1 = Lij,t−1 + []P,ti − P,ti −1 +η x []x ,ti − x ,ti −1 + []p ,ti − p ,ti −1 P ,ti −1 x ,ti −1 p ,ti −1 orforEq.9: N   −1 S ,ti = χ∑ X ik Sk ,t−1  + ∑λ j L ,tj −2 Lt−2 . (14)  k=1  j 3.2 MonteCarlosimulation ThesensitivityofthesystemofEqs.19withrespecttoparameteruncertaintywastestedby carryingoutaMonteCarlosimulation. 34 Weassumethatstochasticuncertaintyrangescanbe specifiedfor ρρρP, ρρρy,ρρρ L, ηt, ηS, ηo,η e,η c, ηg,j , χ, fLUC ,and λλλ.Standarddeviations σσσρρρ, σσση,etc wereestimatedfromrangesdocumentedintheliterature.250simulationswerecarriedout, 34 SeeBullardandSebald1977;1988;Lenzen2001forfurtherdetails.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 44 whereallparameterswereperturbedstochastically,andthesystemofEqs.112wassolved again.Thistechniqueyieldsabundleofpossiblescenarios,whichareconcentratedarounda mostlikelytrajectory. 3.3 StructuralDecompositionAnalysis StructuralDecompositionAnalysis(SDA)aims atseparatingatimetrendof anaggregate measureintoanumberofinfluencingdrivingforces,whichcanbeacceleratorsorretardants (Dietzenbacher and Los1998;Hoekstra andvanden Bergh 2002). The basic approach to additivestructuraldecompositionsofafunctiony(x1, x2 ,..., xn ) of ndeterminantsisthrough itstotaldifferential ∂y ∂y ∂y dy = dx1 + dx2 + ...+ dxn . (15) ∂x1 ∂x2 ∂xn

Inthemostcommoncase, y(x1, x2 ,..., xn ) = x1 ⋅ x2 ⋅ ...⋅ xn (withthe xibeingscalars,vectorsor matrices),sothat n n n n  n  dy = x dx + x dx + ...+ x dx =  x dx  . (16) ∏ j 1 ∏ j 2 ∏ j n ∑ ∏ j i  j=1, j≠1 j=1, j≠2 j=1, j≠n i=1  j=1, j≠i  Inourcase, yrepresentstheEcologicalFootprintasinEq.9,anditsdeterminants xiare– amongstothers–yields,biodiversity,percapitaconsumption,andpopulation.Inpractice, thereareanumberofvariantsthatsolveEqs.15and16,suchasLaspeyresandDivisiatype decompositions(Ang2004).Inthiswork,weapplyaPaaschetypeadditivedecompositionof theform n  n  y P =  x()()()t+1 x t+1 − x t  . (17) ∑ ∏ j ()i i  i=1  j= ,1 j≠i  Eq.17demonstratestheprincipleofatypicalstructuraldecomposition:The ceteris-paribus n ()()()t+1 t+1 t terms ∏ x j ()xi − xi measuretheeffecton yifonlythedeterminant xichangedatany j= ,1 j≠i one time.35 Like other Laspeyrestype decompositions, Paasche decompositions are never exact, that is the effect on y of simultaneous changes in the xi is contained in residuals y − y P ≠ 0 , also referred to as “joint” or “interaction” terms (Lenzen 2006a, De Bruyn 2000Sec.9.4,andCasler2001p.146–148). 36 35 (1) Forexample,aceterisparibustermfor y=x1x2ofdeterminantx1is x2 x1,where x2staysconstantduring thechangein x1. 36 Thereexistexactdecompositionmethods(DietzenbacherandLos1998;SunandAng2000;Albrecht et al. 2002).However,thesizeabledifferencesbetweenresidualsandceterisparibusterms thatcanoccurbetween differentnonexactdecompositionmethods,suggestsakindofarbitrarinessintryingtoallocatetheseresiduals toanyoneofthedeterminantsinordertoachieveanexactdecomposition.Onemightevenarguethatthereis littletradeoffbetweenthisarbitrarinessandthe“unexplainedness”ofresiduals,andthereforenotmuchgained inpreferringanexactoveranonexactstructuraldecompositionmethod.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 45

3.4 Multiregiontradebalances Inaseriesofstaticanalyses,threatenedspeciesSiandEcologicalFootprints Eiwereallocated to the production ( GDP ) of each country, as well as consumption (Gross National Expenditure, GNE ),exports( X),andimports( M).Tradebalances T= X–Mwereevaluated usingtheNationalAccountingidentity GDP + M= GNE + X.Valuesfor T, X,and Mby country were constructed from data on Gross Domestic Product by country (Central IntelligenceAgency2006)andoninternationalcommoditytrade(UnitedNationsStatistics Division2007a). 3.5 StructuralPathAnalysis Structural Path Analysis (SPA 37 ) were performed on the generalised multiregion input outputsystem,inordertoidentifythemostimportantinternationaltradeflowsintermsof threatenedspeciesandthegapbetweentheEcologicalFootprintandbiocapacity. SPA employs the direct requirements matrix A in order to decompose multiregional multipliers E( p)xˆ −1 (I − A)−1 into contributions from single international supply chains (so called“structuralpaths”),by“unraveling”Eq.12usingtheseriesexpansionoftheLeontief inverse: q( IA)1y= qy + qAy + qA 2y+ qA 3y +…. (18) ExpandingEq.18,theEcologicalFootprintcanbewrittenas(Lenzen2002;2006b) n ()c 2 3 E = yi ∑q j ()δ ji + Aji + (A ) ji + (A ) ji + ... j=1 n  n n n  = yi ∑q j δ ji + Aji + ∑ Ajk Aki + ∑∑ Ajl Alk Aki + ... j=1  k=1 l=1k = 1  n n n n n n = qi yi + ∑q j Aji yi +∑qk ∑ Akj Aji yi + ∑ql ∑ Alk ∑ Akj Aji yi + ..., (19) j=1 k=1j = 1 l=1k=1 j = 1 where i, j, k,and ldenoteindustries,and δij =1if i=jand δij =0otherwise.ThetotalEcological Footprintisthusasumoveradirectfootprint qiyi,occurringincountry iitself,andhigher orderinputpaths.Aninputpathfromcountry jintocountry ioffirstorderisrepresentedbya product qjAji yi,whileaninputpathfromcountry kviacountry jintocountry iisrepresented byaproduct qkAkj Aji yi,andsoon.Foran ncountrytable A,thereare ninputpathsoffirst order, n2pathsofsecondorder,and,ingeneral, nNpathsof Nth order.

37 SPA was introduced into economics and regional science in 1984 as a general decomposition approach (Crama et al. 1984;DefournyandThorbecke1984),andlaterappliedinlifecycleassessmentby(Treloar1997; Lenzen2002;LenzenandTreloar2002).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 46

4 ForecastingtheEcologicalFootprintofNations Theanalyticaloutcomeswillbepresentedinacausalchainthatlooksfirstattheacceptability oftheemissionsandglobalchangepartoftheframeworkandthenatlandusechange,the footprintandbiocapacitychangesduetopopulationgrowthandeconomicgrowth,theeffect ofthesedrivingforcesonspecieslossbycountry,theeffectofworldtradeandfinallyatthe biocapacityEcologicalFootprint gap, and the rate of its closure. In these result areas, the structuralrelationshipsofthecomplexinterrelateddatasetwillbeexploredusingstructural pathandstructuraldecompositionanalyses.Duetouncertaintiesincurrentandfuturedata, MonteCarlo analysis is performed to provide an idea of the uncertainty of the global outcomes. 4.1 Climateanalysis BeforeproceedingwithlanduseandEcologicalFootprintanalyses,wecheckedtheresultsof ourclimateprojectionsagainsthistoricalmeasurementspublishedintheliterature(Fig.13). Inordertorealisticallyforecastfuturegreenhousegasconcentrations,a300yearhistoryof emissions (back to preindustrial times) is required because of the long residence time of CO 2. Similarly, in order to forecast temperature, a 300year history of greenhouse gas concentrations is required. Our simplified model of CO 2 emissions reflects well historical emissions (Houghton 2003; Marland et al. 2006), especially for the more recent period between1970 and2005(left graphinFig.13).However, our bottomup analysis of CH 4 emissionsfromlivestockreproducesonly80%ofemissionsreportedbySternandKaufmann 1998.Morerecentestimates(Lassey2007 )appeartoconfirmourlowerfigureofaround80 MtCH 4.

100 600 3000 1.6 CO2 (degrC) CH4 (Mt) CO2 (ppm) CO2 (Gt) CH4 (degrC) 500 CH4(ppb) 80 1.2 N2O (degrC) N2O (Mt) N2O (ppb) 2400 Total SRES A Proj 400 60 1800 0.8 300 40 1200 0.4 Emissions 200 Temperature anomaly Concentration(ppb) 20 Concentration(ppm) 600 100 0.0

0 0 0 -0.4 1750 1800 1850 1900 1950 2000 2050 1750 1800 1850 1900 1950 2000 2050 1750 1800 1850 1900 1950 2000 2050 Year Year Year Fig.13:Greenhousegasemissions,concentrations,andtemperatureanomaliesresultingfrom evaluatingtheBrazilianproposalinEq.8(thicksolidlines),historicalmeasurements (dottedlinesandcircles),andprojections(thinsolidlines). EvaluatingEq.8withtheseemissionsprofiles(middlegraph)reproducesthemagnitudeof available – albeit short – concentration measurements, from the Mauna Loa Observatory (dotted grey line, CO 2,KeelingandWhorf2005),andfromtheCSIROMacquarie Island

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 47

Sampling Station (dotted green line, CH 4, Steele et al. 2003). Similarly, temperature anomaliescomputedbyNASA(Hansen et al. 2006)arereasonablywellreproduced(dotted orangeline,rightgraph).Giventheuncertaintiesofremainingelementsinouranalysis,we feelthattheaccuracyofthemodeledclimateparametersissufficient. AcceptingthebroadreproducibilityofhistoricalclimatetrendsasdocumentedinFig.13,the model predicts global greenhouse gas emissions from fuel combustion, land use change, forestry,andlivestocktomorethandoublefromabout30GtCO 2ein2005toabout80Gt CO 2ein2050.ThisincreaseismainlyduetoincreasesinCO 2resultingfromthecombustion offossilfuels,withthemaincontributionsfromNorthAmericaandAsia(Fig.14).Major contributionsfromlandusechangesinLatinAmerica,AfricaandAsiaareprojectedtopeak around 2030 (see next Section). Our projections are in reasonable agreement with SRES marker scenarios of the type A (Fig. 13, left graph, thin solid grey lines, after IntergovernmentalPanelonClimateChange2000a). 38

90 90

-e) Oceania

80 2 80 70 Oceania 70 Asia

60 Asia 60 50 50 Africa Africa 40 40 Europe 30 Europe 30 Latin America 20 Latin America 20

emissions from energy use (Gt) 10 10 2 North America Greenhouse gas emissions (Gt CO North America

CO - - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.14:ProjectedCO 2emissionsfromfossilfuelcombustion,andCO 2equivalentemissions fromfuelcombustion,landusechange,forestry,andlivestock.

38 AccordingtotheIntergovernmentalPanelonClimateChange2000b,“theA1storylineandscenariofamily describes a future world of very rapid economic growth, global population that peaks in midcentury and declinesthereafter,andtherapidintroductionofnewandmoreefficienttechnologies.Majorunderlyingthemes are convergence among regions, capacity building and increased cultural and social interactions, with a substantialreductioninregionaldifferencesinpercapitaincome.TheA1scenariofamilydevelopsintothree groupsthatdescribealternativedirectionsoftechnologicalchangeintheenergysystem.ThethreeA1groups aredistinguishedbytheirtechnologicalemphasis:fossilintensive(A1FI),nonfossilenergysources(A1T),ora balanceacrossallsources(A1B)(wherebalancedisdefinedasnotrelyingtooheavilyononeparticularenergy source,ontheassumptionthatsimilarimprovementratesapplytoallenergysupplyandendusetechnologies). […]TheA2storylineandscenariofamilydescribesaveryheterogeneousworld.Theunderlyingthemeisself relianceandpreservationoflocalidentities.Fertilitypatternsacrossregionsconvergeveryslowly,whichresults incontinuouslyincreasingpopulation.Economicdevelopmentisprimarilyregionallyorientedandpercapita economicgrowthandtechnologicalchangearemorefragmentedandslowerthaninotherstorylines.”

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 48

4.2 AnalysisofEcologicalFootprintsandtheirdrivers Resultsfortheglobearepresentedinfourgraphs(seeFig.15fortheworldlevel):Thetop twographsrepresentdrivers,andthebottomtwovariousrepresentationsofbiocapacityand theEcologicalFootprint.Clockwisefromtopleft,theyare:1)landusepattern(in%oftotal, topleft),2)selectedvariablesfromEqs.19(population,percapitaGNE,productivity, % threatenedspecies,and greenhouse gas emissions,top right), 3) total Ecological Footprint andbiocapacity(inunitsof“2005Earth’s”),andgapbetweenthem(inmillionsof2005gha, bottomleft),and4)percapitabiocapacityandEcologicalFootprint(inunitsofgha,2005gha, andtonnes,bottomright).

World Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 90.0 Natural forest 80.0 1.8 80% Non-permanent, 70.0 -e) unoccupied 1.6 2 60.0 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 50.0 Plantations 1.2 40.0 40% Permanent 30.0 Landpattern use 1.0 pasture Species [ 2005

20.0 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 10.0

Built land - 0% 0.6 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.0 2.4 1.6 700 Ef (gha/cap) 0.9 2.2 600 Bc (2005gha/cap) 0.8 1.4 Ef (2005gha/cap) 2.0 500 0.7 Bc (t/cap) 1.8 1.2 0.6 Ef t/cap) 400 0.5 1.6

300 Biocapacity & Ef (gha/cap) 1.0 0.4 [ [ Bc(2005) = 1 ] 1.4 200 0.3 1.2 0.8 0.2 Biocapacity & Ecological Footprint

100 Bc-EF Gapgha) (million 2005gha, 1.0 0.1 0.6 - - 0.8 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.15:Aggregationoftemporalanalysesofallcountries. BasedontheparametrisationofEqs.19,theagriculturalandbuiltlandscapeisprojectedto expandfromroughly50%oftotalterrestrialareatoabout60%in2050,atthecostofunused nonpermanentarableland(assumedtobe50%ofallnonpermanentarablelandin2005),

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 49 andnaturalforest(Fig. 15,topleft). 39 Thislanduseexpansionisunderpinnedbyaworld populationgrowingby50%,andbymorethandoublingpersonalwealth,thuscontinuingthe trendsinFigs.2and3.Ourforecastsforcropandpasturelandareonlyslightly(11%and 4%,respectively)belowforecastsbyTilman et al. 2001a.40 Incomparison,productivityincreasesonlybyabout15%,whichisthecombinedresultof improvedtechnology(Fig.6),landdegradation(InternationalSoilReferenceandInformation Centre(ISRIC)andUnitedNationsEnvironmentProgramme2000),biodiversitydecline,and a1.5ºCwarmingeffect.Weestimatethelattercomponenttocauseanincreaseinproductivity ofnomorethan10%,whichisatthelowerendofestimatesbyRounsevell et al. 2005(+12 ±3%).Notethedisproportionallyhighincreaseinnonpermanentland,whichisaresultofa shift from grazing to feedlot production. Without this shift, the area under human appropriation would have grown more in line with population and percapita affluence. Worldwide,morethan30%ofspeciesareprojectedtobethreatenedby2050,whichisa10 foldincreaseassumingnounderreportingin2005(topright). Inunison,alltrendsleadtoasignificant(≈30%)increaseintheEcologicalFootprint(through increasedappropriationofbioproductivity)aswellasinbiocapacity(throughconversionof lowyieldforestandunusednonpermanentarableland,bottomleft).Thegraphshowstotal biocapacityandtheEcologicalFootprintindexedto2005biocapacity,orin“2005”. 41 For2005,wemeasuretheworld’sEcologicalFootprintasabout5.1billionglobalhectares (orabout7Gigatonnes),whichamountsto0.8globalhectarespercapita(orabout1t/cap), compared to its biocapacity as 5.7 billion gha (7.8 Gt), or 0.9 gha/cap (1.2 t/cap). The differencebetweenthetwo(the“gap”)representsunusedavailablebioproductivity.In2005 itmeasuresjustover600milliongha(about850Mt)andhenceconstitutesabout10%oftotal biocapacity.Duringtheperiod20052050itisprojectedtodecreasebyabout90milliongha (or 150 Mt), or about 1520% of 2005 gap width. Note that both biocapacity and the Ecological Footprint can be measured either in global hectares (Eqs. 10a and 11a) or as tonnesofvegetables,grains,milk,meat,timber,etc(Eqs.10band11b).42 The conversion betweentonnesandglobalhectaresproceedsimplythroughdividingbyworldaverageyield. Displayedpercapita,biocapacityandtheEcologicalFootprintdecrease,nomatterwhether theyareexpressedintonnes,globalhectares,or2005constantglobalhectares.Thedecrease intonnespercapitaisequivalenttothedecreaseinconstantglobalhectares,andbasically portraysagrowingworldpopulationthathastomakedowithanevershrinkingallotmentof spaceandproductiveoutputforeachindividual.Whenshowninactualglobalhectaresper capita,thisdecreaseisaccentuatedbya15%yieldincreaseovertheanalysisperiod. InFig.15,unsustainablesocietiesdemandmorethancanberegenerated,causingnarrowing biocapacityEcologicalFootprintgaps,thatis,shrinkingunusedbioproductivityreserves.A 39 Note that we ignore structural effects in domestic production recipes and diets, world trade, as well as geographicandlegalrestrictionstolandoccupation. 40 Tilman et al. 2001a(p.282)writesthat“becauseoftheexponential nature of past global population and economicgrowth,wehadanticipatedexponentialtemporaltrendsforthese[land]variables.Surprisingly,each wasalinear[…]functionoftime[…].”Thisworkconfirmsthequasilineartrendofagriculturallandexpansion, andexplainsthiswiththesublinearrelationshipofagriculturaloutputwitheconomicgrowth(Section2.1.2). 41 IndexingtooneparticularyeardepictsEcologicalFootprintsinconstantterms,justasGDPorothereconomic measurescanbeexpressedinconstantprices(seeGlobalFootprintNetwork2006). 42 Notethatwemeasurepastureyieldsaslivestock(liveweight)yields,andnotasforageyields,becausethe former are documented by more extensive data than the latter. For biocapacityEcologicalFootprint comparisons,thiscircumstancedoesnotmatter.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 50 sustainablesituationwouldhavesocietiesnotdemandingmorethancanberegenerated,so thatthebiocapacityandEcologicalFootprintcurvesinFig.15wouldrunatleastparallel. The gap width between biocapacity and the Ecological Footprint can be interpreted as a measureofriskunderpotentialfutureproductiondeclinesand/ordemandincreases.Whether expressed in absolute or percapita terms, the biocapacityEcologicalFootprint gap is experiencingacontinuousclosure(seeSection4.3). Note that in a dynamic view, the appropriation of bioproductivity due to greenhouse gas emissionshastooccuratthetimeofclimatechange,andnotatthetimeofemission,because atthetimeofemission,bioproductivityisyetunaffected.Thisisakeydifferencetothestatic approach(Wackernagel et al. 2005)whichaddstheareaneededtosequesterglobalemissions on top of the actually appropriated land area, and thus creates , no matter that emissionsareactuallynotsequestered(Wackernagel et al. 2002).Thisovershootdoeshence not refer to the current world (as this world is functioning), but refers to a condition for emissionscompensationthatisnotmetinreality,orinotherwordsa“borrowingonnatural capital” (Wackernagel et al. 1999). Such an overshoot variable is not in any causal relationshipwithdrivervariablessuchaslanduse.Inatemporallyexplicit,dynamicmethod therecannotbeatanytimemorelandusedthanavailable,butinsteadovershootmanifests itself in converging biocapacityEcologicalFootprintcurves,whichisavividindicatorfor the fact that today’s greenhouse gas emissions will have a delayed effect on future bioproductivity.Intheaboveanalogy,“thedebtappearsovertime”,andadynamicmethod showsuplikelytrajectories. AconsequenceofassessinggreenhousegasemissionsatthetimeoftheirimpactisthatFig. 15refersto actualland only.Howeverour results are in good agreement with the results published by the Global Footprint Network (GFN) 43 . Adding grazing land, crop land and harvestedforest 44 ,theGFNshowsapercapitaEcologicalFootprintcurvethatdecreasesasin Fig.15(bottomright),andstatesa2003globalEcologicalFootprintofabout1gha/cap. 4.2.1 Regional analyses FutureprojectionsasinFig.15varysignificantlybetweenworldregions(Figs.16and17):In NorthAmericaandEurope,agriculturallandisnotanymorereplacingnaturalecosystemsat significantscales(becauseofincreasingyieldsandshiftingtofeedlots),percapitaaffluence isincreasingatmoderaterates,andpopulationcurvesare“flatteningout”.Biodiversityisstill decliningbecauseofglobalclimatechange,howevertheseregionsareabletomaintainthe gap between biocapacity and the Ecological Footprint (Fig. 16). Oceania occupies a somewhat intermediate position between North AmericaandEuropeononehand,andthe suiteofcontinentsinFig.17ontheother.LatinAmerica,AfricaandtoalesserextentAsia are likely to feature high degrees of land conversion and associated biodiversity decline necessary for meeting the demand for bioproductivity. Thus in a territorial sense, the biocapacitystocksofNorthAmerica,Europemayimprovebecausetheterritorialpressureis replacedbyimports,whicharesourcedgenerallyfromdevelopingcountrieswithremaining naturalvegetation. 43 http://www.footprintnetwork.org/gfn_sub.php?content=global_footprint (Fig.3). 44 Weexcludefishinggroundssincewehavenotassessedtheindirecteffectsbetweenfisheriesandterrestrial landrequirements.Wecountbuiltlandalwaysasnonproductive,butwesubtractlandtransformedfromforest oragriculturallandintobuiltlandfrombiocapacity.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 51

North America Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 18.0 Natural forest 16.0 1.8 80% Non-permanent, 14.0 -e)

unoccupied 2 1.6 12.0 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 10.0 Plantations 1.2 8.0 40% 6.0 Landpattern use Permanent 1.0 pasture Species [ 2005

4.0 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 2.0

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.6 700 4.0 9.2 Ef (gha/cap) 600 3.5 Bc (2005gha/cap) 1.4 8.2 Ef (2005gha/cap) 3.0 500 Bc (t/cap) 7.2 1.2 2.5 400 Ef t/cap)

2.0 6.2 300 Biocapacity & Ef (gha/cap) 1.0

[ [ Bc(2005) = 1 ] 1.5 5.2 200 1.0 0.8 Biocapacity & Ecological Footprint

100 Bc-EFGap (milliongha) 2005gha, 4.2 0.5

0.6 - Biocapacity & Ef (t/cap) - 3.2 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.16a:FuturechangeinNorthAmerica.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 52

Europe Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 9.0 Natural forest 8.0 1.8 80% Non-permanent, 7.0 -e)

unoccupied 2 1.6 6.0 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 5.0 Plantations 1.2 4.0 40% 3.0

Landpattern use Permanent 1.0 pasture Species [ 2005

2.0 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 1.0

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) 2.1 Bc (gha/cap) 1.6 700 4.7 Ef (gha/cap)

600 1.8 Bc (2005gha/cap) 1.4 4.2 Ef (2005gha/cap) 500 1.5 Bc (t/cap) 3.7 1.2 400 1.2 Ef t/cap)

3.2 300 Biocapacity & Ef (gha/cap) 1.0 0.9 [ [ Bc(2005) = 1 ] 2.7 200 0.6 0.8 Biocapacity & Ecological Footprint

100 Bc-EF Gap (milliongha) 2005gha, 0.3 2.2

0.6 - - 1.7 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.16b:FuturechangeinEurope.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 53

Oceania Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 1.8 Natural forest 1.6 1.8 80% Non-permanent, 1.4 -e)

unoccupied 2 1.6 1.2 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 1.0 Plantations 1.2 0.8 40% Permanent 0.6 Land pattern use 1.0 pasture Species [ 2005

0.4 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 0.2

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.6 700 12.3 4.9 Ef (gha/cap)

600 10.9 Bc (2005gha/cap) 1.4 4.2 Ef (2005gha/cap) 500 Bc (t/cap) 3.5 9.5 1.2 Ef t/cap) 400 2.8 8.1

300 Biocapacity & Ef (gha/cap) 1.0 2.1 [ [ Bc(2005) = 1 ] 6.7 200 1.4 0.8 Biocapacity & Ecological Footprint

100 Bc-EF Gap(million gha) 2005gha, 5.3 0.7

0.6 - - 3.9 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.16c:FuturechangeinOceania.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 54

Latin America Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 9.0 Natural forest 8.0 1.8 80% Non-permanent, 7.0 -e)

unoccupied 2 1.6 6.0 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 5.0 Plantations 1.2 4.0 40% 3.0

Landpattern use Permanent 1.0 pasture Species [ 2005

2.0 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 1.0

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.6 700 2.0 4.5 Ef (gha/cap) 1.8 600 Bc (2005gha/cap) 1.4 1.6 4.0 Ef (2005gha/cap) 500 1.4 Bc (t/cap) 3.5 1.2 1.2 400 Ef t/cap) 1.0 3.0 300 Biocapacity & Ef (gha/cap) 1.0 0.8 [ [ Bc(2005) = 1 ] 200 0.6 2.5

0.8 0.4 Biocapacity & Ecological Footprint 100 Bc-EF Gap(million gha) 2005gha, 2.0 0.2 0.6 - - 1.5 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.17a:FuturechangeinLatinAmerica.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 55

Africa Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 8.0 Natural forest

1.8 7.0 80% Non-permanent,

6.0 -e)

unoccupied 2 1.6

Non-permanent, 5.0 GLASOD ] 60% IUCN ] = occupied = 1.4 Plantations 4.0 1.2 40% 3.0

Landpattern use Permanent 1.0 pasture Species [ 2005 2.0 GHG emissions (Gt CO

20% Permanent crops Productivity [ 2005 Population & GNE Index [ 2005 = 1 ] 0.8 1.0

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.6 700 0.5 1.3 Ef (gha/cap) 0.5 1.2 600 Bc (2005gha/cap) 1.4 0.4 1.1 Ef (2005gha/cap) 500 0.4 1.0 Bc (t/cap) 1.2 0.3 Ef t/cap) 400 0.9 0.3 300 Biocapacity & Ef (gha/cap) 0.8 1.0 0.2 [ [ Bc(2005) = 1 ] 0.7 200 0.2 0.8 0.6 0.1 Biocapacity & Ecological Footprint

100 Bc-EF Gap(million gha) 2005gha, 0.1 0.5 0.6 - - 0.4 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.17b:FuturechangeinAfrica.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 56

Asia Population Per-capita GNE Biodiversity Productivity GHG emissions 100% 2.0 45.0 Natural forest 40.0 1.8 80% Non-permanent, 35.0 -e)

unoccupied 2 1.6 30.0 Non-permanent, GLASOD ] 60% IUCN ] = occupied = 1.4 25.0 Plantations 1.2 20.0 40% Permanent 15.0 Land pattern use 1.0 pasture Species [ 2005

10.0 GHG emissions (Gt CO 20% Permanent crops Productivity [ 2005

Population & GNE Index [ 2005 = 1 ] 0.8 5.0

Built land 0% 0.6 - 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Biocapacity Ecological Footprint Gap (2005 gha) Gap (gha) Bc (gha/cap) 1.6 700 0.6 1.5 Ef (gha/cap) 0.6 1.4 600 0.5 Bc (2005gha/cap) 1.4 1.3 0.5 Ef (2005gha/cap) 500 1.2 0.4 Bc (t/cap) 1.2 1.1 Ef t/cap) 400 0.4 0.3 1.0

300 Biocapacity & Ef (gha/cap) 1.0 0.3 0.9 [ [ Bc(2005) = 1 ] 0.2 200 0.8 0.2 0.8 0.7 Biocapacity & Ecological Footprint

100 Bc-EF Gap(million gha) 2005gha, 0.1 0.1 0.6 0.6 - - 0.5 Biocapacity & Ef (t/cap) 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.17c:FuturechangeinAsia.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 57

EspeciallyinLatinAmericaandAfricathesituationlooksworrying:Supportedbystrong population growth, agricultural expansion is eating into natural systems at elevated rates, adding significant localised biodiversity threats to the overall threat from climate change. ThesetrendscauseanacceleratedclosureofthebiocapacityEcologicalFootprintgap,which initsmagnitudeoutstripsthegapexpansionsonothercontinents. ItisinterestingtocomparetheseresultswiththoseobtainedinaforecastbyvanVuurenand Bouwman2005.TheseauthorsusetheIMAGEmodelforthespatialassessmentoflanduse andcover,whichincludesCO 2feedbackonproductivity,butexcludinglanddegradationand biodiversityeffects(paths2,412and14inFig.1).Italsoincludesworldtrade,however only“onelayerdeep”andnotrepresentedbyafullinputoutputsystem.VanVuurenand Bouwman2005showthatunderanA1scenario 38 ,percapitaGDPgrowsbetween2%and 4% annually (in agreement with Fig. 2), and the world percapita Ecological Footprint decreases by about 0.2 gha (in agreement with Fig. 15).VanVuurenandBouwman2005 reportregionalvariationsbetween0.5and3gha/capforthelandcomponent,whichagrees wellwithourresultsinFigs.16and17. Inouranalysis,permanentcroplandandnonpermanentarablelandissettoincreasebyabout 25% by 2050 in developing countries, and by less than 5% in developed countries. This findingisingoodagreementwithvaluesprojectedfor2050byRosegrantandRingler1997 (p. 406) and Balmford et al. 2005.However,ouranalysisdoesnotnecessarilyagree with othermoredetailedandspatiallyfocusedanalysescurrentlyintheliterature:ForEuropewe estimate a decrease in agricultural land between 1%and4%,andanincreaseinforestof above1%.WhilethesignofthesetrendsagreeswithRounsevell et al. 2005andRounsevell et al. 2006,themagnitudeofchangesinthelatterauthors’assessmentisaboutafactorof23 higher. For example, land use scenarios published for Europe as part of global change investigations(Ewert et al. 2005;Rounsevell et al. 2005)seelargerreductionsinagriculture thatthecurrentanalyseswepresent.Inparticular,Rounsevell et al. 2006seearangeof7 10%reductionseachforcropandpasturelandwithincreasesof58%increasesinlandthatis surplusorusedforproduction.Ontheotherhand,vanVuurenandBouwman2005 seegloballand(aswellastotallandbasedEcologicalFootprint)underhumanuseexpand from5.2Ghain2005toalmost7Ghain2050,whileouranalysisconcludesatslightlyabove 6Ghain2050. Partofthedifferenceisprobablythesemanticsofclassification,aslandforbiofuelcouldbe used as intensively as crop or pastureland particularly if it is given to switchgrass or Miscanthus production. As such it may pose a similar homogenisation threat to species biodiversity as does pasture for domestic animals, but probably less so than annually ploughed cropland. The key difference between the studies is the assumptions on the technological trajectory of crop yields. Ours are more guarded and assume a gradual plateauingofpurelygeneticgainaround2030whereasthoseofBalmford et al. 2005project linear extensions from the last 40 years to give a doubling of today’s yields by 2050. Elsewhere we note our reticence on linear projections from the past because we question mankind’scontinuingabilitytorelyonpesticidesandfertilisers,andwhethercheapnitrogen fertiliserfromnaturalgaswillbeasavailableafterthemid2020swhentheoilpeakmayhave passed,andthegaspeakmaybeuponus.Additionally,Rounsevell et al. 2006noteintheir discussion that the process of extensification and transition to organic agriculture is well underway in Europe because of people’s concern about the health effects of intensive agriculture and its downstream effects on soil toxification and water pollution. A more

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 58 extensiveagriculturewithlessinputsmightbekinderonbiodiversity,butitmightrequire evenmoreland,oratleastitmightnotsaveland. Finallyweestimatebuiltlandtoincreasebyabout3millionhectaresannually,whichismuch 1 higher than /2 million hectares annually estimated for urban land only by Rosegrant and Ringler 1997, but may be explained by additional built land in nonurban settlements, transportinfrastructure,andmines. 4.3 StructuralDecompositionAnalysis Itisinterestingtofurtherquerytheclosingofthebiocapacity–EcologicalFootprintgap(90 million gha (or 150 Mt) reduction between 2005 and 2050), by using Structural DecompositionAnalysis.Ourresults(Fig.18)supporttheprojectionsinFig.15byshowing uppopulationandaffluencegrowthasmajor(negative)contributionstothereductioninthe biocapacity–EcologicalFootprintgap,contributingareductionofabout50milliongha(or 80Mt)each.Astimeproceeds,thesereductionsareincreasinglyexacerbatedbybiodiversity effects,whichreach70milliongha(120Mt)by2050.Thisishardlysurprisingsince“the currenthumaninducedmassextinctionmaybeofthesameorderofmagnitudeasthefive other major extinction episodes which destroyed between 20 and 96 percent of existing speciesontheplanet”(Gowdy2000,p.25).Thecombinationoftheseclosingforcescannot beoffsetbyyieldincreasesandtheCO 2fertilisationeffectofclimatechange.Ifweassume gapclosingratesofaround5millionghaperyear(510Mt/year,dependingonyield)forthe periodfollowing2050,thenitisunlikelythattheworldwillbebioproductivityconstrained beforetheturnofthecentury(compareRosegrantandRingler1997).However,bythen,the gap would have shrunk to less than half of its 2005 size, and with the cessation of CO 2 fertilisation, biophysical limits could be reached within the first half of the 22 nd century. Similarly,populationandaffluencegrowthareidentifiedbyvanVuurenandBouwman2005 asthemainnegativedrivingfactorsfortheglobalEcologicalFootprint. 100 150

gha) 100 6 50 Yield increase 50 (technology) 0 Interaction term 0

-50 -50 Yield decrease (degradation) -100 -100 -150 Population growth -200 -150 Per-capita GDP -250 growth Change in Biocapacity - EF gap (10 -200 ChangeBiocapacity in - EF gap (Mt) -300 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045 Year Year Fig.18:DecompositionofthebiocapacityEcologicalFootprintgaptrendinFig.15(in millionsofglobalhectares,left,ormillionsoftonnes,right).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 59

The blue areas in Fig. 18 represent an interaction term, which covers the combined and synergisticeffectsofallvariables(seeLenzen2006a,DeBruyn2000Sec.9.4,andCasler 2001p.146–148).Anexampleforasynergisticeffectistheproductivitylossduetotheeffect of global warming on biodiversity. In the Paasche method used to generate Fig. 18, this overall negative effect appears in both the light blue (climate change) and orange (biodiversity) areas. The interaction term must hence be positive in order to offset this doublecounting. 4.4 MonteCarlosimulation ConsideringthesignificantuncertaintiesassociatedwithsomeoftheparametersinEqs.1– 12,itisobviousthatourresultshavetobequalifiedbyarealisticassessmentoferrorbounds. Wefirstspecifiedstandarddeviationsforexogenousvariablessuchaspopulationandper capitaGNEandsimulated250trajectoriesin250separateMonteCarloruns(Fig.19toptwo graphs),inordertoreproducefuturerangesspecifiedintheliterature.Then,inourMonte Carlo simulation of Eqs. 1–12, these deviations propagate through to dependent variables such as productivity, land use, emissions, temperature, biodiversity, and the Ecological Footprint(Fig.19remaininggraphs).Witheachsubsequentmodelingstep,overallscenario uncertaintyisinfluencedbytwoeffects:First,itcanincreaseasmoreuncertainparameters areincluded.Second,itcandecreasebecauseopposingstochasticperturbationsinasumover manycountriescanceleachotherout.ThisisreflectedinFig.19bythedifferentlyshaped “cones”,or“fans”. A mere reporting of numbers may instill a false sense of accuracy, and in this light, uncertainty assessment such as the one in this work are essential for decisionmaking. Identifyingapreferenceforoneoftwoormorepolicyoptions,forexample,onthebasisof their Ecological Footprint (endpoint) may be impossible on statistical grounds (failing hypothesis tests), however a multicriteria comparison based on more certain midpoint indicatorssuchaslanduseandgreenhousegasemissionsmayprovefeasible(see Lenzen 2005). InourMonteCarloanalysis,populationandpercapitaGDP–thetwoexogenousvariables inEqs.112–arevariedinawaytoreproducethevariabilitypublishedintheliterature.Per capitaGDPisprobablymorevolatilethantherelativelyinertworldpopulation,resultingina widercone.However,bothconesarestrictlyincreasingovertime,andtheyear2050islikely tofeatureapopulationof9billion,generatingonaveragearound$9,000PPPeach.Future productivity is harder again to predict, with a host of underlying factors such as land degradation, the biodiversityproductivity relationship, fertilizer inputs, and future technology. Wehavevariedproductivityparameterstoanextentthatallowsbothslightoveralldecreases and substantial (up to 50%) gains (compare Ewert et al. 2005; Rounsevell et al. 2005). Depending on the productivity outcome, land resources in form of natural forests and grasslands may experience a slight recovery (in caseofsubstantialproductivityincreases), butmorelikelya510%decrease.Influencedbythecombinedforcesoflandconversionand climatechange,about2040%ofspeciesareprojectedtobeunderthreatsby2050.Inunison, allprocessesareestimatedtoleadtoanarrowingofthebiocapacityEcologicalFootprintgap from600billionghatoaround450billiongha.Thesmallnumberoftrajectoriesforecasting anincreaseinthegapresultonlyifproductivitycanincreaseby50%orthereabouts.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 60

12 16000 14000 10 12000 8 10000 6 8000 6000 4 4000

Population (billion) 2

Per-capita GNE ($PPP) Per-capita 2000 0 0 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045

1.6 50% 1.5 40% 1.4

1.3 30% 1.2 1.1 20% 1.0 10% 0.9 Naturalforest(%surface) 0.8 0% Productivity (2005 = GLASOD) Productivity (2005 2005 2015 2025 2035 2045 2005 2015 2025 2035 2045

1400 gha) 30% 6 1200 1000 20% 800 600

10% 400 200

Biocapacity-EF gap (10 Biocapacity-EF 0 0% 2005 2015 2025 2035 2045

Threatened species (2005 = IUCN) (2005 species Threatened 2005 2015 2025 2035 2045 Fig.19:MonteCarloanalysisofuncertainties. 4.5 Corporateandothersubnationalapplications IthasalwaysbeentheintentionofEcologicalFootprintpractitionerstoapplytheconceptto examinesubnationalentitiessuchasbusinesses(see for example Lenzen et al. 2003). In comparativeassessments,staticmethodsrunintoproblemsbecausetheycannotcapturethe temporalprofileofthecausalchaininFig.1(Lenzen et al. 2004b).Takeforexampletwo companieswithidenticalgreenhousegasemissionprofilesoversay10 years.Assumethat company 1 acted at the end of each financial year by planting trees to offset their annual carbon footprint, and that company 2 acted after 10 years by planting trees to offset the carbonfootprintoftheentireperiod.Astaticmethodwouldrankthesecompaniesasequally impactingafter10years. Thisignoresthefactthatthegreenhousegasesemittedbycompany2wouldhaveresidedin the atmosphere for much longer than those of company 1, thus creating higher radiative forcing,andcontributingmoretoclimatechange.Similarargumentsapplytohypothetical situations of two companies, with one abating a shortlived impact, say land use and degradation,andwiththeothersimultaneouslyabatingalonglivedimpact,saygreenhouse 7 gasemissions. Finally,becauseofthevastlydifferentatmosphericresidencetimesofCO 2 andCH4,thenotionoflandneededtosequestergreenhouse gasemissions(asCO 2)isnot applicabletoCH 4emissionsunlessatemporalmethodisapplied.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 61

Thedistortionsdescribedabovecanbeovercomebyapplyingatemporalanalysisthatisat leastaslongasthelifetimeofthelongestlivingimpact.ItisstraightforwardtoapplyEqs.1 12 to companies. 45 Of particular benefit is the separability condition imposed during the derivationofEq.8(seeMeiraandMiguez2000),whichenablespartitioningcontributionsto temperatureincreasesamongstemitters.Infact,theoutputoftheentiresysteminEqs.112is separableintomutuallyexclusiveandcollectivelyexhaustivepressurecomponents. Weconstructahypotheticalexampleofapowerplantoperatorfacedwithadecisiontotwice (2008and2028)expandgeneratingcapacitybecauseofincreaseddemand.Weassumethat theoperatorhasaccesstounusedarablelandandforest, and has the choice between two options:a)toclearabout16hectaresoflandfor a renewable energy array, and b) to add boilerandturbinecapacityandstepupfossilfuelcombustion. Weinvestigatetwocases:1)renewablesin2008andfossilexpansionin2028,and2)fossil expansionin2008andrenewablesin2028(Fig.20).Afterthesecond capacityexpansion, both cases are nominally identical from a static point of view, that is a static Ecological Footprintmethodwouldnotfindanypreferencebetweenthetwodecisions.Inthefollowing wewillshowthatthetemporalprofilesofthetwocasestudiesmatter.Wewillignoreany efficiencyimprovements,butwedoassumespatialautocorrelationofspeciesthreatswithin andoutsidetheplantoperator’spremises,byassigningtheplantoperator100hectaresofland locatedbetween,GermanyandLuxembourg,hosting10species. 100% 100% Natural forest 2.0 -e)

80% Non-permanent, 80% 2 unoccupied 1.5 Non-permanent, 60% 60% occupied Plantations 1.0 40% 40% Permanent Case 1 pasture Landpattern use 0.5 Case 2 20% Permanent crops 20% GHG emissions (Mt CO (Mt emissions GHG 0% Built land 0% 0.0 2005 2025 2045 2005 2025 2045 2005 2025 2045 Year Year Year Fig.20:Two casestudiesofahypothetical expansionoflanduseandincreaseofannual greenhousegasemissions,withdifferenttemporalprofiles.Incase1,landclearingfor arenewablearrayprecedesafossilfuelledexpansion,andincase2thesequenceis reversed.Landusepatterns:case1leftgraph,case2middlegraph;100%=100ha. Thetemporalanalysisshowsthatifrenewableswereintroducedfirst,theclearingofforest andconversionofarablelandtounproductivebuiltlandwouldcauseaninitial1.8gha(2.5 tonne)decreaseofbiocapacityonthesiteoftheplant operator (Fig. 21, left graphs, blue area),with0.4gha(0.6tonne)spillovereffects into neighbouring areas (mainly Germany 45 Thisiswiththeexceptionofbiocapacity,whichmaynotbeapplicabletobusinesses.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 62 and Belgium, purple). This would be accompanied by a slow underlying negative contribution (increased footprint) due to global warming from the emissions from land clearing(yellow).Offsitecontributionsrepresenteffectsonallotherregionsexcepttheplant site.TheonsiteEcologicalFootprintiszero,becausewehaveassumedbuiltlandashaving zeroyield,butreplacingproductiveland,whichshowsupasreducedbiopcapacity.Notethat decreasesintheEcologicalFootprintareshownasapositivecontribution,anddecreasesin biocapacity as a negative contribution. The biocapacity trends turn steeper (more rapid decreaseofbiocapacity),andtheemissionstrendisjustabouttoturnpositive(decreaseofthe Ecological Footprint) after 2045, which is due to the delayed biodiversity effect from emissionscommencingin2028.In2050,case1leadstoaclosingoftheglobalbiocapacity EcologicalFootprintgapofabout3gha(4tonnes). Case 2 Case 1 10 1

- 5 - -1 -5 -2 -10 Footprint off-site Footprint off-site Biocapacity off-site -3 Biocapacity off-site -15 Changes in Bc & Ef & inBc Changes (gha)

ChangesinBc(gha) &Ef Biocapacity on-site Biocapacity on-site -4 -20 2005 2025 2045 2005 2025 2045 Year Year

Case 1 Case 2 2 20

- 10

- -2 -10 -4 Footprint off-site -20 Footprint off-site Biocapacity off-site -6 -30 Biocapacity off-site Changes in Bc & Ef (tonnes) Biocapacity on-site Changes in Bc & Ef (tonnes) Biocapacity on-site -8 -40 2005 2025 2045 2005 2025 2045 Year Year Fig.21:Effectofcasestudies1(left)and2(right)onbiocapacityandtheEcological Footprint,inunitsofglobalhectares(top)andtonnes(bottom).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 63

ComparingthetwoleftgraphsinFig.21showsthe effect of using actual global hectares insteadoftonnes.Astheglobalyield p (seeEqs.10and11)increasesduetotechnologyand climate,biocapacityandtheEcologicalFootprintdecrease(topgraph).Thisisdifferentwhen usingmassunitsbecausethesearenotscaledwithglobalaverageyield.Usingconstant,say 2005, global hectares (Global Footprint Network 2006) would show the same profiles as usingtonnes. Case2ismarkedlydifferent:First,onecandiscerntheonandoffsitelandclearingeffects from2028onwards,leadingtoa1.8gha(2.5tonne)decreaseofbioproductivity,justasin 2008incase1.Aboutatthesametime,thecase2emissionsfrom2008onwardsstarttoshow theirdelayedeffectonbiocapacityandtheEcologicalFootprint(bothdecreasingbecauseof fallingglobalyields).Case2terminateswitha2050gapclosingof15gha(about22tonnes). Both decisions would be equivalent only after all effects of both the land clearing and emissionsstepchangesin2008and2028havesubsided.ConsideringthelifetimesofCO 2 fractions,thiswouldtakeseveralcenturies. 4.6 NationalAccounts,tradebalancesandStructuralPathAnalyses InthefollowingtwoSubsections,wewilltaketwo“cuts”atthecausalchainnetworkinFig. 1:Thefirstisatthepressurelevel,examiningcountryrankingsintermsof2005threatened species.Thesecondisattheendpointlevel,examiningtheEcologicalFootprintprojected for 2050. By applying the inputoutput identity E(c) = E( p)xˆ −1 (I − A)−1 y of Ecological Footprints Eprojectedfor2050tothedirectrequirementsmatrix Aoftheworldeconomy, thefinancialaccountsofindividualcountriescanbe‘converted’intophysicalaccounts.For example,inaproductionaccounttheEcologicalFootprintinanyonecountrystandsfor(oris theresultof)thetotaleconomicactivity,orGDP,ofthiscountry.Inasimilarway,imports andexportscanthenbeassignedan‘embodied’EcologicalFootprint,inverymuchthesame wayas‘embodied’emissionscanbeassignedtofinancialtransactions(Foran et al. 2005). AddingthetradebalancetoGDPresultsintheEcologicalFootprintassociatedwiththetotal consumptionofacountry(GNE). 4.6.1 2050 Ecological Footprint Tab.3presentsanexampleforsuchanEcologicalFootprintaccountfor10countries. Thus, production in the Côte d'Ivoire (a large producer of coffee, cocoa beans, and palm oil) directly appropriates 8 million global hectares. Howeveritstradingactivitiesmeansthatit affects1millionghaelsewhere(imports)andhas2millionghaappropriateddomesticallyby trading interactions with other countries (exports). The overall outcome is that domestic consumption requires 7 million gha, with 1 million gha of net exports, making the Côte d'Ivoireanetfootprintexporter.Bycomparison,China’sdomesticeconomyappropriates269 milliongha(GNE),255initsownterritories,42inothercountries,itlosessomeofthemby exporting28,andthusshiftsnet14millionghaofEcologicalFootprintintoothercountries.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 64

Country GDP +Imports −Exports = GNE T Côted'Ivoire 8 1 2 7 1 Cambodia 11 0 1 10 1 Cameroon 10 0 1 9 1 Canada 154 17 41 129 25 CapeVerde 0 0 0 0 0 CaymanIslands 0 0 0 CentralAfricanRepublic 4 0 0 4 0 Chad 2 0 0 2 0 Chile 12 2 3 12 0 China 255 42 28 269 14 Tab.3:Example2050NationalEcologicalFootprintAccounts(millionglobalhectares). Arankedinputoutputanalysisoftheworldeconomy(representedwithonesectorforeach national economy) in terms of the 2050 Ecological Footprint yields clear and interesting results (Tab. 4): Large and/or wealthy and/or productive countries are the world’s major appropriatorsofbioproductivity,simplybecauseoftheirpopulationsize(China,India),the percapita consumption (USA, Canada), and the productivity of local lands for exports (Malaysia,Brazil,Indonesia),respectively.Whileonlyaffluentand/orpopulousnations(such astheUSAGermany,ChinaandJapan)importsomeofthelargestEcologicalFootprintsinto theirborders,thelistofexportersisjoinedbylessaffluentnationssuchasBrazil,Malaysia and Indonesia. The most striking result are probably the net trade balances: Developing countriesintropicalregions–manyofwhichcontainbiodiversityhotspots–useuptheir natural capital for the sake of providing exports destined for the developed world. This analysis underpins previous findings (Wackernagel 2000) about how nations can “live beyondtheirecologicalmeans”byimportingbiocapacityfromabroad.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 65

Rank GDP Imports Exports GNE Tradebalance,top10 Tradebalance,bottom10 1 USA 484 USA 130 Russia 73 USA 581 Russia 65 USA 98 2 Russia 370 Germany 42 Canada 41 Russia 305 Malaysia 32 Germany 27 3 Brazil 260 China 42 Malaysia 38 China 269 Canada 25 Japan 26 4 China 255 Japan 30 USA 32 Brazil 243 Brazil 17 UnitedKingdom 24 5 Indonesia 163 UnitedKingdom 27 China 28 India 157 Indonesia 13 Netherlands 19 6 Canada 154 France 24 Brazil 22 Indonesia 150 Venezuela 10 Italy 17 7 India 147 Italy 22 Indonesia 19 Canada 129 Nigeria 8 Singapore 15 8 Malaysia 89 Netherlands 22 Germany 16 France 77 Sweden 7 Belgium 14 9 Mexico 68 Canada 17 Sweden 14 Germany 75 Congo 5 China 14 10 France 66 Belgium 15 France 13 Mexico 67 Finland 5 HongKong 13 Tab.4:Rankingofcountriesintermsoftheprojected2050EcologicalFootprint(milliongha):territorialproduction(GDP),embodiedintrade (imports,exports),embodiedinconsumption(GNE),aswellastopandbottom10tradebalances.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 66

The Structural Path Analysis of the world’s Ecological Footprint trade paints a similar picture: Thetop30EcologicalFootprinttradeflowsaredepictedinTable5.Ofthetop10 paths,7terminatewithconsumersintheUSA,ofthese7paths,6originateineconomies underdevelopmentorintransition,andofthose6paths,5originateintropicalorsubtropical countries. Paths 10 to 30 mostly repeat this pattern, adding German, Chinese, Japanese, Dutch and Italian consumers, and Russia, Indonesia, Gabon, Congo and the USA as suppliers. Rank Tradeflow Path 1 53.0 Canada>UnitedStatesofAmerica 2 15.2 Mexico>UnitedStatesofAmerica 3 11.7 Malaysia>UnitedStatesofAmerica 4 10.8 China>UnitedStatesofAmerica 5 9.0 Venezuela>UnitedStatesofAmerica 6 8.5 UnitedStatesofAmerica>Canada 7 8.2 Nigeria>UnitedStatesofAmerica 8 7.7 RussianFederation>Areas,nes>India 9 7.3 RussianFederation>Germany 10 6.7 Brazil>UnitedStatesofAmerica 11 6.5 Malaysia>China 12 5.8 RussianFederation>UnitedStatesofAmerica 13 5.5 RussianFederation>China 14 5.4 UnitedStatesofAmerica>Mexico 15 5.4 Indonesia>Japan 16 5.0 RussianFederation>Netherlands 17 4.6 RussianFederation>Italy 18 4.5 Malaysia>Japan 19 4.5 RussianFederation>Ukraine 20 4.5 RussianFederation>Turkey 21 4.1 China>Japan 22 3.7 Indonesia>UnitedStatesofAmerica 23 3.6 Honduras>UnitedStatesofAmerica 24 3.5 Gabon>UnitedStatesofAmerica 25 3.4 Congo>China 26 3.2 RussianFederation>Belarus 27 3.1 RussianFederation>France 28 3.1 UnitedStatesofAmerica>Japan 29 3.0 RussianFederation>Poland 30 2.9 RussianFederation>UnitedKingdom Tab.5:StructuralPathAnalysisofEcologicalFootprintsembodiedinworldtrade.Thepaths aretobeinterpretedas(exampleforRank3)“11.7millionghaareappropriatedin MalaysiaduetotheconsumptionofgoodsandservicesintheUSA”.‘nes’=not elsewherespecified. Notethatpath8isof3rd order,representing7.7millionghasuppliedbyRussiatoIndia,but viaotherareas(notspecifiedintheUNTradeComstatistics).

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 67

4.6.2 2050 Biocapacity – Ecological Footprint gap AninputoutputanalysisoftheBiocapacityEcologicalFootprintgapshowsthatlargeand/or tropical developing countries enjoy the highest gaps between Ecological Footprint and availablebioproductivity,andthereforethelowestrisk(Tab.6).Manyofthesedeveloping countriesusetheirremainderstoexportagriculturaloutputtodevelopedcountriesfacingland constraints(narrowgaps),mostlywithinEurope. AccountsoftherateofclosureoftheBiocapacityEcologicalFootprintgap(Tabs.7and8) can be interpreted for example as follows: “Brazil’s domestic production causes its biocapacityEcologicalFootprint gap to close by 52,000 gha per year. Of these, 4,000 gha/year are destined for exports. Brazil has no significant imports from gapclosing countries,sothatBrazilisanetexporterof4,000 gha/year.” These rates of closure were evaluatedinunitsof2005gha/year,inordertonetoutglobalyieldincreases.Tab.7indicates potential sustainability issues: Many developing countries show rapidly narrowing gaps, often used for exports of agricultural output. These developing nations increase their sustainabilityriskforthesakeofexportingtodevelopednations,whousetheseimportsto substituteenvironmentallyintensiveagriculturalproduction. A selected number of countries such as many European nations (for example because of rehabilitationofnaturalforests,andsubstitution of domestic agriculture with imports) and some former Soviet Republics (for example because of shrinking percapita GDP) enjoy wideninggaps,andexportthesetoother(importing),oftenEuropeanorformerSovietstates (Tab.8).Finally,theUSA,Canadaandotherlargeorindustriousnationsleadthechartof nationsofnetimportersfromcountrieswithsignificantgapclosure.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 68

Rank GDP Imports Exports GNE Tradebalance,top10 Tradebalance,bottom10 1 Brazil 52 USA 15 Canada 11 Brazil 48 Canada 10 USA 14 2 Russia 43 Germany 3 Russia 9 Russia 35 Russia 8 Germany 3 3 Canada 40 China 3 Brazil 4 Canada 31 Brazil 4 China 3 4 USA 12 UnitedKingdom 2 Sweden 3 USA 26 Sweden 3 UnitedKingdom 2 5 Bolivia 10 France 2 Venezuela 2 Bolivia 9 Venezuela 1 Netherlands 2 6 Sweden 8 Netherlands 2 Gabon 1 Australia 7 Gabon 1 Japan 2 7 Australia 8 Italy 2 Australia 1 Congo(Zaïre) 7 Bolivia 1 France 2 8 Congo(Zaïre) 7 Japan 2 Bolivia 1 Guyana 6 Guyana 1 Areas,nes 1 9 Guyana 7 Areas,nes 1 Guyana 1 China 6 Australia 1 Italy 1 10 Peru 4 Belgium 1 Congo 1 Sweden 6 Congo 1 India 1 Tab.6:RankingofcountriesintermsoftheBiocapacityEcologicalFootprintgap(milliongha)projectedfor2050:territorialproduction(GDP), embodiedintrade(imports,exports),embodiedinconsumption(GNE),aswellastopandbottom10tradebalances.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 69

Rank GDP Imports Exports GNE Tradebalance,top10 1 Brazil 342 USA 44 Venezuela 29 Brazil 320 Venezuela 27 2 Bolivia 148 China 15 Brazil 29 Congo(Zaïre) 134 Brazil 22 3 Congo(Zaïre) 138 Japan 8 Gabon 19 Bolivia 132 Gabon 18 4 Venezuela 64 Brazil 7 Bolivia 16 USA 58 Bolivia 16 5 Australia 50 Indonesia 5 Malaysia 8 Indonesia 47 Australia 6 6 Indonesia 47 Korea,South 4 Australia 8 Australia 44 Malaysia 6 7 Myanmar 45 France 4 Indonesia 6 Myanmar 43 Ecuador 5 8 Gabon 42 Argentina 4 Ecuador 5 China 42 Congo(Zaïre) 5 9 Sudan 41 LAIA,nes 4 Congo(Zaïre) 5 Sudan 39 Chad 3 10 China 31 Germany 4 China 3 Venezuela 36 Sudan 3 Tab.7:RankingofcountriesintermsoftheBiocapacityEcologicalFootprintgapclosure(‘0002005gha/year)projectedfor2050:top10in territorialproduction(GDP),embodiedintrade(imports,exports),embodiedinconsumption(GNE),aswellastradebalances. Rank GDP Imports Exports GNE Tradebalance,bottom10 1 Russia 72 Belarus 0.38 Russia 14 Russia 56 USA 43 2 Canada 52 Kazakhstan 0.22 Canada 14 Canada 35 Canada 17 3 Sweden 11 Norway 0.18 Sweden 4 Guyana 9 Russia 15 4 Guyana 11 Lithuania 0.18 Guyana 2 Sweden 7 China 11 5 Namibia 7 Cyprus 0.16 Namibia 1 Namibia 6 Japan 8 6 Ukraine 5 VirginIslands 0.09 Norway 1 Ukraine 4 Sweden 5 7 Georgia 4 Denmark 0.06 Suriname 1 Georgia 4 Korea,South 4 8 Italy 3 0.06 Italy 1 Suriname 2 France 4 9 Suriname 3 Hungary 0.04 Ukraine 0 SerbiaandMontenegro 1 LAIA,nes 4 10 Norway 1 Slovakia 0.04 Georgia 0 Norway 1 Argentina 4 Tab.8:RankingofcountriesintermsoftheBiocapacityEcologicalFootprintgapclosure(‘0002005gha/year)projectedfor2050:bottom10in territorialproduction(GDP),embodiedintrade(imports,exports),embodiedinconsumption(GNE),aswellastradebalances.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 70

TheStructuralPathAnalysisofthegapclosurerates(Tab.9)confirmstheNationalAccounts analyses:Almostallpathsoriginateinheavilyforestedtropicaland/ordevelopingcountries, and terminate in developed countries, thus lending more evidence to a bioproductivity displacement,orglobal“Footprintleakage”hypothesis. TheUnitesStatesoccupies7ofthetop11pathsasaconsumerofimportsfromgapclosing countriessuchasVenezuela,GabonandBrazil.Other significant recipients are China and Japan,withimportsoriginatingalsoinarangeofsmallertropicalnationssuchasEcuador, Congo,Malaysia,andHonduras. Rank Tradeflow Path 1 41.0 Canada>UnitedStatesofAmerica 2 32.1 Venezuela>UnitedStatesofAmerica 3 27.6 Gabon>UnitedStatesofAmerica 4 16.6 Brazil>UnitedStatesofAmerica 5 14.5 Bolivia>Brazil 6 8.4 Venezuela>LAIA,nes>Indonesia 7 6.6 Brazil>Argentina 8 6.0 Brazil>China 9 5.2 Mexico>UnitedStatesofAmerica 10 5.2 Bolivia>UnitedStatesofAmerica 11 5.1 Ecuador>UnitedStatesofAmerica 12 4.9 Venezuela>Areas,nes>India 13 4.4 Australia>Japan 14 4.1 Chad>UnitedStatesofAmerica 15 3.7 Bolivia>Argentina 16 3.4 Brazil>Germany 17 3.3 Congo>China 18 3.3 Sudan>China 19 3.1 Gabon>China 20 3.1 Malaysia>UnitedStatesofAmerica 21 3.0 Australia>China 22 2.9 Brazil>Mexico 23 2.6 Honduras>UnitedStatesofAmerica 24 2.6 Congo>UnitedStatesofAmerica 25 2.6 Brazil>Japan 26 2.4 Bolivia>Colombia 27 2.2 RussianFederation>Areas,nes>India 28 2.2 China>UnitedStatesofAmerica 29 2.2 Gabon>France 30 2.2 Indonesia>Japan Tab. 9: Structural Path Analysis of sustainability in terms of gap closure rates caused by worldtrade.Thepathsaretobeinterpretedas(exampleforRank4)“Brazilcloses its BiocapacityEcologicalFootprint gap at a rate of 16,600 gha/year due to the consumptionofgoodsandservicesintheUSA”.“nes”=notelsewherespecified.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 71

5 Discussion Itmustbeemphasisedthatthepresentstudy–whileaimingtobefactuallyasaccurateand realisticaspossibleinsuchapilotstudy–isreallyaboutprovidingablueprintforamethod. Needlesstosay,thequantitativeresultspresentedinthepreviousSectionsarepreliminary, mainlybecause: – Wehavenotconsideredatallprocessesatafinerspatialdetail.Forexampleweuse global averages for impacts of temperature increase on bioproductivity and biodiversity, whereas in reality these impacts differ widely on regional and local scales,oftenindifferentdirections. – We have ignored social trends such as effects on population growth of entrance of womenintotheworkforceandontoelectoralrolls. InourGDP/capitavariable,we havenotdistinguishedbetweenbenefitialandharmfulcomponentsofGDP,suchasin GenuineProgressIndicators(Hamilton1999). – As a global average, agricultural productivity is predicted to increase with a temperatureincreaseof13°C,anddecreaseabove3°C.Asourforecastendsin2050, andthetemperatureanomalyisbelow2°C,weassumeapositiverelationshipbetween temperatureandproductivitythroughout. – It is doubtful that results from countryscale analyses can be transferred to local scales, and vice versa. For example, experiments linkingbiodiversitywithlanduse andbioproductivityarealmostexclusivelyconductedattheplotorfieldscale,and thereisnosolidindicationfortheirvalidityatlargescales(MattisonandNorris2005, p.612). – 90%ofthevarianceinthegreenhousegascontentisunexplainedbyGDPpercapita (Fig.12).Thisworkcouldgreatlybenefitfromhaving countryspecific energy use andcarbonintensityforecastupto2100insteadofusingaregression. – Ourmultiregioninputoutputanalysisassumes1sectoreconomies. – Ourtemporalanalysisassumessomeparametersasfixedovertime,whichbecomes increasinglyquestionableasthefuturetimeframeincreases.Forexample,aconstant tradepattern Aleavesnoopportunitytoincreasetrade. – We have not modeled any price or other effects that invariably occur once a productionfactorsuchaslandorusefulspeciesbecomesscarce,andthatmayslow downresourcedepletion. – Threatenedspeciesareoftenunderreported,notalltaxahavebeensurveyed,andonly aminorfractionofpotentiallyexistingspeciesaredescribed. – Wehavenotsourcedanydataontheoccupationofnonpermanentarablelands,but insteadassumeda50%occupationin2005.Wehavealsoignoredthefactthatsome naturalareasdisplacedinourmodelbycroporgrazinglandmayinrealitynotbe suitableforagricultureorforestry,becauseofitssteepterrain,soilfertilityetc(see RosegrantandRingler1997p.407). – We have not appraised all paths listed in Fig. 1, and Fig. 1 is not an exhaustive representation of the causal pathways linking human consumption and bioproductivity.Forexample,wehavenotdealtwithimpactsonmarineecosystems andfishstocks,whichcouldbeaccomplishedbyaddingaseparatefisheriesmodule toEqs.112.Wehavealsoignoredarangeofgreenhousegassourcessuchassoil emissions, CFC and HFC used in industrial processes, fugitive emissions, rice growing,cementproduction,etc. – Wehavenotconsideredtheroleofprecipitationchangesforchangesinproductivity asaresultofclimatechange.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 72

– We have not considered some major uncertainty sources, such as uncertainties in climatemodelsinpredictingfuturetemperatureanomalydistributions. – Inourmodel,thereactiontimeofbioproductivityandbiodiversitychangesfollowing landusechangesisessentiallythetimestepofourfinitedifferencescheme,whichis oneyear.Wehaveneitherspecifiedanyrealimpactdelay46 ,lifeorrecoverytimes, nor have we allowed for nonlinearities, irreversibilities 47 , threshold or hysteresis effects 48 ,forexamplethecaseofbiodiversityreestablishingitselfaftercessationof landuseorduringsiterestoration. – We have not modeled any trade responses. As a result, some countries, especially smallislandstates,simply“runout”oflandbefore2050. – Someoftheparametersofthetemporalanalysisarenotwellenoughunderstoodand measured, and thus associated with high or unknown, and nonstochastic uncertainties. Obviously, this analysis would improve if a) GIS or other spatially detailed data were incorporated,b)amultiregion, multi-sector inputoutputanalysiswereemployed(seeTurner et al. 2007,c)morelinkswereincludedandquantifiedinthecausalnetwork,d)existing critical links and parameters were better measured, and e) if more causal pathways were evaluatedinadynamicway.Thelastpointimplies constructing more feedback links, say from bioproductivity to land use (humans reacting to declining bioproductivity by appropriatingevenmoreland),orfrombioproductivitytoconsumption(humanpopulations becomingconstrainedbecauseofdecliningagriculturaloutput). Anothermajoruncertaintyforagriculturallanduseandpopulationgrowthrelatestobiofuel productionforliquidtransportfuels(seeforexampleRounsevell et al. 2006).Respondingto globalchangeconcernsfordevelopedcountrieswillrequirethattransportfuelcyclesbecome essentiallydecarbonised.Expandingethanolproduction,particularlyinBrazilandtheUSA, requires increasing amounts of maize and sugarcane as feedstock, with Brazil particularly beingviewedashavingalmostunlimitedpotential.Ifmovequicklyfromusingfood crops, to second generation methods based on forage cellulose and wood, there may be advantagesforbiodiversityconservationandlandscapereclamationthatcomefromperennial landcoverandlessfrequentlanddisturbance. Finally, there are types of impacts contained in Fig. 1 that can neither be related to, nor expressedasbioproductivitydeclines.AnexampleisposedbyVenetoulisandTalberth2006; VenetoulisandTalberth2007whoremarkthatintheexistingstaticmethod,anydamagecan bedonetononarablelandwithoutitbeingpenalisedinEcologicalFootprintfigures.Impacts to nonarable lands are likely to influence services to humans via other pathways, for examplebyprovidinggenetic“banks”thatmayaidindevelopingdrugsorotherchemicals, or by serving as tourist destinations (Beattie and Ehrlich 2001; Heywood et al. 2007), resilience(Arrow et al. 1995),orevolutionarypotential(Gowdy2000).Moreover,someof themidpointvariables inFig.1 couldbeperceivedasendpointsintheirownright.For example,somespeciesmaynotplayanyrolewhatsoeverinsupportingservicestohumans, buthumansmayplaceexistence,optionsorbequestvaluesonthesespecies(Portney1994; Gowdy2000).SucheffectswillbemissedinanyEcologicalFootprintapproachfocusingjust onbioproductivityasanendpoint:OurStructuralDecompositionAnalysisshowsthatthe positivefertilisationeffectofglobalwarmingonproductivitymayinitiallyandforsometime 46 SeeTilman et al. 1994. 47 SeeGowdy2000,p.35. 48 ComparewithEppink et al. 2004,Footnote2.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 73 well outstrip the negative effects through reduced biodiversity, but land use and warming effects on biodiversity as such are clearly devastating. This confirms that productivity objectives–andthereforetheEcologicalFootprint–areatoddswithbiodiversityobjectives (Lenzen et al. 2007a),andthedynamicEcologicalFootprintproposedherestillhastosolve thisshortcominginordertoavoidbeingrather“unecological”.Onewaytogetaroundthis problemisbyreportingonanumberofincommensurablevariables,ratherthanonlyonone (see the optional aggregation in LifeCycle Impact Assessment), by aggregating using monetisation(Friedrich2004),orbyaggregatingintoaunitlessscoreusingMultiCriteria Decision Analysis (MCDA) methods (Goedkoop and Spriemsma 2001; Hertwich and Hammitt2001;DiakoulakiandGrafakos2004). 6 Conclusions Thisworkhaslaidthefoundationfordesigningadynamic Ecological Footprint approach grounded in ecology. This approach connects some previous Ecological Footprint modificationsthatwereanchoredatdifferentpointsofthecausalnetwork,suchaslanduse (Bicknell et al. 1998;McDonaldandPatterson2003),landdisturbanceandspeciesdiversity (LenzenandMurray2001;2003),andpollution(Peters et al. 2007)totheoriginalEcological Footprintmethodmeasuringbioproductivity(Rees1992;Wackernagel et al. 2005),andhas thusdemonstratedaneffectiveandelegantmeansforunifyingarangeofmethodologiesand objectivesintoonframeworkwhileretainingtheresearchquestionandmetricoftheoriginal approach. Inourpreliminaryanalysiswehavedemonstratedthecapabilityofadynamicapproach,by collating a wide range of global countrylevel data, and applying stateoftheart analytical techniques such as multiregion inputoutput analysis, multiple regression of spatial lag models, temporal climate modeling, MonteCarlo simulation, Structural Decomposition Analysis,andStructuralPathAnalysis.Thesetechniquescanbeappliedtoanyconsuming entity,rangingfromthehouseholdorcompanyscaleuptoregion,States,andcountries.The dynamic approach outlined here is meant to complement the existing, static Ecological Footprint method in that it is aimed at answering the question of how today’s human activitiescontribute,throughtheirparticularlanduseandemissionpatterns,viahabitatand biodiversityloss,andimpairedecosystemfunctioning,tofuturebioproductivitydecline. We have demonstrated that land use and biodiversity are longterm drivers for delayed bioproductivitylosses,justasgreenhousegasemissionsarealongtermdriverfordelayed climatechange.Thus,eventhoughbioproductivityisthequantitythatisultimatelyofinterest tohumans,wehavetomanagelanduseandbiodiversitytodayinordertoavoiddangerous losses of bioproductivity in the future, just as we have started to manage greenhouse gas emissionstodayinordertoavoidpotentiallydangerousfutureclimatechange.Adynamic, causalmethodthusopensupnewpolicyareas amenable to Ecological Footprint analysis, suchastheinvestigationofagriculturalpractices,landdisturbance,orspeciesthreats.Static, endpointmethodsarenotsensitivetowardsthesepressures. Our results show that the biocapacityEcologicalFootprint gap is likely to close by about 20%from2005until2050,andthatwiththecessationofCO 2fertilisationfurtherreductions arelikelytooccuratacceleratedratesof5millionglobalhectaresperyear.Policyhasthe opportunity to curb these certainly bleak perspectives, and a dynamic method such as demonstratedinthisworkisabletogiveguidancetolongtermplanning.Amongstthesuite

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 74 ofpolicyleversareconservationeffortsensuringprotected,diverseandhealthyecosystems,a second “green revolution” in agriculture, intensified energy efficiency gains and decarbonisation of energy use, or education programs addressing population issues in the developingworld,andaffluenceissuesinthedevelopedworld. Inthiscontext,wepromotethedynamicnatureofourmethodologicalinnovation:Theworld is unlikely to run out of bioproductive capacity for human purposes by the turn of the century.Howeverbythen,unlesscorrectiveactionistaken,climatechangeandbiodiversity declines will be well underway at accelerated rates, thus potentially leading to runaway productivity declines. Until then, expanding bioproductivity for human purposes remains fundamentally at odds with biodiversity conservation, and itis the capability to recognise earlywarning drivers of delayed adverse impacts that facilitates the capability of implementingtimelyaction. Finally, we make a few comments on ways to advance the groundwork laid here: Undertakingacomprehensiveanalysisofasystemofpathwaysisnotanewidea:precedents areforexample – theExternEprojectoftheEuropeanCommissionandtheUSDepartmentofEnergy (Rabl and Spadaro 2005), which developed an impact path methodology for the estimationandcomparisonoftheenvironmentalcostofvariousfuelcycles forelectricitygeneration; – theresearchundertakenbytheLifeCycleAssessment(LCA)community,including aninterestingmidpoint/endpointdebate(UdodeHaes et al. 1999;Bare et al. 2000; Hertwich and Hammitt 2001), and ISO Standards (Klüppel 1998; Lecouls 1999; Ryding1999;Marsmann2000); – theIntergovernmentalPanelofClimateChange(IPCC;IntergovernmentalPanelon ClimateChange2007)gatheringevidencefromresearchteamsaroundtheworldon the multiple and complex links within and between the climatic, ecological, and societalsystems. Amongstthethreeprograms,theLCAmovementhasmadesomeinroadsincomingupwith asystematiccharacterisationoflanduseforimpactassessmentpurposes(pathways5and9in Fig.1),butthereisnomandate(suchasintheEcologicalFootprint)tofollowthispathway throughtobioproductivity,andcontrastitwithavailableresources.TheIPCCisconcerned with land use and bioproductivity only to the extent that they connect to greenhouse gas emissionsandclimatechange,forexampleasdriversthroughlandclearing(pathway4),oras degradation and damages (pathways 6, 7 and 13). Thus, while the Ecological Footprint community canandshouldmakeuseofinsightsgainedbyotherprograms,itdoesnotat present,andshouldnotduplicatetheirpurpose. Oneprinciplecommontothethreeprogramsaboveisthatofappraisingscientificresultsonly in conjunction with uncertainty analyses. Both ExternE volumes and IPCC Assessment Reportspresenteithererrormarginsorconediagramsoflikelyrangesforvariablesattached to future scenarios. A dynamic forecasting capability for the Ecological Footprint should followtheseconventions.Itisawellknownfactthatalongwiththeprogressionofnodesina causal pathway analysis, from pressure to state variables, the relevance to humans of the containedinformationincreases,butsodoestheuncertaintyoftheanalysis(seeLenzen2005, and references therein). Uncertainty appraisals fulfill the critical role of demonstrating potential worst or best outcomes, and thus remind decisionmakers of potential risks to hedge.Eventhoughendpointuncertaintieshavebeenlargeenoughtoprohibitquantitative decisionmaking,undertakingssuchastheExternEandIPCCprogrammeshavecontributed

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 75 invaluableinsightstoresearchandpolicyagendas(Krewitt2002).AnextendedEcological Footprintapproachcouldfulfillverymuchthesamefunction. Finally,eachofthethreeinitiativeshavebeenextremelylargescaleintermsoffundingand academicandpolicyinvolvement,withworkinggroupsdealingwithseparateissuesofthe overallgoal.Despitemonumentalefforts,manyofthecomplexrealworldinteractionscould onlybemodeledusingempirical,aggregaterelationships(suchasdoseresponsecurves,see RablandSpadaro1999,orthediversityandbioproductivityelasticitiesusedinthiswork). Thismayononehandexplainwhythepresentanalysiscandeliveronly ablueprintofa frameworkyettocome,andontheotherhanddemonstrate the challenges associated with comingupwithanapproachthatcanprovidedecisionmakerswiththedirelyneededtoolsto judge the impact that today’s policies are likely to have on tomorrow’s resources, environmentandsociety.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 76

Acknowledgements Ralf Ohlemüller is funded by the European Union FP6 Programme ALARM Assessing largescale environmental risks for biodiversity with tested methods (GOCECT2003 506675).MathisWackernagelcontributedvaluablecommentstoanearlierdraftofthisreport. JustinKitzesfromGlobalFootprintNetworksupplieddataonannualtimberharvests.Mark Huijbregtsprovidedvaluablecommentstoafinaldraft. References Aarssen,L.W.(1997).Highproductivityingrasslandecosystems:effectedbyspeciesdiversityorproductive species? Oikos 80,183184. Aarssen,L.W.(2001).Oncorrelationsandcausationsbetweenproductivityandspeciesrichnessinvegetation: predictionsfromhabitatattributes. Basic and Applied Ecology 2,105114. Albrecht, J., François D. and Schoors K. (2002). A Shapley decomposition of carbon emissions without residuals. 30,727736. Allameh,A.,SafamehrA.,MirhadiS.A.,ShivazadM.,RazzaghiAbyanehM.andNaderiA.(2005).Evaluation of biochemical and production parameters of broiler chicks fed ammonia treated aflatoxin contaminatedmaizegrains. Animal Feed Science and Technology 122,289301. Amthor, J.S. and Members of the Ecosystems Working Group (1998). Terrestrial Ecosystem Responses to Global Change: a research strategy .OakRidgeNationalLaboratory,OakRidge,USA. Ang,B.W.(1999).Istheenergyintensityalessusefulindicatorthanthecarbonfactorinthestudyofclimate change? Energy Policy 27(15),943946. Ang,B.W.(2004).Decompositionanalysisforpolicymakinginenergy:whichisthepreferredmethod? Energy Policy 32,11311139. Ang,B.W.andLiuN.(2006).Acrosscountryanalysis of aggregate energy and carbon intensities. Energy Policy 34(15),23982404. Antón,A.,CastellsF.andMonteroJ.I.(2007).Landuseindicatorsinlifecycleassessment.Casestudy:The environmentalimpactofMediterraneangreenhouses.Journal of 15,432438. Araújo,M.B.andRahbekC.(2006).Howdoesclimatechangeaffectbiodiversity? Science 313,13961397. Armsworth, P.R., Kendall B.E. and Davis F.W. (2004). An introduction to biodiversity concepts for environmentaleconomists. Resource and 26,115136. Arrow,K.,BolinB.,CostanzaR.,DasguptaP.,FolkeC.,HollingC.S.,JanssonB.O.,LevinS.,MälerK.G., PerringsC.andPimentelD.(1995).Economicgrowth,carryingcapacityandtheenvironment. Science 268(5210),520521. AsafuAdjaye, J. (2003). Biodiversity loss and economic growth: a crosscountry analysis. Contemporary Economic Policy 21(2),173185. Asner, G.P., Elmore A.J., Olander L.P., Martin R.E. and Harris A.T. (2004). Grazing systems, ecosystem responses,andglobalchange. Annual Review of Environment and Resources 29,261299. Auhagen,A.(1994). Wissenschaftliche Grundlagen zur Berechnung einer Ausgleichsausgabe .ImAuftragder SenatsverwaltungfürStadtentwicklungundUmweltschutzAbt.III,Auhagen&PartnerGmbH,Berlin, Germany. AustralianBureauofAgriculturalandResourceEconomics(2004). Australian Commodity Statistics .ABARE project1059,AustralianGovernment,Canberra,Australia. AustralianBureauofStatistics(2000). 1998-99 Household Expenditure Survey - Detailed Expenditure Items . ABSCatalogueNo.6535.0,AustralianBureauofStatistics,Canberra,Australia. Australian Bureau of Statistics (2004). Australian National Accounts, Input-Output Tables, 1998-99 . ABS CatalogueNo.5209.0,AustralianBureauofStatistics,Canberra,Australia. Ayres,R.U.(2000).Commentaryontheutilityoftheecologicalfootprintconcept. 32, 347349. Baitz, M., Kreißig J. and Schöch C. (1998). Method to integrate land use in Life Cycle Assessment . IKP UniversitätStuttgart,Abt.GanzheitlicheBilanzierung,Stuttgart,Germany. Balmford, A., Green R.E. and Scharlemann J.P.W. (2005). Sparing land for nature: exploring the potential impactofchangesinagriculturalyieldontheareaneededforcropproduction. Global Change Biology 11,15941605.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 77

Bare, J.C., Hofstetter P., Pennington D.W. and Udo de Haes H.A. (2000). Life cycle impact assessment workshop summary. Midpoints versus endpoints: the sacrifice and benefits. International Journal of Life Cycle Assessment 5(6),319326. Barthlott, W., Lauer W. and Placke A. (1996). Global distribution of species diversity in vascular plants: towardsaworldmapofphytodiversity. Erdkunde 50(4),317327. Bashmakov,I.(2007).Threelawsofenergytransition. Energy Policy 35(7),35833594. Beattie, A. and Ehrlich P.R. (2001). Wild Solutions - How Biodiversity is Money in the Bank . Melbourne UniversityPressMelbourne,Australia. Bicknell,K.B.,BallR.J.,CullenR.andBigsbyH.R.(1998).Newmethodologyfortheecologicalfootprintwith anapplicationtotheNewZealandeconomy. Ecological Economics 27(2),149160. Blasing, T.J. and Smith K. (2006). Recent greenhouse gas concentrations . Internet site http://cdiac.ornl.gov/pns/current_ghg.html , Carbon Dioxide Information Analysis Center, Oak Ridge NationalLaboratory,U.S.DepartmentofEnergy,OakRidge,USA. Blonk, H., Lindeijer E. and Broers J. (1997). Towards a methodology for taking physical degradation of ecosystemsintoaccountinLCA. International Journal of Life Cycle Assessment 2(2),9198. Boisvenue,C.andRunningS.W.(2006).Impactsofclimatechangeonnaturalforestproductivityevidence sincethemiddleofthe20thcentury. Global Change Biology 12,862882. Bradford, G.E. (1999). Contributions of animal agriculture to meeting global food demand. Livestock Production Science 59,95112. Bradley,M.andPeterD.(1998). An LCA of the production of a daily newspaper and a weekly magazine. ,Axel SpringerVerlag,STORAandCANFOR,INFRAS,Vancouver,Canada. Brentrup,F.andKüstersJ.(2002).LifeCycleImpactAssessmentoflandusebasedonthehemerobyconcept. International Journal of Life Cycle Assessment 7(6),339348. Browne,J.andHeskeE.(1990).Controlofadesertgrasslandtransitionbyakeystonerodent. Science 250,17051707. Bullard,C.W.andSebaldA.V.(1977).Effectsofparametricuncertaintyandtechnologicalchangeon input outputmodels. Review of Economics and Statistics LIX,7581. Bullard,C.W.andSebaldA.V.(1988).MonteCarlosensitivityanalysisofinputoutputmodels. The Review of Economics and Statistics LXX(4),708712. Casler,S.D.(2001).Interactiontermsandstructuraldecomposition:anapplicationtothedefensecostofoil.In: Lahr, M.L. and Dietzenbacher, E., Eds. Input-Output Analysis: Frontiers and Extensions . Palgrave MacMillan,,UK, 143159. Central Intelligence Agency (2006). The World Factbook . Internet site https:// www.cia.gov/cia/publications/factbook/geos/ , Central Intelligence Agency (CIA), Washington D.C.,USA. Chapin,F.S.,WalkerB.H.,HobbsR.J.,HooperD.U.,LawtonJ.H.,SalaO.E.andTilmanD.(1997).Biotic controloverthefunctioningofecosystems. Science 277,500504. Chapin,F.S.,ZavaletaE.S.,EbinerV.T.,NaylorR.L.,VitousekP.M.,ReynoldsH.L.,HooperD.U.,LavorelS., Sala O.E., Hobbie S.E., Mack M.C. and Diaz S. (2000). Consequences of changing biodiversity. Nature 405,234242. Chen,B.andChenG.Q.(2006).EcologicalfootprintaccountingbasedonemergyAcasestudyoftheChinese society. Ecological Modelling 198,101111. Chen, B. and Chen G.Q. (2007). Modified ecological footprint accounting and analysis based on embodied exergyacasestudyoftheChinesesociety19812001. Ecological Economics 61,355376. Christenesen, N.L., Bartuska A.M., Brown J.H., Carpenter S., D'Antonio C.D., Francis R., Franklin J.F., MacMahonJ.A.,NossR.F.,ParsonsD.J.,PetersonC.H.,TurnerM.G.andWoodmanseeR.G.(1996). The report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management. Ecological Applications 6,665691. Cliff,A.andOrdJ.(1981). Spatial Processes, Models and Applications .PionLondon,UK. Cole, M.A., Rayner A.J. and Bates J.M. (1997). The environmental Kuznets curve: an empirical analysis. Environment and Development Economics 2(4),401416. Conway,G.andToenniessenG.(1999).Feedingtheworldinthetwentyfirstcentury. Nature 402,C55C58. Costanza,R.(2000).Thedynamicsoftheecologicalfootprintconcept. Ecological Economics 32,341345. Costanza,R.,FisherB.,MulderK.,LiuS.andC.T.(2007).Biodiversityandecosystemsrvices:Amultiscale empirical study of the relationship between species richness and net primary production. Ecological Economics 61,478491. Cowell, S.J. (1998). Environmental Life Cycle Assessment of agricultural systems: Integration into decision- making .Ph.D.Dissertation,UniversityofSurrey,Guildford,UK. Crama,Y.,DefournyJ.andGazonJ.(1984).Structuraldecompositionofmultipliersininputoutputorsocial accountingmatrixanalysis. Economie Appliquée 37,215222.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 78

Cramer,W.,BondeauA.,WoodwardF.I.,PrenticeI.C.,BettsR.A.,BrovkinV.,CoxP.M.,FisherV.,Foley J.A.,FriendA.D.,KucharikC.,LomasM.R.,RamankuttyN.,SitchS.,SmithB.,WhiteA.andYoung MollingC.(2001).GlobalresponseofterrestrialecosystemstructureandfunctiontoCO 2andclimate change:resultsfromsixdynamicglobalvegetationmodels. Global Change Biology 7,357373. Cubasch, U., Meehl G.A., Boer G.J., Stouffer R.J., Dix M., Noda A., Senior C.A., Raper S. and Yap K.S. (2001). Projections of Future Climate Change. In: Houghton, J.T., Ed. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. CambridgeUniversityPress,Cambridge,UK. Daily,G.,Ed.(1997). Nature's services. Societal dependence on natural ecosystems .IslandPress,Washington, DC,USA. de Bruyn, S.M. (2000). The Environmental Kuznets Curve hypothesis. In: de Bruyn, S.M., Ed. Economic Growth and the Environment .KluwerAcademicPublishers,Dordrecht,Netherlands, 7798. DeBruyn,S.M.(2000).Decompositionanalysis:atooltoinvestigatetherelationshipbetweenemissionsand income.In:deBruyn,S.M.,Ed. Economic Growth and the Environment .KluwerAcademicPublishers, Dordrecht,Netherlands, 163184. Deacon,R.T.(1994).Deforestationandtheruleoflawinacrosssectionofcountries. Land Economics 70(4), 414430. Defourny,J.andThorbeckeE.(1984).Structuralpath analysis and multiplier decomposition within a social accountingmatrixframework. Economic Journal 94,111136. Delgado, C., Rosegrant M., Steinfeld H., Ehui S. and Courbois C. (2001). Livestock to 2020: the next food revolution. Outlook On Agriculture 30(1),2729. Diakoulaki, D. and Grafakos S., Eds. (2004). Multicriteria Analysis . ExternE of Energy: Extension of accounting framework and Policy Applications. DirectorateGeneral for Research, SustainableEnergySystems,LuxembourgVille,Luxembourg. Dietzenbacher, E. and Los B. (1998). Structural decomposition techniques: sense and sensitivity. Economic Systems Research 10(4),307323. Dormann, C.F. (2007). Promising the future? Global change projections of species distributions. Basic and Applied Ecology ,inpress. EhrhardtMartinez,K.,CrenshawE.M.andJenkinsJ.C.(2002).DeforestationandtheEnvironmentalKuznets Curve:acrossnationalinvestigationofinterveningmechanisms. Social Science Quarterly 83(1),226 243. Ekins, P. (1997). The Kuznets curve for the environment and economic growth: examining the evidence. Environment and Planning A 29(5),805830. Ekvall,T.(1998).LanduseinLCAexistingcharacterizationmethods.In: Cost Action E9 Workshop ,London, UK,ImperialCollege Emmerson, M.C., Solan M., Emes C., Peterson D.M. and Raffaelli D. (2001). Consistent patterns and the idiosyncraticeffectsofbiodiversityinmarineecosystems. Nature 411,7377. Eppink, F.V., Van den Bergh J.C.J.M. and Rietveld P. (2004). Modelling biodiversity and land use: urban growth,agricultureandnatureinawetlandarea. Ecological Economics 51,201216. Ewert,F.,PorterJ.R.andRounsevellM.D.A.(2007).Cropmodels,CO 2,andclimatechange. Science 315,459 460. Ewert,F.,RounsevellM.D.A.,ReginsterI.,MetzgerM.J.andLeemansR.(2005).FuturescenariosofEuropean agricultural land use I. Estimating changes in crop productivity. Agriculture, Ecosystems and Environment 107,101116. FAO (2007). Global Fibre Supply Model (GFSM) . Internet site http://www.fao.org/docrep/006/x0105e/x0105e00.htm , Food and Agriculture Organization of the UnitedNations,Rome,Italy. FAO Statistics Division (FAOSTAT) (2001). Forested Area .GlobalForestResources Assessment2000— Main Report, http://www.fao.org/forestry/fo/fra/index.jsp , Food and Agriculture Organisation of the UnitedNations(FAO),Rome,Italy. FAO Statistics Division (FAOSTAT) (2004). Land Use - 2002 . FAOSTAT online statistical service http://apps.fao.org ,FoodandAgricultureOrganisationoftheUnitedNations(FAO),Rome,Italy. FAO Statistics Division (FAOSTAT) (2007a). Database on Macro-economic Indicators . Internet site http://www.fao.org/statistics/os/macro_eco/default.asp , Food and Agriculture Organization of the UnitedNations,Rome,Italy. FAO Statistics Division (FAOSTAT) (2007b). Harvested area and production quantity . Internet site http://faostat.fao.org/site/336/default.aspx , Food and Agriculture Organization of the United Nations, Rome,Italy.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 79

FAO Statistics Division (FAOSTAT) (2007c). ForeSTAT . Internet site http://faostat.fao.org/site/381/default.aspx , Food and Agriculture Organization of the United Nations, Rome,Italy. Federative Republic of Brazil (1997). Proposed elements of a protocol to the United Nations Framework Conventions on Climate Change, presented by Brazil in response to the Berlin Mandate . Document FCCC/AGBM/1997/MISC.1/Add.3, Internet site http://www.mct.gov.br/clima/ingles/quioto/propbra.htm ,Brasília,Brazil. Felten,P.andGlodS.(1995). Weiterentwicklung ökologischer Indikatoren für die Flächenbeanpruchung und für Lärmwirkungen und Anwendung auf Logistik-Konzepte einer Firma .Semesterarbeit,ETH,Zürich, Switzerland. Ferng, J.J. (2001). Using composition of land multiplier to estimate ecological footprints associated with productionactivity. Ecological Economics 37,159172. Ferng,J.J.(2002).Towardascenarioanalysisframeworkforenergyfootprints. Ecological Economics 40,53 69. Ferng, J.J. (2005). Local sustainable yield and embodied resources in ecological footprint analysis a case studyontherequiredpaddyfieldinTaiwan. Ecological Economics 53,415430. Foran, B., Lenzen M. and Dey C. (2005). Balancing Act - A Account of the Australian Economy .Internetsite http://www.isa.org.usyd.edu.au ,CSIROResourceFuturesandTheUniversityof Sydney,Canberra,ACT,Australia. Foreign Agricultural Service (2004). The Amazon: Brazil's final soybean frontier. Production Estimates and Crop Assessment Division . Internet site http://www.fas.usda.gov/pecad2/highlights/2004/01/Amazon/Amazon_soybeans.htm , United States DepartmentofAgriculture(USDA),WashingtonD.C.,USA. Friedrich, R., Ed. (2004). New Ext - New Elements for the Assessment of External Costs from Energy Technologies, Final Report to the European Commission, DG Research, Technological Development and Demonstration (RTD) . ExternE Externalities of Energy. DirectorateGeneral for Research, SustainableEnergySystems,LuxembourgVille,Luxembourg. Fung, I.Y., Doney S.C., Lindsay K. and John J. (2005). Evolution of carbon sinks in a changing climate. Proceedings Of The National Academy Of Sciences Of The Of America 102,11201 11206. Gao,C.,JiangD.,WangD.andYanJ.(2006).Calculationofecologicalfootprintbasedonmodifiedmethod and quantitative analysis of its impact factors A case study of Shanghai. Chinese Geographical Science 16,306313. Geneletti,D.(2007).Anapproachbasedonspatialmulticriteriaanalysistomapthenatureconservationvalueof agriculturalland. Journal of Environmental Management 83,98105. Gitay, H., Suarez A., Watson R.T. and Dokken D.J., Eds. (2002). Climate Change and Biodiversity - Intergovernmental Panel on Climate Change. Glanznig, A. (1995). Native vegetation clearance, habitat loss and biodiversity decline . Biodiversity Series, Paper No. 6, Department of the Environment, Sport and Territories Biodiversity Unit, Canberra, Australia. GlobalFootprintNetwork(2006). Constant Global Hectares .DiscussionDocumentfortheNationalAccounts Committee,GlobalFootprintNetwork,Oakland,USA. GlobalInternationalWatersAssessment(2006). Challenges to International Waters: Regional Assessments in a Global Perspective . Internet site http://www.giwa.net/publications/finalreport/ , United Nations EnvironmentProgram,Nairobi,Kenya. GlobalLandCoverFacility(GLCF)(2002). Modis Satellite Imagery: Forested Area .MODIS500mVegetation Continuous Fields Percent Tree Cover, http://glcf.umiacs.umd.edu/data/ , University of Maryland, Maryland,USA. Goedkoop, M. and Spriemsma R. (2001). The Eco-indicator 99 - a damage oriented method for Life Cycle Assessment . Internet site http://www.pre.nl/ecoindicator99/ei99reports.htm , PRé Consultants B.V., Amersfort,Netherlands. GovernmentAccountabilityOffice(2007). Crude Oil: Uncertainty about future oil supply makes it important to develop a strategy for addressing a peak and decline in oil production .ReporttoCongressionalOffice Requesters GAO 07293, Internet site http://www.gao.gov/new.items/d07283.pdf , United States GovernmentAccountabilityOffice,WashingtonD.C.,USA. Gowdy,J.M.(2000).Thevalueofbiodiversity:markets,societyandecosystems. Land Economics 73(1),2541. Graus,W.H.J.,VoogtM.andWorrellE.(2007).Internationalcomparisonofenergyefficiencyoffossilpower generation. Energy Policy 35(7),39363951. Grime,J.P.(1997).Biodiversityandecosystemfunction;thedebatedeepens. Science 277,12601261.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 80

Grossman, G.M. and Krueger A.B. (1995). Economic growth and the environment. Quarterly Journal of Economics 110(2),353377. Guisan,A.andThuillerW.(2005).Predictingspeciesdistribution:offeringmorethansimplehabitatmodels. Ecology Letters 8(9931009). Guterman,L.(2000).Haveecologistsoversoldbiodiversity? Chronicle of Higher Education (13October). Hamilton,C.(1999).Thegenuineprogressindicator:methodologicaldevelopmentsandresultsfromAustralia. Ecological Economics 30,1328. Hampe, A. (2004).Bioclimate envelope models: what they detect and what they hide. Global Ecology And 13,469471. Hampicke,U.(1991). Naturschutz-Ökonomie .UlmerStuttgart,Germany. Hansen,J.E.,RuedyR.andLoK.(2006). Global annual temperature anomalies (degrees C) computed from land and ocean data, 1880-2005, NASA GISS Surface Temperature (GISTEMP) Analysis .Internetsite http://cdiac.ornl.gov/trends/temp/hansen/hansen.html , Carbon Dioxide Information Analysis Center, OakRidgeNationalLaboratory,U.S.DepartmentofEnergy,OakRidge,U.S.A. Hector,A.,SchmidB.,BeierkuhnleinC.,CaldeiraM.C.,DiemerM.,DimitrakopoulosP.G.,FinnJ.A.,Freitas H.,GillerP.S.,GoodJ.,HarrisR.,HögbergP.,HussDanellK.,JoshiJ.,JumpponenA.,KörnerC., LeadleyP.W.,LoreauM.,MinnsA.,MulderC.P.H.,O'DonovanG.,OtwayS.J.,PereiraJ.S.,PrinzA., Read D.J., SchererLorenzen M., Schulze E.D., Siamantziouras A.S.D., Spehn E., Terry A.C., Troumbis A.Y., Woodward F.I., Yachi S. and Lawton J.H. (2000). No consistent effect of plant diversityonproductivity:Response. Science 289,1255a. Hector,A.,SchmidB.,BeierkuhnleinC.,CaldeiraM.C.,DiemerM.,DimitrakopoulosP.G.,FinnJ.A.,Freitas H.,GillerP.S.,GoodJ.,HarrisR.,HogbergP.,HussDanellK.,JoshiJ.,JumpponenA.,KornerC., LeadleyP.W.,LoreauM.,MinnsA.,MulderC.P.H.,O'DonovanG.,OtwayS.J.,PereiraJ.S.,PrinzA., Read D.J., SchererLorenzen M., Schulze E.D., Siamantziouras A.S.D., Spehn E.M., Terry A.C., Troumbis A.Y.,WoodwardF.I.,YachiS.andLawtonJ.H. (1999). Plant diversity and productivity experimentsinEuropeangrasslands. Science 286,11231127. Heijungs,R.,GuinéeJ.andHuppesG.(1997). Impact categories for natural resources and land use . CML Report138,CentreofEnvironmentalScience,Leiden,Netherlands. Herendeen,R.(1978).TotalenergycostofhouseholdconsumptioninNorway,1973. Energy 3,615630. Herendeen,R.,FordC.andHannonB.(1981).Energycostofliving,19721973. Energy 6,14331450. Herendeen,R.andTanakaJ.(1976).Energycostofliving. Energy 1,165178. Hertwich, E.G. and Hammitt J.K. (2001). Decisionanalytic framework for impact assessment, Part 2: Midpoints, endpoints and criteria for method development. International Journal of Life Cycle Assessment 6,265272. Heywood,V.,CasasA.,FordLloydB.,KellS.andMaxtedN.(2007).Conservationandsustainableuseofcrop wildrelatives. Agriculture, Ecosystems and Environment (121),245255. Hickling, R., Roy D.B., Hill J.K., Fox R. and Thomas C.D. (2006). The distributions of a wide range of taxonomicgroupsareexpandingpolewards. Global Change Biology 12,450455. Hoekstra,R.andvandenBerghJ.C.J.M.(2002).Structural decomposition analysis of physical flows in the economy. Environmental and Resource Economics 23,357378. Hooper,D.U.,ChapinF.S.,EwelJ.J.,HectorA.,InchaustiP.,LavorelS.,LawtonJ.H.,LodgeD.M.,LoreauM., NaeemS., SchmidB.,SetäläH.,Symstad A.J.,VandermeerJ.andWardleD.A.(2005).Effectsof biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75,335. Houghton, J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenberg A. and Maskell K., Eds. (1996). Climate Change 1995: The Science of Climate Change .IntergovernmentalPanelonClimateChange, Cambridge,UK. Houghton,R.A.(2003). Emissions (and Sinks) of Carbon from Land-Use Change (Estimates of national sources and sinks of carbon resulting from changes in land use, 1950 to 2000) .ReporttotheWorldResources Institute,WoodsHoleResearchCenter,WoodsHole,USA. Huston, A.A. (1994). Biological diversity: The coexistence of species on changing landscape . Cambridge UniversityPressCambridge. Huston, A.A. (1997). Hidden treatments in ecological experiments: reevaluating the ecosystem function of biodiversity. Oecologia 110,449460. Huston, M.A., Aarssen L.W., Austin M.P., Cade B.S., Fridley J.D., Garnier E., Grime J.P., Hodgson J., Lauenroth W.K., Thompson K., Vandermeer J.H. and Wardle D.A. (2000). No consistent effect of plantdiversityonproductivity. Science 289,1255a. Imhoff,M.L.,BounouaL.,RickettsT.,LoucksC.,HarrissR.andLawrenceW.T.(2004).Globalpatternsin humanconsumptionofnetprimaryproductivity. Nature 429,870873.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 81

Intergovernmental Panel on Climate Change (2000a). SRES Marker Scenarios . IPCC Special Report on EmissionScenarios,DataVersion1.1,Internetsite http://sres.ciesin.org/ ,IntergovernmentalPanelon ClimateChange,Geneva,Switzerland. IntergovernmentalPanelonClimateChange(2000b).Emission scenarios: A special report of Working Group III .IntergovernmentalPanelonClimateChange,Geneva,Switzerland. Intergovernmental Panel on Climate Change (2007). IPCC Fourth Assessment Report . Internet site http://www.ipcc.ch/ ,IntergovernmentalPanelonClimateChange,Geneva,Switzerland. International Energy Agency (2004). CO 2 emissions from fuel combustion 1960-2000 - Reference approach . Internetsite http://www.iea.org/w/bookshop/add.aspx?id=36 ,OECD/IEA,Paris,France. International Soil Reference and Information Centre (ISRIC) and United Nations Environment Programme (2000). Global Assessment of Soil Degradation (GLASOD) . IPCC Working Group II (2007). Climate Change Impacts, Adaptation and Vulnerability. Summary for Policymakers . Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment ReportClimateChange2007,IntergovernmentalPanelonClimateChange,Brussels,Belgium. Jarass, L., Nießlein E. and Obermair G.M. (1989). Von der Sozialkostentheorie zum umweltpolitischen Steuerungsinstrument - Boden- und Raumbelastung durch Hochspannungsleitungen . Nomos Baden Baden,Germany. Jolliet,O.andMüllerWenk R.(2004).TheLCIA Midpointdamage Framework of the UNEP/SETAC Life CycleInitiative. International Journal of Life Cycle Assessment 9(6),394404. Keeling,C.D.andWhorfT.P.(2005). Atmospheric CO2 records from sites in the SIO air sampling netwok - weekly averages derived from continuous air samples for the Mauna Loa Observatory, Hawaii, U.S.A. Internet site http://cdiac.ornl.gov/trends/co2/siomlo.htm , Carbon Dioxide Research Group, Scripps InstitutionofOceanography,UniversityofCalifornia,SanDiego,LaJolla,USA. Kerr,J.T.andCurrieD.J.(1995).Effectsof human activity on global extinction risk. 9(5),15281538. Klüppel,H.J.(1998).ISO14041. International Journal of Life Cycle Assessment 3(6),301. Knoepfel,I.(1995).Indikatorensystem für die ökologische Bewertung des Transports von Energie .Dissertation Nr.11146,ETH,Zürich,Switzerland. Köllner, T. (2000). Speciespool effect potentials (SPEP) as a yardstick to evaluate landuse impacts on biodiversity. Journal of Cleaner Production 8(4),293311. Kreft,H.andJetzW.(2007).Globalpatternsanddeterminantsofvascularplantdiversity. Proceedings of the National Academy of Sciences of the United States of America 104,59255930. Krewitt,W.(2002).Externalcostofenergydotheanswersmatchthequestions?Lookingbackat10yearsof ExternE. Energy Policy 30,839848. Kristofersson, D. and Anderson J.L. (2006). Is there a relationship between fisheries and farming? Interdependenceoffisheries,animalproductionandaquaculture. Marine Policy 30,721725. Kuznets,S.(1955).Economicgrowthandincomeinequality. American Economic Review 1,128. Lassey, K.R. (2007). Livestock methane emission: From the individual grazing animal through national inventoriestotheglobalmethanecycle. Agricultural and Forest Meteorology 142,120132. Lawton,J.H.(1994).Whatdospeciesdoinecosystems? Oikos 71,367374. Lecouls,H.(1999).ISO14043. International Journal of Life Cycle Assessment 4(5),245. Lenzen,M.(1998).TheenergyandgreenhousegascostoflivingforAustraliaduring199394. Energy 23(6), 497516. Lenzen,M.(2001).Errorsinconventionalandinputoutputbasedlifecycleinventories. Journal of 4(4),127148. Lenzen, M. (2002). A guide for compiling inventories in hybrid LCA: some Australian results. Journal of Cleaner Production 10,545572. Lenzen,M.(2005).Uncertaintyofendpointimpactmeasures:implicationsfordecisionmaking. International Journal of Life-Cycle Assessment,inpress. Lenzen,M.(2006a).StructuralDecompositionAnalysisandtheMeanRateofChangeIndex. Applied Energy 83,185–198. Lenzen,M.(2006b).StructuralPathAnalysisofecosystemnetworks. Ecological Modelling 200,334342. Lenzen,M.,BorgstromHanssonC.andBondS.(2007a).Onthebioproductivityandlanddisturbancemetrics oftheEcologicalFootprint. Ecological Economics 61(1),610. Lenzen,M.,DeyC.andForanB.(2004a).EnergyrequirementsofSydneyhouseholds. Ecological Economics 49(3),375399. Lenzen,M.,DeyC.J.andMurrayS.A.(2004b).Historicalaccountabilityandcumulativeimpacts:thetreatment oftimeincorporatesustainabilityreporting. Ecological Economics 51,237250. Lenzen,M.,LaneA.,WidmerCooperA.andWilliamsM.(2007b).Effectsoflanduseonthreatenedspecies. TRENDS in Ecology and Evolution ,submitted.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 82

Lenzen,M.,LundieS.,BransgroveG.,CharetL.andSackF.(2003).Assessingtheecologicalfootprintofa largemetropolitanwatersupplierlessonsforwatermanagementandplanningtowardssustainability. Journal of and Management 46(1),113141. Lenzen,M.andMurrayS.A.(2001).AmodifiedecologicalfootprintmethodanditsapplicationtoAustralia. Ecological Economics 37(2),229255. Lenzen,M.andMurrayS.A.(2003). The ecological footprint - issues and trends .ISAResearchPaper0103, Internet site http://www.isa.org.usyd.edu.au/publications/documents/Ecological_Footprint_Issues_and_Trends.pdf , ISATheUniversityofSydney,Sydney,Australia. Lenzen,M.andTreloarG.(2002).Energyembodiedinbuildings:woodversusconcrete. Energy Policy 30(3), 249255. Lenzen,M.,WierM.,CohenC.,HayamiH.,PachauriS.andSchaefferR.(2006).Acomparativemultivariate analysisofhouseholdenergyrequirementsinAustralia,Brazil,Denmark,IndiaandJapan. Energy 31, 181207. Leontief,W.(1986). Input-Output Economics .OxfordUniversityPressNewYork,NY,USA. Levett,R.(1998).Footprinting:agreatstepforward,buttreadcarefully. Local Environment 3(1),6774. Levine,J.M.,VilaM.,D'AntonioC.M.,DukesJ.S.,GrigulisK.andLavorelS.(2003).Mechanismsunderlying theimpactsofexoticplantinvasions. Proceedings of the Royal Society of London. Series B 270,775 781. Lindeijer,E.(2000a).Reviewoflanduseimpactmethodologies. Journal of Cleaner Production 8,273281. Lindeijer,E.(2000b).BiodiversityandlifesupportimpactsoflanduseinLCA. Journal of Cleaner Production 8,313319. LivestockInformationandPolicyBranch(2007). Global Livestock Production and Health Atlas .Internetsite http://www.fao.org/ag/aga/glipha ,FAOAnimalProductionandHealthDivision,Rome,Italy. Loh, J. (2006). Living Planet Report . Internet site http://www.panda.org/news_facts/publications/living_planet_report/lp_2006/index.cfm ,WWFWorld WideFundforNature,Gland,Switzerland. Long,S.P.,AinsworthE.A.,LeakeyA.D.,NosbergerJ.andOrtD.R.(2006).Foodforthought:Lowerthan expectedcropyieldstimulationwithrisingCO 2concentrations. Science 312,19181921. Long,S.P.,AinsworthE.A.,LeakeyA.D.B.,OrtD.R.,NosbergerJ.andSchimelD.(2007).Cropmodels,CO 2, andclimatechangeResponse. Science 315,459460. Loreau,M.(1998).Biodiversityandecosystemfunctioning:amechanisticmodel. Proceedings of the National Academy of Sciences of the USA 95,56325636. Loreau,M.,NaeemS.,InchaustiP.,BengtssonJ.,GrimeJ.P.,HectorA.,HooperD.U.,HustonM.A.,Raffaelli D.,SchmidB.,TilmanD.andWardleD.A.(2001).Biodiversityandecosystemfunctioning:Current knowledgeandfuturechallenges. Science 294,804808. Luck, M.A., Jenerette G.D., Wu J. and Grimm N.B. (2001). The urban funnel model and the spatially heterogeneousecologicalfootprint. Ecosystems 4,782796. MA(2005). Millennium Ecosystem Assessment. Ecosystems and human well-being. Current state and trends. IslandPressWashington,D.C. MacGillivray, C.W. and Grime J.P. (1995).Testing predictions of the resistance and resilience of vegetation subjectedtoextremeevents. 9,640649. Malcolm,J.R.,LiuC.R.,NeilsonR.P.,HansenL.andHannahL.(2006).Globalwarmingandextinctionsof endemicspeciesfrombiodiversityhotspots. Conservation Biology 20,538548. Mann,C.C.(1999).FutureFood:cropscientistsseekanewrevolution. Science 283,310314. Marland,G.,BodenT.A.andAndresR.J.(2006). Global, Regional, and National Fossil Fuel CO2 Emissions . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy,OakRidge,U.S.A. Marsmann,M.(2000).TheISO14040family. International Journal of Life Cycle Assessment 5(6),317318. Mattison, E.H.A. and Norris K. (2005). Bridging the gaps between agricultural policy, landuse and biodiversity.TRENDS in Ecology and Evolution 20(11),610616. Mattsson, B., Cederberg C. and Blix L. (2000). Agricultural land use in life cycle assessment (LCA): case studiesofthreevegetableoilcrops. Journal of Cleaner Production 8,283292. McDonald,G.andPattersonM.(2003). Ecological Footprints of New Zealand and its Regions .Internetsite http://www.mfe.govt.nz/publications/ser/ecofootprintsep03/index.html , Ministry for Environment NewZealand,Wellington,NewZealand. McGradySteed,J.,HarrisP.M.andMorinP.J.(1997).Biodiversityregulatesecosystempredictability. Nature 390,162165. McNaughton, S.J. (1977). Diversity and stability of ecological communitiesL a comment on the role of empiricisminecology. American Naturalist 111,51515525.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 83

McNaughton, S.J. (1993). Biodiversity and function of grazing ecosystems. In: Schulze, E.D. and Mooney, H.A.,Eds. Biodiversity and ecosystem function .SpringerVerlag,Berlin,Germany, 361383. McPherson,M.A.andNieswiadomyM.L.(2005).EnvironmentalKuznetscurve:threatenedspeciesandspatial effects. Ecological Economics 55,395407. Meira,L.G.andMiguezJ.D.(2000). Note on the time-dependent relationship between emissions of greenhouse gases and climate change . Technical Note, Internet site http://www.mct.gov.br/clima/ingles/quioto/propbra.htm ,MinistryofScienceandTechnology,Brasília, Brazil. Menzel,A.,SparksT.H.,EstrellaN.,KochE.,Aasa A., Aha R., AlmKubler K., Bissolli P., Braslavska O., BriedeA.,ChmielewskiF.M.,Crepinsek Z.,CurnelY.,Dahl A.,DefilaC.,Donnelly A.,FilellaY., JatczaK.,MageF.,MestreA.,NordliO.,PenuelasJ.,PirinenP.,RemisovaV.,ScheifingerH.,Striz M.,SusnikA.,VanVlietA.J.H.,WielgolaskiF.E.,ZachS.andZustA.(2006).Europeanphenological responsetoclimatechangematchesthewarmingpattern. Global Change Biology 12,19691976. Mielnik, O. and Goldemberg J. (1999).The evolution of the "carbonization index" in developing countries. Energy Policy 27(5),307308. Milà i Canals, L., Bauer C., Depestele J., Dubreuil A., FreiermuthKnuchel R., Gaillard G., Michelsen O., MüllerWenkR.andRydgrenB.(2007).Keyelementsinaframeworkforlanduseimpactassessment inLCA. International Journal of Life-Cycle Assessment 12(1),515. Morales, P., Hickler T., Rowell D.P., Smith B. and Sykes M. (2007). Changes in European ecosystem productivityandcarbonbalancedrivenbyregionalclimatemodeloutput. Global Change Biology 13, 108122. Mulder,C.P.H.,UliassiD.D.andDoakD.F.(2001).Physicalstressanddiversityproductivityrelationships:the roleofpositiveinteractions. Proceedings of the National Academy of Sciences of the United States of America 98,67046708. MüllerWenk, R. (1998). Land use - the main threat to species . IWÖ Diskussionsbeitrag Nr. 64, Institut für WirtschaftundÖkologie,UniversitätSt.Gallen,St.Gallen,Switzerland. Muradian, R., O'Connor M. and MartinezAlier J. (2002). Embodied pollution in trade: estimating the 'environmentalloaddisplacement'ofindustrialisedcountries. Ecological Economics 41,5167. Naeem,S.(1998).Speciesredundancyandecosystemreliability. Conservation Biology 12,3945. Naeem,S.(2000).ReplytoWardleetal. Bulletin of the Ecological Society of America July,241246. Naeem,S.(2002).Ecosystemconsequencesofbiodiversityloss:theevolutionofaparadigm. Ecology 83,1537 1552. Naeem, S., Chapin F.S., Costanza R., Ehrlich P.R., Golley F.B., Hooper D.U., Lawton J.H., O'Neill R.V., MooneyH.A.,SalaO.E.,SymstadA.J.andTilmanD.(1999).Biodiversityandecosystemfunctioning: Maintainingnaturallifesupportprocesses. Issues in Ecology4,111. Naeem,S.andLiS.(1997).Biodiversityenhancesecosystemreliability. Nature 390,507509. Naeem, S., Thompson L.J., Lawler S.P. and Lawton J.H. (1995). Empirical evidence that declinig species diversitymayaltertheperformanceofterrestrialecosystems. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 347,249262. Naeem,S.,Thompson L.J.,LawlerS.P.,LawtonJ.H. and Woodfin R.M. (1994). Declining biodiversity can altertheperformanceofecosystems. Nature 368,734737. Naidoo,R.and Adamowicz W.L.(2001).Effectsofeconomicprosperityonnumbers ofthreatenedspecies. Conservation Biology 15(4),10211029. Ohlemüller,R.,GrittiE.S.,SykesM.T.andThomasC.D.(2006).TowardsEuropeanclimaterisksurfaces:the extent and distribution of analogous and nonanalogous climates 19312100. Global Ecology and Biogeography 15,395405. Opschoor,H.(2000).Theecologicalfootprint:measuringrodormetaphor? Ecological Economics 32,363365. Pandit,R.andLabandD.N.(2007a).Spatialautocorrelation in countrylevel models of species imperilment. Ecological Economics 60,526532. Pandit,R.andLabandD.N.(2007b).Generalandspecificspatialautocorrelation:insightsfromcountrylevel analysisofspeciesimperilment. Ecological Economics 61,7580. Pearson, P.J.G. (1994). Energy, externalities and environmental quality: will development cure the ills it creates? Energy Studies Review 6(3),199216. Pearson,R.G.andDawsonT.P.(2003).Predictingtheimpactsofclimatechangeonthedistributionofspecies: arebioclimateenvelopemodelsuseful? Global Ecology and Biogeography 12,361371. Peet, N.J., Carter A.J. and Baines J.T. (1985). Energy in the New Zealand household, 19741980. Energy 10(11),11971208. Pengue,W.A.(2004).TransgeniccropsinArgentinaanditshiddencosts.In:Ortega,E.andUlgiati,S.,Eds. Proceedings of IV Biennial International Workshop "Advances in Energy Studies" . Unicamp, Campinas,SP,Brazil, 91101.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 84

Peters,G.,SackF.,LenzenM.,LundieS.andGallegoB.(2007).AnovelEcologicalFootprintcalculationfor the Australian water industry: Regionalisation and inclusion of downstream impacts. Journal of Applied Input-Output Analysis ,inpress. Pimentel,D.,TerhuneE.C.,DysonHudsonR.,RochereauS.,SamisR.,SmithE.A.,DenmanD.,Reifschneider D.andShepardM.(1976).Landdegradation:effectsonfoodandenergyresources. Science 194(261), 149155. Portney, P.R. (1994). The Contingent Valuation debate: why economists should care. Journal of Economic Perspectives 8(4),317. Poschlod,P.,BakkerJ.P.andKahmenS.(2005).Changinglanduseanditsimpactonbiodiversity. Basic and Applied Ecology 6,9398. Power,M.E.,TilmanD.,EstesJ.A.,MengeB.A.,BondW.J.,MillsL.S.,DailyG.,CastillaJ.C.,LubchencoJ. andPaineR.T.(1996).Challengesinthequestforkeystones. BioScience 46,609620. Prentice, I.C., Cramer W., Harrison S.P., Leemans R.,MonserudR.A.andSolomon A.M.(1992).Aglobal biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19,117134. Purvis,A.andHectorA.(2000).Gettingthemeasureofbiodiversity. Nature 405,212219. Rabl,A.andSpadaroJ.V.(1999).Damagesandcostsofairpollution:ananalysisofuncertainties. Environment International 25(1),2946. Rabl,A.andSpadaroJ.V.,Eds.(2005). Extension of accounting framework and Policy Applications .ExternE ExternalitiesofEnergy.DirectorateGeneralforResearch,SustainableEnergySystems,Luxembourg Ville,Luxembourg. Rahbek, C., Gotelli N.J., Colwell R.K., Entsminger G.L., Rangel T. and Graves G.R. (2007). Predicting continentalscalepatternsofbirdspeciesrichnesswithspatiallyexplicitmodels. Proceedings Of The Royal Society B-Biological Sciences 274,165174. Rapport,D.J.(2000).Ecologicalfootprintsandecosystemhealth:complementaryapproachestoasustainable future. Ecological Economics 32,381383. Rees,W.E.(1992).Ecologicalfootprintsandappropriatedcarryingcapacity:whaturbaneconomicsleavesout. Environment and Urbanization 4(2),121130. Reidsma, P., Tekelenburg T., van den Berg M. and Alkemade R. (2006). Impacts of landuse changes on biodiversity: An assessment of agricultural biodiversity in the European Union. Agriculture, Ecosystems and Environment 114,86102. Reynolds,A.M.andO'DohertyJ.V.(2006).Theeffect of amino acid restriction during the grower phase on compensatory growth, carcass composition and nitrogen utilisationin growerfinisher pigs. Livestock Science 104,112120. Robert,L.,HirschR.L.,BezdekR.andWendlingR.(2006).Peakingofworldoilproductionanditsmitigation. American Institute of Chemical Engineers Journal 52,28. Roberts, P.C. (1975). Energy analysis in modelling. In: Blair, I.M., Jones, B.D. and Van Horn, A.J., Eds. Aspects of energy conversion .PergamonPress,Oxford,UK, 759771. Rosa, L.P. and Ribeiro S.K. (2001). The present, past, and future contributions to global warming of CO 2 emissionsfromfuels. Climatic Change 48(2),289307. Rosa,L.P.,RibeiroS.K.,MuylaertM.S.anddeCamposC.P.(2004).CommentsontheBrazilianProposaland contributionstoglobaltemperatureincreasewithdifferentclimateresponsesCO 2emissionsdueto fossilfuels,CO 2emissionsduetolandusechanges. Energy Policy 32(13),14991510. Rosa,L.P.andSchaefferR.(1993).Greenhousegasemissionsfromhydroelectricreservoirs. Ambio 22(4),164 165. Rosa, L.P. and Schaeffer R. (1995). Global warming potentials the case of emissions from dams. Energy Policy 23(2),149158. Rosegrant,M.W.andRinglerC.(1997).Worldfoodmarketsintothe21stcentury:Environmentalandresource constraintsandpolicies. Australian Journal of Agricultural and Resource Economics 41(3),401428. Rounsevell,M.D.A.,EwertF.,ReginsterI.,LeemansR.andCarterT.R.(2005).FuturescenariosofEuropean agriculturallanduseII.Projectingchangesincroplandandgrassland. Agriculture, Ecosystems and Environment 107,117135. Rounsevell,M.D.A.,ReginsterI.,AraújoM.B.,CarterT.R.,DendonckerN.,EwertF.,HouseJ.I.,Kankaanpää S.,LeemansR.,MetzgerM.J.,SchmitC.,SmithP.andTuckG.(2006).Acoherentsetoffutureland usechangescenariosforEurope. Agriculture, Ecosystems and Environment 114,5768. Ryding,S.O.(1999).ISO14042. International Journal of Life Cycle Assessment 4(6),307. Sala,O.E.,ChapinF.S.,ArmestoJ.J.,BerlowE.,BloomfieldJ.,DirzoR.,HuberSanwaldE.,HuennekeL.F., JacksonR.B.,KinzigA.,LeemansR.,LodgeD.M.,MooneyH.A.,OesterheldM.,PoffN.L.,Sykes M.T.,WalkerB.H.,WalkerM.andWallM.(2000).Globalbiodiversityscenariosfortheyear2100. Science 287,17701774.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 85

Schenck, R.C. (2001). Land use and biodiversity indicators for Life Cycle Impact Assessment. International Journal of Life Cycle Assessment 6(2),114117. Selden,T.M.andSongD.(1994).Environmentalquality and development: is there a Kuznets curve for air pollutionemissions? Journal of and Management 27,147162. Shafik, N. (1994). Economic development and environmental quality: an econometric analysis. Oxford Economic Papers 46,757773. Simmons, C., Lewis K. and Barrett J. (2000). Two feet two approaches: a componentbased model of ecologicalfootprinting. Ecological Economics 32,375380. Simpson,E.H.(1949).Measurementofdiversity. Nature 163,688. Singer,P.andMasonJ.(2006). The Way We Eat: Why Our Food Choices Matter .RodalePressNewYork, USA. Smil, V. (2004). Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production .MITPressCambridge,USA. Spangenberg,J.H.(2007).Biodiversitypressureandthedrivingforcesbehind. Ecological Economics 61,146 158. Steele,L.P.,KrummelP.B.andLangenfeldsR.L.(2003). Atmospheric CH 4 concentrations (ppbv) derived from flask samples collected at Macquarie Island, Australia . Internet site http://cdiac.ornl.gov/trends/atm_meth/csiro/csiromacqch4.html , Commonwealth Scientific and IndustrialResearchOrganisation(CSIRO),Aspendale,Australia. Stern, D.I. (2003). The rise and fall of the Environmental . Working Papers 0302, Rensselaer PolytechnicInstitute,Troy,NY,USA. Stern, D.I., Common M.S. and Barbier E.B. (1996). Economic growth and environmental degradation: the EnvironmentalKuznetsCurveandsustainabledevelopment. World Development 24(7),11511160. Stern,D.I.andKaufmannR.K.(1998). Global historical anthropogenic CH 4 emissions expressed in Tg .Internet site http://cdiac.ornl.gov/trends/meth/ch4.htm , Center for Energy and Environmental Studies, Boston University,Boston,USA. Stöglehner,G.(2003).Ecologicalfootprintatoolforassessingsustainableenergysupplies. Journal of Cleaner Production 11,267277. Sun,J.W.andAngB.W.(2000).Somepropertiesofanexactenergydecompositionmodel. Energy 25,1177 1188. Swan, G. (1998). Evaluation of land use in Life Cycle Assessment . CPM Report 1998:2, Center for Environmental Assessment of Product and Material Systems, Chalmers University of Technology, Göteborg,Sweden. Swan,G.andPetterssonB.(1998).Landuseevaluationinforestry.In:Swan,G.,Ed. Evaluation of land use in Life Cycle Assessment, Center for Environmental Assessment of Product and Material Systems, CPM Report 1998:2 .ChalmersUniversityofTechnology,Göteborg,Sweden, 1621. Task Force on National Greenhouse Gas Inventories (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories - Reporting Instructions (Volume 1) . http://www.ipcc nggip.iges.or.jp/public/gl/invs1.htm , Institute for Global Environmental Strategies, Intergovernmental PanelonClimateChangeIPCCNationalGreenhouseGasInventoriesProgramme,Tokyo,Japan. TheIUCNRedListofThreatenedSpecies(2006). Summary statistics for globally threatened species. Table 5: Threatened species in each country (totals by taxonomic group) . Internet site http://www.iucnredlist.org/info/stats , International Union for the Conservation of Nature and Natural Resources(IUCN),Cambridge,UK. Thomas,C.D.,CameronA.,GreenR.E.,BakkenesM.,BeaumontL.J.,CollinghamY.C.,ErasmusB.F.N.,de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., MilesL.,OrtegaHuertaM.A.,PetersonA.T.,PhillipsO.L.andWilliamsS.E.(2004).Extinctionrisk fromclimatechange. Nature 427,145148. Thuiller,W.,LavorelS.,AraújoM.B.,SykesM.T.andPrenticeI.C.(2005).Climatechangethreatstoplant diversity in Europe. Proceedings Of The National Academy Of Sciences Of The United States Of America 102,82458250. Thuiller,W.,MidgleyG.F.,HughesG.O.,BomhardB.,DrewG.,RutherfordM.C.andWoodwardF.I.(2006). EndemicspeciesandecosystemsensitivitytoclimatechangeinNamibia. Global Change Biology 12, 759776. Tilman,D.(1999).DiversityandproductioninEuropeangrasslands. Science 286,10991100. Tilman,D.(2000).What Issues in Ecology is,andisn’t. Bulletin of the Ecological Society of America July,240. Tilman, D., Cassman K.G., Matson P.A., Naylor R. and Polasky S. (2002). Agricultural sustainability and intensiveproductionpractices. Nature 418,671677. Tilman,D.andDowningJ.A.(1994).Biodiversityandstablilityingrasslands. Nature 367,363365.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 86

Tilman, D., Fargione J., Wolff B., D'Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D. and Swackhamer D. (2001a). Forecasting agriculturally driven global environmental change. Science 292,281284. Tilman,D.,KnopsJ.,WedinD.,ReichP.,RitchieM.andSiemannE.S.(1997a).Theinfluenceoffunctional diversityandcompositiononecosystemprocesses. Science 277,13001302. Tilman,D.,LehmanC.L.andThomsonK.T.(1997b).Plantdiversityandecosystemproductivity:Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America 94, 18571861. Tilman, D., May R.M., Lehman C.L. and Nowak M.A. (1994). Habitat destruction and the extinction debt. Nature 371,6566h. Tilman,D.,ReichP.B.,KnopsJ.,WedinD.,MielkeT.andLehmanC.(2001b).Diversityandproductivityina longtermgrasslandexperiment. Science 294,843845. Tilman, D., Wedin D. and Knops J. (1996). Productivity and sustainability influenced by biodiversity in grasslandecosystems. Nature 379,718720. Treloar,G.(1997).Extractingembodiedenergypathsfrominputoutputtables:towardsaninputoutputbased hybridenergyanalysismethod. Economic Systems Research 9(4),375391. Turner,K.,WiedmannT.,Lenzen M.andBarrettJ.(2007). Examining the global environmental impact of regionalconsumptionactivities—Part1:Atechnical noteoncombininginput–outputandecological footprintanalysis. Ecological Economics 62(1),3744. U.S. Census Bureau (2006). Table 001: Total Midyear Population . Internet site http://www.census.gov/ipc/www/idbsprd.html ,U.S.DepartmentofCommerce,WashingtonDC. Udo de Haes, H.A. (2006). How to approach land use in LCIA or, how to avoid the Cinderella effect? International Journal of Life Cycle Assessment 11(4),219221. Udo de Haes, H.A. and Heijungs R. (2004). Three strategies to overcome the limitations of LifeCycle Assessment. Journal of Industrial Ecology 8(3),1932. UdodeHaes,H.A.,JollietO.,FinnvedenG.,HauschildM.,KrewittW.andMuellerWenkR.(1999).Best availablepracticeregardingimpactcategoriesandcategoryindicatorsinlifecycleimpactassessment. International Journal of Life Cycle Assessment 4(2),115. United Nations Statistics Division (2007a). UN comtrade - United Nations Commodity Trade Statistics Database .Internetsite http://comtrade.un.org/ ,UnitedNationsStatisticsDivision,UNSD,NewYork, USA. United Nations Statistics Division (2007b). National Accounts Main Aggregates Database . Internet site http://unstats.un.org/unsd/snaama/Introduction.asp , United Nations Statistics Division (UNSD), New York,USA. vandenBergh,J.C.J.M.andVerbruggenH.(1999).Spatialsustainability,tradeandindicators:anevaluationof the'ecologicalfootprint'. Ecological Economics 29(1),6172. vanDobben,H.F.,SchouwenbergE.P.A.G.,NabuursG.J.andPrinsA.H.(1998).Biodiversityandproductivity parametersasabasisforevaluatinglandusechangesinLCA.In:IVAMEnvironmentalResearch,Ed. Biodiversity and life support indicators for land use impacts, Publication Series Raw Materials Nr 1998/07 .MinistryofTransport,PublicWorksandWatermanagement,Delft,Netherlands, Annex1.1 1.50. van Kooten, G.C. and Bulte E.H. (2000). The ecological footprint: useful science or politics? Ecological Economics 32,385389. vanVuuren,D.P.andBouwmanL.F.(2005).Exploringpastandfuturechangesintheecologicalfootprintfor worldregions. Ecological Economics 52(1),4362. vanVuuren,D.P.,SalaO.E.andPereiraH.M.(2006).Thefutureofvascularplantdiversityunderfourglobal scenarios. Ecology And Society 11,15. Venetoulis,J.andTalberthJ.(2006). Net Primary Productivity as a basis for Ecological Footprint analysis . RedefiningProgress,Oakland,USA. Venetoulis, J. and Talberth J. (2007). Refining the Ecological Footprint. Environment, Development and Sustainability ,inpress. Vitousek, P.M. and HooperD.U. (1993). Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze,E.D.andMooney,H.A.,Eds. Biodiversity and ecosystem function .SpringerVerlag,Berlin, Germany, 314. Vitousek, P.M., Mooney H.A., Lubchenco J. and Melillo J.M. (1997). Human dominantion of Earth's ecosystems. Science 277,494499. Voigtländer,J.G.,LindeijerE.,WitteJ.P.M.and Hendriks C. (2004). Characterising the change of landuse basedonflora:applicationforEIAandLCA. Journal of Cleaner Production 12,4757. Vringer,K.andBlokK.(1995).ThedirectandindirectenergyrequirementsofhouseholdsintheNetherlands. Energy Policy 23(10),893910.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 87

Wackernagel, M. (1994). Ecological Footprint and Appropriated : A Tool for Planning Toward Sustainability .PhDThesis,TheUniversityofBritishColumbia,Vancouver,Canada. Wackernagel, M. (2000). Importing carrying capacity: how global trade enables nations and the world to accumulate an ecological debt. In: Watt, K., Ed. Encyclopedia on . Transaction Publishers,Rutgers,NJ,USA. Wackernagel,M.,LewanL.andHanssonC.B.(1999).Evaluatingtheuseofnaturalcapitalwiththeecological footprint. Ambio 28(7),604612. Wackernagel,M.,MonfredaC.,MoranD.,WermerP., GoldfingerS.,Deumling D.andMurrayM.(2005). National Footprint and Biocapacity Accounts 2005: The underlying calculation method . Global FootprintNetwork,Oakland,USA. Wackernagel,M.,SchulzN.B.,DeumlingD.,CallejasLinaresA.,JenkinsM.,KaposV.,MonfredaC.,LohJ., Myers N., Norgaard R. and Randers J. (2002). Tracking the ecological overshoot of the human economy. Proceedings of the National Academy of Sciences 99(14),92669271. Wagendorp,T.,GulinckH.,CoppinP.andMuysB.(2006).Landuseimpactevaluationinlifecycleassessment basedonthermodynamics. Energy 31,112125. Wardle, D.A. (1999). Is "Sampling Effect" a problem for experiments investigating biodiversityecosystem functionrelationships? Oikos 87,403407. Wardle,D.A.,HustonM.A.,GrimeJ.P.,BerendseF.,GarnierE.,LauenrothW.K.,SetäläH.andWilsonS.G. (2000).Biodiversityandecosystemfunction:anissueinecology. Bulletin of the Ecological Society of America July,235239. Weidema, B. and Lindeijer E. (2001). Physical impacts of land use in product life cycle assessment . Final Report of the EURENVIRONLCAGAPS subproject on land use, Department of Manufacturing, EngineeringandManagement,TechnicalUniversityofDenmark,Lyngby,Denmark. Whittaker,R.H.andLikensG.E.(1973).Primaryproduction:thebiosphereandman. Human Ecology I(4),357. Wiedmann,T.andLenzenM.(2007).OntheconversionfromlocalhectarestoglobalhectaresinEcological Footprintanalysis. Ecological Economics 60(4),673677. Wier,M.,LenzenM.,MunksgaardJ.andSmedS.(2001). Environmental effects of household consumption patternand. Economic Systems Research 13(3),259274. Williams, J.W., Jackson S.T. and Kutzbach J.E. (2007). Projected distributions of novel and disappearing climatesby2100AD. Proceedings of the National Academy of Sciences of the USA 104(14),5738– 5742. Witte,J.P.M.andvanderMeijdenR.(1995).VerspreidingskaartenvandebotanischekwaliteitinNederlanduit FLORBASE. Gorteria 21 1/2,360. Wollenweber,B.,PorterJ.R.andLubberstedtT.(2005).Needformultidisciplinaryresearchtowardsasecond greenrevolution. Current Opinion in Plant Biology 8,337341. WorldOrganisationforAnimalHealth(2007). Update on avian influenza in animals (Type H5) .Internetsite http://www.oie.int/downld/AVIAN%20INFLUENZA/A_AIAsia.htm ,WorldOrganisationforAnimal Health,Paris,France. World Resources Institute (2005a). WRI Biodiversity Overview . Internet site http://earthtrends.wri.org/pdf_library/data_tables/bio1_2005.pdf ,WorldResourcesInstitute World Resources Institute (2005b). Land area classification by ecosystem type . Internet site http://earthtrends.wri.org/pdf_library/data_tables/for2_2003.pdf ,WorldResourcesInstitute World Resources Institute (2006). Climate Analysis Indicators Tool (CAIT) online database version 3.0. Internetsite http://cait.wri.org ,WorldResourcesInstitute,WashingtonD.C.,USA.

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 88

Appendix:Listofcountries CzechRepublic Latvia StKittsandNevis Albania Korea,DemPeople'sRep Lebanon StLucia Congo,DemRep Lesotho StPierre&Miquelon AmericanSamoa Denmark Liberia StVincent/Grenadines Andorra Djibouti Libya Samoa Dominica Lithuania SãoTomé&Príncipe Anguilla DominicanRepublic Luxembourg SaudiArabia AntiguaandBarbuda Ecuador Madagascar Senegal Argentina Egypt Malawi SerbiaandMontenegro ElSalvador Malaysia Seychelles Aruba EquatorialGuinea Maldives SierraLeone Australia Eritrea Mali Singapore Estonia Slovakia Ethiopia MarshallIslands Slovenia Bahamas FaroeIslands Mauritania SolomonIslands FalklandIsMalvinas Mauritius Somalia Bangladesh Fiji Mexico SouthAfrica Barbados Finland Mongolia Spain Belarus France Montserrat SriLanka Belgium FrenchPolynesia Morocco Sudan Micronesia,FedStates Mozambique Suriname Gabon Myanmar Swaziland Gambia NorthernMarianaIs Sweden Georgia Namibia Switzerland Bolivia Germany Nauru Syria BosniaandHerzegovina Ghana Nepal Tajikistan Botswana Gibraltar NetherlandsAntilles Macedonia BouvetIsland Greece Netherlands BritIndOceanTerr Greenland NewCaledonia TimorLeste VirginIslands(Brit) Grenada NewZealand Togo Brazil Guam Nicaragua Tokelau BruneiDarussalam Guatemala Niger Tonga Bulgaria Guinea Nigeria TrinidadandTobago BurkinaFaso GuineaBissau Niue Tunisia Burundi Guyana NorfolkIsland Turkey Côted'Ivoire Haiti Norway Turkmenistan Cambodia Honduras Palestine,Occupied TurksandCaicosIs Cameroon Hungary Oman Tuvalu Canada Iceland Pakistan Uganda CapeVerde India Palau Ukraine CaymanIslands Indonesia Panama UnitedArabEmirates CentralAfricanRep Iran PapuaNewGuinea UnitedKingdom Chad Iraq Paraguay Tanzania Chile Ireland Peru PacificIslandsTrustTerr China Israel Philippines Uruguay HongKong Italy Pitcairn UnitedStatesofAmerica Macau Jamaica Poland Uzbekistan Colombia Japan Portugal Vanuatu Comoros Jordan Qatar Venezuela Congo,Republicof Kazakhstan Korea VietNam CookIslands Kenya Moldova WallisandFutunaIs CostaRica Kiribati Romania WesternSahara Croatia RussianFederation Yemen Cuba Kyrgyzstan Rwanda Zambia Cyprus Laos StHelena Zimbabwe

ISAResearchPaper07/01 ,SydneyUniversity , , ForecastingtheEcologicalFootprintofNations–ablueprintofadynamicapproach 89

ISAResearchPaper07/01 ,SydneyUniversity , ,