Ecological Footprints and Sustainable Development

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Footprints and Sustainable Development Ecological Economics 32 (2000) 359–362 www.elsevier.com/locate/ecolecon COMMENTARY FORUM: THE ECOLOGICAL FOOTPRINT Ecological footprints and sustainable development Ian Moffatt Department of En6ironmental Science, Uni6ersity of Stirling, Stirling FK94 LA, Scotland, UK 1. Introduction 2. Advantages and limitations of the ecological footprint concept The concept of the ecological footprint is well known amongst ecological economists. It repre- The ecological footprint methodology and re- sents the human impact on the Earth in a clear sults are well documented and need not be repeated manner. As its originators note, the ecological here (Rees and Wackernagel, 1994; Wackernagel footprint calculations have reinforced the view that and Rees, 1996). The most important message if everyone enjoyed a North American standard of emerging from the analysis of the Lower Fraser living then globally this would require three earths basin and of Vancouver City was that to maintain — although finding two other planets would be the lifestyle of these communities they would re- difficult (Wackernagel and Rees, 1996). Simply quire 12 and 207 times the geographical area of the stated, we are living beyond our biophysical means. home territory (Rees, 1999). Similar studies in The ecological footprint is one attempt at devel- Scotland and the Netherlands have shown that the oping a biophysically-based ecological economics, land mass required to support the population is six which approximates reality better than many eco- and 15 times, respectively (Moffatt, 1996). nomic expansionist models. This paper examines There are several advantages and limitations the ecological footprint as one contribution to the associated with the development of the ecological overall goal of making human development sus- footprint concept (Table 1). The major advantage tainable for current and future generations living in of the ecological footprint concept over some harmony with the rest of the biosphere. The follow- other indicators like environmental space (Moffatt, ing section briefly describes the advantages and 1996; McLaren et al., 1998) is that the former limitations of the ecological footprint methodol- concept gives a clear, unambiguous message often ogy. Section 3 then suggests ways in which some of in an easily digested form. The clarity of the these limitations can be overcome so as to make a message is an important function of any indicator useful contribution to the transformation of soci- for both policy makers and the general public. eties onto paths of equitable, ecologically sound Next, the calculation upon which the ecological and economically sensible sustainable develop- footprint is based is relatively easy to undertake ment. and much of the data is available at different 0921-8009/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S0921-8009(99)00154-8 360 I. Moffatt / Ecological Economics 32 (2000) 359–362 Table 1 course to viewing the ecological footprint The advantages and limitations of the ecological footprint through historical time. Such historical studies Advantages Limitations may unearth the processes leading to unsustain- able practices at different spatial scales. More Is an areal unit a suitable measure? important, however, is the need to develop a Unambiguous A static analysis dynamic approach for exploring different scenar- message Simple to calcu- Ignores technological change ios of development (Moffatt, 1996; Lange, 1999) late into the early years of the next millennium, at Includes trade Ignores underground resources least if we wish for development to be made It is a stock Ignores flows sustainable — as in the Brundtland Report Lacks measures of equity No policy prescriptions (World Commission on Environment and Devel- opment, 1987) and the Local Agenda 21 agree- ments emerging since the Rio Conference in 1992. Third, as in many studies of sustainability spatial scales. Third, more detailed calculations the role of technological change is ignored, but do include trade within the ecological footprint. it would be worth exploring. Presumably, the If world trade were included then, under the ecological footprint could be substantially re- assumption of all areas maintaining their inhabi- duced by several practices. These would include tants’ standards of living, there would be some using environmentally friendly technologies, us- losers as well as winners. A glance at the Hu- ing current technologies more efficiently or re- man Development Index gives some empirical ducing the throughput of resources. Fourth, at support of the increasing numbers of poor present the ecological footprint does not con- within the Third World as well as pockets of sider the oceans and underground resources in- poor and a growing underclass in rich Western cluding water. Fifth, the ecological footprint democracies. Fourth, the measure is simply represents a stock measure. It would be useful stated as a stock, for example, x units of land to integrate the stock measure with the flows per capita. It is obvious that each areal unit can into or out of an area. The use of material also supply a flow of goods, information, natu- flows or integrated economic and environmental ral and manmade capital as well as pollution accounting (United Nations, 1990) linked to a into and out of the region. dynamic model of sustainable development As with most measures of sustainable devel- would help. As Daly has suggested in many opment there are several limitations to the eco- publications, reducing the throughput is an im- logical footprint. First, as a bald statement of portant aspect for achieving sustainable develop- the magnitude of the problem facing humankind ment (Daly, 1977). Sixth, even if the throughput it is clear that the simple statement of the eco- was reduced and sustainable development was logical footprint is not in itself anything more achieved, the thorny ethical problem of an equi- than an important attention grabbing device. table distribution for current and future genera- Some writers like Selman note ‘‘that it is point- tions needs to be examined. At present few less to argue for a direct equivalence between a measures include this aspect of equity in the region’s area and its ecological footprint’’ (Sel- man 1996, p. 38) and others have argued for the structure — the index of sustainable economic need to consider spatial flows of trade in the welfare (ISEW) being one exception (Daly and derivation of indicators of sustainable develop- Cobb, 1989). Finally, it offers no policy sugges- ment (Van den Bergh and Verbruggen, 1999). tions apart from either including more land, re- Second, as currently constructed, the ecological ducing population, or reducing consumption per footprint is a static measure. It is possible to head. The policy instruments required to achieve examine the dynamics of this measure by re- such desirable goals are not stated. I. Moffatt / Ecological Economics 32 (2000) 359–362 361 3. Indicators: moving towards sustainable neo-classical economists have a different view on development equity, usually Pareto optimality, than many eco- logical economists). Given this hypothetical situa- One of the key aspects of sustainable develop- tion decision-makers would still have the problem ment is that it makes us consider the problems of of choosing the right mix of policy instruments to intergenerational and intragenerational equity. As ensure that the chosen path was sustainable (Ma currently reported the ecological footprint merely et al., 1996). Unfortunately, making such a choice shows that current human development is unsus- is shrouded in uncertainty. This uncertainty tainable — we only have one Earth (Ward and would be present in any system of indicators used Dubos, 1972). Yet, if we are to actively engage in for forward planning and management. Accepting the processes of making development sustainable that there are uncertainties in any scenario then we need to establish indicators so that we know if there is a need for careful monitoring of the major we are moving towards or away from a sustain- indicators of sustainable development to ensure able future. We also need to consider which tra- that the implemented policies are having the de- jectories are equitable, economically and sired effect. Unfortunately, it is at this point ecologically desirable and achievable. where many of the indicators of sustainable devel- There is a plethora of indicators attempting to opment, including the ecological footprint, are at capture the economic, environmental and social their weakest. aspects of sustainable development (Moffatt, 1996; Hanley et al., 1999). Some researchers have relied on a set of indicators covering environmen- 4. Conclusions tal, social and economic aspects of reality. Others have attempted to develop a unified framework. This brief paper has described the advantages The former suggests that integrating indicators of and limitations of the ecological footprint con- economic, environmental and social aspects of cept. It has been suggested that as a method for sustainable development in one framework is use- raising awareness of our impact on the earth it is ful, although it could be argued that such integra- strikingly clear. The fact that there is a minimum tive indicators hide more than they reveal. Only a amount of land per capita to support all life few have examined current and future impacts on including humans is important. Beyond the strik- the life support systems such as long-term envi-
Recommended publications
  • Mediterranean Ecological Footprint Trends Content
    MEDITERRANEAN ECOLOGICAL FOOTPRINT TRENDS CONTENT Global Footprint Network 1 Global Footprint Network EDITOR Foreword Promotes a sustainable economy by Alessandro Galli advancing the Ecological Footprint, Foreword Plan Blue 2 Scott Mattoon a tool that makes sustainability measureable. Introduction 3 AUTHORS Alessandro Galli The Ecological Footprint 8 Funded by: of World Regions David Moore MAVA Foundation Established in 1994, it is a family-led, Nina Brooks Drivers of Mediterranean Ecological Katsunori Iha Footprint and biocapacity changes 10 Swiss-based philanthropic foundation over time whose mission is to engage in strong Gemma Cranston partnerships to conserve biodiversity Mapping consumption, production 13 for future generations. CONTRIBUTORS AND REVIEWER and trade activities for the Mediterranean Region Jean-Pierre Giraud In collaboration with: Steve Goldfi nger Mediterranean Ecological Footprint 17 WWF Mediterranean Martin Halle of nations Its mission is to build a future in which Pati Poblete people live in harmony with nature. Anders Reed Linking ecological assets and 20 The WWF Mediterranean initiative aims economic competitiveness at conserving the natural wealth of the Mathis Wackernagel Toward sustainable development: 22 Mediterranean and reducing human human welfare and planetary limits footprint on nature for the benefi t of all. DESIGN MaddoxDesign.net National Case Studies 24 UNESCO Venice Conclusions 28 Is developing an educational and ADVISORS training platform on the application Deanna Karapetyan Appendix A 32 of the Ecological Footprint in SEE and Hannes Kunz Calculating the Ecological Footprint Mediterranean countries, using in (Institute for Integrated Economic particular the network of MAB Biosphere Research - www.iier.ch) Appendix B 35 Reserves as special demonstration and The carbon-plus approach learning places.
    [Show full text]
  • The Ecological Footprint Emerged As a Response to the Challenge of Sustainable Development, Which Aims at Securing Everybody's Well-Being Within Planetary Constraints
    16 Ecological Footprint accounts The Ecological Footprint emerged as a response to the challenge of sustainable development, which aims at securing everybody's well-being within planetary constraints. It sharpens sustainable development efforts by offering a metric for this challenge’s core condition: keeping the human metabolism within the means of what the planet can renew. Therefore, Ecological Footprint accounting seeks to answer one particular question: How much of the biosphere’s (or any region’s) regenerative capacity does any human activity demand? The condition of keeping humanity’s material demands within the amount the planet can renew is a minimum requirement for sustainability. While human demands can exceed what the planet renew s for some time, exceeding it leads inevitably to (unsustainable) depletion of nature’s stocks. Such depletion can only be maintained temporarily. In this chapter we outline the underlying principles that are the foundation of Ecological Footprint accounting. 16 Ecological Footprint accounts Runninghead Right-hand pages: 16 Ecological Footprint accounts Runninghead Left-hand pages: Mathis Wackernagel et al. 16 Ecological Footprint accounts Principles 1 Mathis Wackernagel, Alessandro Galli, Laurel Hanscom, David Lin, Laetitia Mailhes, and Tony Drummond 1. Introduction – addressing all demands on nature, from carbon emissions to food and fibres Through the Paris Climate Agreement, nearly 200 countries agreed to keep global temperature rise to less than 2°C above the pre-industrial level. This goal implies ending fossil fuel use globally well before 2050 ( Anderson, 2015 ; Figueres et al., 2017 ; Rockström et al., 2017 ). The term “net carbon” in the agreement further suggests humanity needs far more than just a transition to clean energy; managing land to support many competing needs also will be crucial.
    [Show full text]
  • Environmental Impact Food Labels Combining Carbon, Nitrogen, and Water Footprints ⇑ Allison M
    Food Policy 61 (2016) 213–223 Contents lists available at ScienceDirect Food Policy journal homepage: www.elsevier.com/locate/foodpol Environmental impact food labels combining carbon, nitrogen, and water footprints ⇑ Allison M. Leach a,e, , Kyle A. Emery a, Jessica Gephart a, Kyle F. Davis a, Jan Willem Erisman b,c, Adrian Leip d, Michael L. Pace a, Paolo D’Odorico a, Joel Carr a, Laura Cattell Noll a, Elizabeth Castner a, James N. Galloway a a Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA 22904, USA b Louis Bolk Institute, 3972LA Driebergen, The Netherlands c VU University Amsterdam, The Netherlands d European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability, Via E. Fermi, 2749, I-21027 Ispra (VA), Italy e Department of Natural Resources and The Sustainability Institute, University of New Hampshire, 107 Nesmith Hall, 131 Main Street, Durham, NH 03824, USA article info abstract Article history: The environmental impact of the production and consumption of food is seldom depicted to consumers. Received 18 March 2015 The footprint of food products provides a means for consumers to compare environmental impacts across Received in revised form 11 February 2016 and within product groups. In this study we apply carbon, nitrogen, and water footprints in tandem and Accepted 31 March 2016 present food labels that could help inform consumers about the environmental impacts of individual food products. The footprint factors used in this study are specific to the United States, but the concept can be applied elsewhere. We propose three methods of footprint calculations: footprint weight, sustainability Keywords: measures, and % daily value.
    [Show full text]
  • The Case Study Report Aims to Analyse More in Depth the Strategies
    Rebound effects and the ecological rucksack in the light of resource policies ESDN Case Study No. 7 Nisida Gjoksi ESDN Office Team www.sd-network.eu June 2011 Table of Contents INTRODUCTION ..................................................................................................................................3 RESOURCE EFFICIENCY AND THE REBOUND EFFECTS .........................................................................3 DEFINITION OF THE REBOUND EFFECT ......................................................................................................4 TYPES OF REBOUND EFFECT ...................................................................................................................4 POLICY RESPONSES ..............................................................................................................................4 MAGNITUDE OF REBOUND EFFECTS .........................................................................................................5 RECOMMENDATIONS ...........................................................................................................................5 RESOURCE EFFICIENCY AND THE ECOLOGICAL RUCKSACK .................................................................6 DEFINITION OF THE ECOLOGICAL RUCKSACK ..............................................................................................6 WEAKNESSES OF THE ECOLOGICAL RUCKSACK FACTOR .................................................................................7 REFERENCES .......................................................................................................................................9
    [Show full text]
  • Annual Report 2010
    Action Earth ACRES Adeline Lo Thank You Ai Xin Society for your invaluable support Anderson Junior College Andrew Tay Assembly of Youth for the Environment So many individuals, food outlets AWARE Balakrishnan Matchap and organizations gave their Betty Hoe invaluable effort, time and Bishan Community Library resources to light the path Bright Hill Temple British Petroleum (BP) towards vegetarianism. Space Bukit Merah Public Library may not have allowed us to list Cat Welfare Society Catherina Hosoi everyone, but all the same, we Central Library of the National Library Board extend our most heartfelt thanks Chong Hua Tong Tou Teck Hwee movement to you. Douglas Teo Dr Raymond Yuen Environmental Challenge Organisation Vegetarian Society (Singapore) ROS Registration No.: ROS/RCB 0123/1999 Singapore 3 Pemimpin Drive, #07-02, Lip Hing Bldg, Charity Registration No.: 1851 UEN: S99SS0065J Family Service Centre (Yishun) Singapore 576147 Foreign Domestic Worker Association (address for correspondence only) Gelin www.vegetarian-society.org Genesis Vegetarian Health Food Restaurant [email protected] Global Indian International School Green Kampung website Greendale Secondary School Green Roundtable Noah’s Ark Natural Animal Sanctuary Guangyang Primary School NUS SAVE GUI (Ground Up Initiative) NutriHub Herty Chen Post Museum Indonesia Vegetarian Society Queensway Secondary School International Vegetarian Union Prof Harvey Neo Juggi Ramakrishnan Raffles Institution Lim Yi Ting Rameshon Murugiah Kevin Tan Rosina Arquati Heng Guan Hou Serene Peh Hort Park Singapore Buddhist Federation Kampung Senang Charity and Education Singapore Kite Association Foundation Singapore Malayalee Association Loving Hut Restaurants Singapore Polytechnic Singapore Sports Council Mahaya Menon Singapore Tourism Board Maria and Ana Laura Rivarola Singapore Vegetarian Meetup Groups ANNUALREPORTFOR2010 Mayura Mohta SPCA Maitreyawira School St Anthony’s Canossian Secondary School Media Corp Straits Times MEVEG (Middle East Vegetarian Group) T.
    [Show full text]
  • Chapter 1 Sustainability of Our Planet the Environment
    Chapter 1 Sustainability of our planet The environment Everything around you; both living and nonliving things Examples: air, water, sunlight, people, plants, animals Environmental Science The study of how humans interact with the environment. Involves many subjects such as: engineering, biology, chemistry, earth science, economics, political science, ethics, moral judgments Goals of Environmental Science There are 3 goals to studying environmental science. 1. Learn how life on Earth has survived and thrived. 2. Understand how humans interact with the environment. 3. Find ways to deal with environmental problems and live more sustainably. What is sustainability? The ability of Earth’s natural systems that support life to adapt to the changing environmental conditions indefinitely. Scientific factors to sustainability Why has life existed on the planet for about 3.8 billion years? 1. Solar energy - photosynthesis 2. Biodiversity – variety of species, genes, ecosystems on the planet to help with adapting to new environmental conditions 3. Nutrient cycling – when an organism dies, it decays, nutrients go back into ground for another organism Social factors to sustainability How have past decisions on environmental problems effected today’s society? 1. Economics –production and consumption of goods and services 2. Political science – government/politics and how it relates to the environment 3. Ethics – study of right and wrong Natural Capital Natural resources and ecosystem services that keep humans and other species alive and
    [Show full text]
  • The Ecological Footprint of British City Residents
    October 2007 Alan Calcott and Jamie Bull CarbonPlan Ecological footprint of British city residents What we can do to reduce ours Acknowledgements The authors would like to express their gratitude to the people who gave their time and rendered assistance during the course of the preparation of this report. These include the Stockholm Environment Institute at York University for their assistance in providing the data used in the report and Anthony Field at WWF-UK for his contributions to the report. Background note on the authors CarbonPlan is an environmental consultancy which champions sustainable development in business. It specialises in working with business organisations to implement programmes to understand, measure and reduce the carbon and ecological impacts associated with both their business operation and office premises or estate. In conjunction with Bristol Zoo Gardens and the National Wildlife Conservation Park CarbonPlan developed SALOME – a structured process to allow visitor attractions to systematically reduce impacts and move towards sustainability. Contents Executive summary 4 Introduction 8 What is the issue? 10 What is Ecological Footprinting 12 The Ecological Footprint of the UK 14 Calculating a city footprint 16 Results 20 England – top 10 Smallest Footprints 21 top 10 Largest 22 10 Facts 23 Case Study: London Transport 24 Winchester and Salisbury – a comparison 24 Scotland – smallest to largest footprints 28 10 Facts 29 Wales – smallest to largest footprints 30 10 Facts 31 Edinburgh and Cardiff – a comparison 32 Recommendations 35 Top 10 recommendations to reduce your footprint 36 Conclusions 38 Appendix – The breakdown of city residents ecological footprint 39 3 3 Executive summary INTRODUCTION The choices we make in our everyday lives about our homes, transport, food and the goods we buy have impacts right across the world – from Indonesian rainforests to the Antarctic.
    [Show full text]
  • Global Footprint Network Response to the “Commission on the Measurement of Economic Performance and Social Progress” (Or “Stiglitz Commission”) Report
    Global Footprint Network response to the “Commission on the Measurement of Economic Performance and Social Progress” (or “Stiglitz Commission”) Report www.footprintnetwork.org September 17, 2009 Headquarters Zürich Office Brussels Office 312 Clay Street, Suite 300 c/o Hürzeler & Schmid 168 avenue de Tervurenlaan, Oakland, CA 94607-3510 Ausstellungsstrasse 114 7th Floor USA CH - 8005 Zürich mailbox 15 SWITZERLAND B - 1150 Brussels Tel. +1-510-839-8879 BELGIUM Fax +1-510-251-2410 Tel. +41 44 271 00 67 [email protected] Fax +41 44 251 36 34 Tel. +32-2-773-5198 1 Global Footprint Network response to The “Commission on the Measurement of Economic Performance and Social Progress” (“Stiglitz Commission”) Report September 17, 2009 Summary of Global Footprint Network’s comments Global Footprint Network welcomes the Commission’s report and appreciates the Commission’s tremendous work on synthesizing the complex field of measuring economic performance and social progress. This report is a milestone in the history of public indicators and will become a significant platform for further debate. The Commission report’s most significant contribution may be its emphasis on the need to track distinct policy goals separately: economic performance, quality of life, and environmental sustainability. The Ecological Footprint has tremendous potential to support this agenda, for instance as a resource accounting tool and part of a micro-dashboard of economic performance and social progress indicators. The Ecological Footprint fully and wholly contains the carbon Footprint, and takes a comprehensive, more effective, approach by tracking other human demands on the biosphere’s regenerative capacity. But it needs to be complemented by socio- economic metrics.
    [Show full text]
  • THE Guizhou FOOTPRINT REPORT METRICS for an ECOLOGICAL CIVILIZATION
    THE Guizhou FOOTPRINT REPORT METRICS FOR AN ECOLOGICAL CIVILIZATION Prepared in collaboration with Guizhou Institute of Environmental Science Research and Design “We should no longer judge the political Executive Summary ...............................................................5 performance simply by GDP growth. Instead, we should look at welfare WHY IS ECOLOGICAL CIVILIZATION improvement, social development, and 01 ESSENTIAL? ecological benefits to evaluate leaders.” China: An Extraordinary Country Facing Extraordinary – President Xi Jinping Challenges ............................................................................8 Constraints Rule on a Finite Planet ................................... 10 Biocapacity: Our Ultimate Resource ................................ 12 China’s Top Trade Partners: Stable or Vulnerable? ........ 14 MEASURING FOOTPRINT EFFICIENCY 02 Production Footprint associated with generating GDP in China ........................................................................18 Production Footprint associated with generating GDP in Switzerland ....................................................................20 Ecological Footprint of Consumption ...............................22 Ecological Footprint & Human Development Index (HDI) ...26 GUIZHOU, A MODEL FOR DEVELOPING 03 AN ECOLOGICAL CIVILIZATION How does Guizhou’s Resource Situation Compare to other provinces? ............................................................30 “China will continue to commit to international Guizhou’s Development Path ...........................................34
    [Show full text]
  • CBD Briefing
    CBD Briefing Ecological Footprint Convention on Biological Diversity’s (CBD) New Strategic Plan 2011 – 2020 targeting the Ecological Footprint The CBD’s Strategic Plan must point the way for innovative solutions that can deliver on the explicit goals of biodiversity conservation with respect to inter alia humanity’s consumption impact on biodiversity. Therefore WWF proposes to include a “footprint target” to the Strategic Plan (actual target 4). By 2020, humanity’s global ecological footprint falls below its 2000 level and continues its downward trend. This measurable target relates directly to the concept of ecological footprint. Ecological footprint is already an indicator under the CBD , adopted by COP 8 decision VIII/15 in 2006. More information on the Ecological Footprint is presented below: (Source: Global Footprint Network - Advancing the Science of Sustainability http://www.footprintnetwork.org/en/index.php/GFN/ ) What is the Ecological Footprint? The Ecological Footprint is a resource accounting tool used widely as a management and communication tool by governments, businesses, educational institutions and NGOs to answer a specific resource question: How much of the biological capacity of the planet is required by a given human activity or population? What does the Ecological Footprint measure? The Ecological Footprint measures the amount of biologically productive land and sea area an individual, a region, all of humanity, or a human activity requires to produce the resources it consumes and absorb the waste it generates, and compares this measurement to how much land and sea area is available. Biologically productive land and sea includes area that 1) supports human demand for food, fiber, timber, energy and space for infrastructure and 2) absorbs the waste products from the human economy.
    [Show full text]
  • Carbon and Water Footprints
    SIDE PUBLICATIONS SERIES :04 Carbon and Water Footprints Concepts, Methodologies and Policy Responses A. Ertug Ercin and Arjen Y. Hoekstra UNITED NATIONS WORLD WATER ASSESSMENT PROGRAMME Published in 2012 by the United Nations Educational, Scientific and Cultural Organization 7, place de Fontenoy, 75352 Paris 07 SP, France © UNESCO 2012 All rights reserved ISBN 978-92-3-001095-9 The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Photographs: Cover: © Shutterstock / Eduard Stelmakh (left), © Shutterstock / E.G.Pors (centre), © Fernando Weberich (right); p.1: © Shutterstock / yxm2008; p.3: © UN Photo / Guilherme Costa; p.5: © Shutterstock / SVLuma; p.8: © WFP / Susannah Nicol; p.11: © Shutterstock / Dudarev Mikhail; p.16: © Shutterstock / Steve Mann; p.18–19: © Shutterstock / pick. Original concept (cover and layout design) of series: MH Design / Maro Haas Layout: Phoenix Design Aid A/S Printed by: UNESCO Printed in France 2 UNITED NATIONS WORLD WATER ASSESSMENT PROGRAMME Summary The objective of this study is to analyse the origins and characteristics of the carbon and water footprints in order to understand their similarities and differences and to derive lessons on how society and business can adequately build on the two concepts. We compare the two concepts from a methodological point of view and discuss response mechanisms that have been developed, with the hope that experiences in one field might be able to benefit the other.
    [Show full text]
  • Factors That Affect the Ecological Footprint Depending on the Different Income Levels
    AIMS Energy, 4(4): 557-573. DOI: 10.3934/energy.2016.4.557 Received: 23 December 2015 Accepted: 15 May 2016 Published: 19 May 2016 http://www.aimspress.com/journal/energy Research article Factors that affect the ecological footprint depending on the different income levels Sheng-Tung Chen * and Hui-Ting Chang Department of Public Finance, Feng Chia University, Taichung, 40724 Taiwan * Correspondence: Email: [email protected]; Tel: +886-4-2451-7250 Ext. 4310; Fax: +886-4-2451-2749. Abstract: The ecological footprint provides a method for measuring how much lands can support the consumption of the natural resources. Development and biocapacity debates revolve mainly around the factors that affect the ecological footprint and the approaches to improve the environmental quality. Therefore, we conducted the panel analysis of data for 99 countries from 1981 to 2006 to determine what factors affect the ecological footprint. The empirical results show that the effect of GDP per capita on the ecological footprint varies for different income levels. The effect of urbanization is significantly positive across income levels, which means that the higher the rate of urbanization in high or low income country, the higher the ecological footprint. As developing countries pursue economic development, there will be an impact on the environment. The developed countries may seek to develop their economies through activities that are more detrimental to the environment. Additionally, the export of goods and services divided by GDP is significant, which means that the higher the volume of exports, the greater the burden on the environment. However, this effect is not significant across different income level models.
    [Show full text]