Distributed Amplifiers

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Amplifiers Distributed Amplifiers Ali Medi Outline • Introduction • DA principles of operation • DA with artificial T-lines • DAs with improved gain stages • Noise in DAs • DAs with tapered T-lines • Loss compensation in DAs • Transformer-based DA 2 Introduction • Distributed amplifier basic idea first introduced in 1936 [Percival 36] to overcome traditional GBW limit of vacuum tube amplifiers. • The name distributed amplifier first introduced in [Ginzton 48]. • The key idea is to absorb parasitic capacitances of the transistors into T-lines to improve the amplifier bandwidth. 3 DA principles of operation −휃푔/2 푉푔1 = 푉푖푛푒 1 −(푘− )휃푔 푉푔푘 = 푉푖푛푒 2 퐼푑푘 = 푔푚푘푉푔푘 푛 1 1 퐼 = 퐼 푒−(푛−푘+2)휃푑 표푢푡 2 푑푘 푘=1 휃푔,푑 = 훾푔,푑푙푔,푑 = 훼푔,푑 + 푗훽푔,푑 푙푔,푑 퐿푔 푛 푍0푔 = 1 퐶푔 + 퐶푔푠/푙푔 퐼 = 푉 푒−푛휃푑푒−(휃푔−휃푑)/2 푔 푒−(푘−1)(휃푔−휃푑) 표푢푡 2 푖푛 푚푘 푘=1 퐿푑 푍0푑 = 푔푚푘 = 푔푚 퐶푑 + 퐶푑푠/푙푑 1 1 − 푒−푛(휃푔−휃푑) −푛휃푑 −(휃푔−휃푑)/2 퐼표푢푡 = 푔푚푉푖푛푒 푒 2 1 − 푒−(휃푔−휃푑) 4 DA principles of operation 1 푒−푛휃푑 − 푒−푛휃푔 퐴푣 = 푔푚푍0푑 2 푒(휃푔−휃푑)/2 − 푒−(휃푔−휃푑)/2 For Loss-less T-lines (αg = αd =0) 푛 1 sin 훽푔푙푔 − 훽푑푙푑 퐴 = 푔 푍 2 푣 푚 0푑 1 2 sin 훽 푙 − 훽 푙 2 푔 푔 푑 푑 Available power gain 2 1 2 푛 푍0푑 퐼표푢푡 1 sin 훽푔푙푔 − 훽푑푙푑 퐺 = 2 = 푔2 푍 푍 2 푝 2 푚 0푔 0푑 1 푉푖푛/2푍0푔 4 sin 훽 푙 − 훽 푙 2 푔 푔 푑 푑 For 훽푔푙푔 = 훽푑푙푑 1 퐴 = 푛푔 푍 푣 2 푚 0푑 1 퐺 = 푛2푔2 푍 푍 푝 4 푚 0푔 0푑 5 DA principles of operation • The available power gain derived as 1 퐺 = 푛2푔2 푍 푍 푝 4 푚 0푔 0푑 • The power gain can be increased using more gain stages (n). • In presence of T-line losses 2 −푛훼푑푙푑 −푛훼푔푙푔 1 2 푒 − 푒 퐺푝 = 푔푚푍0푔푍0푑 4 푒(훼푔푙푔−훼푑푙푑)/2 − 푒−(훼푔푙푔−훼푑푙푑)/2 • There is an optimum n that maximizes Gp: ln⁡(훼푔푙푔/훼푑푙푑) 푛표푝푡 = 훼푔푙푔 − 훼푑푙푑 6 DA principles of operation • It is desired to have T-lines with high Z0. • Narrow T-line: higher loss (ohmic and skin effect), electron-migration limit (~ 1mA/um2). • Line losses are frequency-dependent; affecting gain flatness. 7 DA with artificial T-lines • Image impedance for artificial T-line: 퐿 1 푍푖휋 = 퐶 휔 2 1 − 휔푐 −1 • Line propagation factor: 휃 = 2 sin 휔 휔푐 • Line cut-off frequency:휔푐 = 2/ 퐿퐶 8 DA with artificial T-lines • Assuming ωcg= ωcd and θg=θd 1 1 2 2 −2푛훼푔(휔) 퐺푝 = 푛 푔푚푅0푔푅0푑푒 2⁡ 4 1 − 휔 휔푐 • DA bandwidth is limited by cut-off freq. of T-lines. • DA GBW limit: 푛푔 퐴 0 휔 = 푚 ≅ 푛휔 푣 푐 퐶 푇 • DA frequency response exhibits undesired peaking near cut-off freq. • Input and output lines of DA should be terminated in their image impedance. 9 High-gain DA architectures Cascaded DA Matrix DA 14 DA with improved gain stage Design issues in DA gain stages: • High Gm value is desired to enhance DA gain. • Gm variations with freq. affect the DA gain flatness. • BW of DA is limited by BW of Gm stages. • Noise contribution of Gm stage should be low. • The DA stability is compromised when using multi- stage amplifiers as gain stage. 15 DA with improved gain stage • A high-gain cascode amplifier is used as gain stage (low freq. Gm= gm1gm2R) • Values of R and L are optimized to achieve flat response. • Average gain of 16dB is achieved over 0-11 GHz in 0.18-um CMOS. [Guan 06] 16 DA with inductive-peaking gain stage • Flat and high gain and flat and low NF are achieved by adopting a slightly under-damped Q factor for the second-order Gm freq. response. • Two-stage DA with S21 > 20 dB over 3-10 GHz is designed in 0.13-um CMOS. [Lin 11] 17 DA with cascaded gain stages [Chien 07] 18 Noise in Distributed Amplifiers • Noise sources in DA: – Noise from input source resistance – Noise from input line termination – Noise from output line termination – Noise from transistors (drain and gate current noises) [Aitchison 85] 21 Noise in Distributed Amplifiers • Concepts of forward and reverse gain: 푛 2 1 sin 훽푔푙푔 − 훽푑푙푑 1 퐺 = 푔2 푍 푍 2 = 푛2푔2 푍 푍 ⁡⁡⁡⁡⁡⁡ 훽 푙 = 훽 푙 푓 4 푚 0푔 0푑 1 4 푚 0푔 0푑 푔 푔 푑 푑 sin 2 훽푔푙푔 − 훽푑푙푑 2 푛 2 1 sin 훽푔푙푔 + 훽푑푙푑 1 sin 푛훽푙 퐺 = 푔2 푍 푍 2 퐺 = 푔2 푍 푍 ⁡⁡⁡⁡⁡⁡ 훽 푙 = 훽 푙 푟 4 푚 0푔 0푑 1 푟 4 푚 0푔 0푑 sin 훽푙 푔 푔 푑 푑 sin 2 훽푔푙푔 + 훽푑푙푑 22 Noise in Distributed Amplifiers • Noise from input source resistance appears in the output with gain of Gf. • Noise from input line termination appears in the output with gain of Gr. • Noise from output line termination directly appears in the output. • Output noise due to drain current noise source in k-th transistor: 1 푖 (푘) = 푖 푒−푗 푛−푘+1 훽푑 푛,표푢푡,퐼 2 푛푑,푘 23 Noise due to gate current noise • Output noise due to gate current noise in k-th transistor: – Forward amplification path: 1 푖 (푘) = 푔 푖 푍 (푛 − 푘 + 1)푒−푗 푛−푘+1 훽 푛,표푢푡,퐼퐼 4 푚 푛푔,푘 0푔 – Reverse amplification path: 1 sin(푘 − 1)훽 푖 (푘) = 푔 푖 푍 ⁡푒−푗 푛+1 훽 푛,표푢푡,퐼퐼퐼 4 푚 푛푔,푘 0푔 sin 훽 24 Overall noise generated by transistors • Neglecting correlation between the drain and gate current noises, output noise power due to transistors is derived as: 2 푛 2 1 2 1 2 푉푛,표푢푡 = 푔푚푍0푔 푓(푟, 훽) 푖푛푔 + 푛푖푛푑 푍0푑 4 푟=1 4 • For FET devices: 25 DA Noise Factor • Noise from gate line termination is important in low and high frequencies. 훽 = 0⁡, 휋⁡(휔 = 0⁡, 휔푐) → sin푛훽 푛 sin 훽 = 1 • For large values of n, noise from transistors would be dominant: 26 DA noise reduction using passive termination • The terminating resistor of the gate T-line is replaced with a resistive-inductive network. • This terminating circuit improves the average noise: – It produces less thermal noise at low frequencies – It adds an intentional mismatch preventing the noise power to be fully transmitted to the T-line. • Optimized values of Rg1,2 for min. noise: 20, 50 Ω [Moez 08] 27 DA noise reduction using passive termination • The lowest NF (1.8 dB) reported for DA in 0.18-um CMOS. 28 DA noise reduction using active termination • A diode-connected transistor is used for termination of the input line (Req = 1/gm = 50Ω). • A large device with low current is adopted to achieve low noise. • NF < 2.2 dB achieved over 1-24 GHz (0.25-um pHEMT). NF (dB) Conventional Active termination [Ikalainen 96] 29 DA noise reduction using high-resistance term. • The input line terminated in a high resistance values, and designed as a transformer to provide matching. • The max. value of termination is determined by the design bandwidth. 50Ω 125Ω 250Ω [Meharry IMS 07] 30 Weighted Distributed Amplification • View the whole DA as a finite-impulse-response (FIR) system for different noise sources. • Design problem: find the best weights for a given DC bias. Wang and Hajimiri, ISSCC 09 31 Weighted Distributed Amplification Wang and Hajimiri, ISSCC 09 32 Tapered-Line DA • Reverse output line termination is eliminated. [Ginzton 48] 33 Tapered-Line DA 34 Tapered-Line DA 35 Tapered-Line DA design issues • Condition ID1 = ID2 cannot be satisfied perfectly; leading to reflection in output line. • If Z0/n is different with load termination, a transformer would be needed at the output. • For large values of n, very narrow or wide lines would be required in the output line sections. 36 Tapered-Line DA practical example J. Roderick and H. Hashemi, ISSCC 09 37 Tapered-Line DA practical example J. Roderick and H. Hashemi, ISSCC 09 38 Tapered DA with line termination • The line impedances are tapered by scaling their lengths. • M-derived section are employed to improve impedance matching. Arbabian and Niknejad, TMTT 09 39 Tapered DA with line termination • Elevated CPW with shielding is used to achieve high Z0 values while reducing line losses. • CPW Z0 increases with decreasing W/(W+2G). – W↓ : ohmic loss↑ – G↑ : shunt loss↑ • E-CPW improves Z0 and loss. 40 Tapered DA with line termination • E-CPW provides Z0 over 80Ω and loss less than 0.5dB/mm over 20-60 GHz. • Four DA stages are cascaded to improve the gain. 41 Distributed Power Amplifiers • One major deficiency of broadband power amplifiers is their relative low efficiency. • In a conventional distributed PA: – The largest voltage swing occurs at the last stage. – Only the last stage experiences max. allowed voltage swing when output power saturates. – The preceding stages never approach max. available voltage swing, hence, degrade the overall efficiency. • The output-line impedance needs to scale up from the last stage to the first stage while the transistor size and bias current need to scale down in the same direction. Chen and Niknejad, TMTT 11 42 DA with internal feedback • Feedback can be employed to improve DA gain. Arbabian and Niknejad, ISSCC 08 43 DA with internal feedback • The forward-to-reverse isolation allows stable operation. • The input DA designed for low noise. • The output DA designed for high output power.
Recommended publications
  • Design of a Low Noise Distributed Amplifier with Adjustable Gain Control in 0.15 M Gaas PHEMT
    Vol. 33, No. 3 Journal of Semiconductors March 2012 Design of a low noise distributed amplifier with adjustable gain control in 0.15 m GaAs PHEMT Zhang Ying(张瑛), Wang Zhigong(王志功), Xu Jian(徐建), and Luo Yin(罗寅) Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China Abstract: A low noise distributed amplifier consisting of 9 gain cells is presented. The chip is fabricated with 0.15-m GaAs pseudomorphic high electron mobility transistor (PHEMT) technology from Win Semiconductor of Taiwan. A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB. A novel cascode structure is adopted to extend the output voltage and bandwidth. The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of 1 dB in the 2–20 GHz band. The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz. The amplifier˙ also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point (IIP3), which demonstrates the excellent performance of linearity. The power consumption is 300 mW with a supply of 5 V, and the chip area is 2.36 1.01 mm2. Key words: distributed amplifiers; low noise; adjustable gain control; GaAs PHEMT DOI: 10.1088/1674-4926/33/3/035003 EEACC: 2570 1. Introduction structure is introduced to extend the output voltage and band- width. A special optional gate bias technique is used to allow With the rapid development of wireless and optical com- an adjustable gain control range of 10 dB.
    [Show full text]
  • Distributed Integrated Circuits: Wideband Communications for the 21St Century by Ali Hajimiri
    Distributed Integrated Circuits: Wideband Communications for the 21st Century by Ali Hajimiri lobal communications mitted per second (i.e., bit rate) G have rendered our world a determines the speed of a digital smaller, yet more interest- communications system. C.E. ing place, making it possi- Shannon, the founder of modern ble to exchange visions, ideas, information theory, proved that the goals, dreams—and PoKéMoN maximum achievable bit rate of a cards—across our small planet. digital communications system Modern communications systems, increases linearly with the available such as the internet and portable range of frequencies (i.e., channel wireless systems, have added new bandwidth) and logarithmically dimensions to an already complex with the signal-to-noise ratio. world. They make us aware of our Thus, three critical parameters, similarities and differences and give namely, bandwidth, signal power, us an opportunity to communicate and noise, are the most important with people we have never met parameters in determining the per- from places we have never been. formance of any given communica- The fusion of education with com- Ali Hajimiri tions system. munication is already bringing One of the more common about new levels of awareness, methods of increasing the band- accompanied by creative upheavals million) of reliable active (e.g., tran- width, and hence the bit rate, of in all aspects of modern life. sistors) and passive (e.g., intercon- any given system is to migrate to However, the ever-increasing nect) devices. Further, they are rela- higher operating frequencies. The demand for more connectivity tively inexpensive to incorporate maximum speed of operation in inevitably increases the complexity into mass-market products.
    [Show full text]
  • Breaking Bandwidth Limit: a Review of Broadband Doherty Power Amplifier Design for 5G
    1 Breaking Bandwidth Limit: A Review of Broadband Doherty Power Amplifier Design for 5G Gholamreza Nikandish, Member, IEEE, Robert Bogdan Staszewski, Fellow, IEEE, and Anding Zhu, Senior Member, IEEE I. INTRODUCTION [6]–[11]. However, there is no complete review on broadband HE next generation wireless network, 5G, is expected to design techniques for the DPA, an essential subject for 5G T provide ubiquitous connections to billions of devices as wireless transmitters. well as to unlock many new services with multi-Gigabit-per- In this paper, we present a comprehensive review and second data transmission. To meet ever increasing demands for critical discussion on bandwidth enhancement techniques for higher data rates and larger capacity, new modulation schemes the DPA proposed in the literature, in order to provide a have been developed and wider frequency bands, e.g., at mm- thorough understating of broadband design of DPA for high- wave, have been designated to 5G [1], [2]. Massive multi-input efficiency 5G wireless transmitters. The paper is organized multi-output (MIMO), that uses a large number of antennas at as follows. In Section II, we discuss the main bandwidth the transmitter and receiver, has been considered as one of the limitation factors. In Section III, we review various bandwidth key enabling technologies in 5G to improve data throughput enhancement techniques for the DPA, including modified load and spectrum efficiency [3]. These new application scenarios modulation networks, frequency response optimization, para- pose stringent requirements on the wireless transceiver front- sitic compensation, post-matching, distributed DPA, and dual- ends and call for special considerations at both circuit and input digital DPA.
    [Show full text]
  • Broadband Mm-Wave Signal Generation and Amplification In
    Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 ○c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 22, 2015 Certified by. Ruonan Han Assistant Professor Thesis Supervisor Accepted by........................................................... Albert R. Meyer Chairman, Masters of Engineering Thesis Committee 2 Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science on May 22, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract This thesis explores the concept of synthesizing tunable impedances by establishing the appropriate phase relationship between the drain voltage and drain current of a MOS transistor. A high frequency, wide tuning range 105-121GHz oscillator and a small-footprint 20-40GHz oscillator using synthetic resonance are presented. The concept of impedance synthesis is also used to generate a novel frequency-adaptive loss compensation scheme for distributed amplifiers which is shown to improve the bandwidth by 30%. The performance of these circuits was analyzed and simulated on a TSMC 65nm bulk CMOS process. Thesis Supervisor: Ruonan Han Title: Assistant Professor 3 4 Acknowledgments Firstly, I would like to thank my advisor Professor Ruonan Han for giving me an interesting research area to explore and encouraging me throughout.
    [Show full text]
  • The Vacuum Tube Distributed Amplifier
    The vacuum tube distributed amplifier I want to spend few words about a smart solution found in the past to the apparently insoluble problem of building very wide band amplifiers. When the frequency raises, the bandwidth of any conventional amplifiers is limited by its gain decrease, until the gain of each stage approaches the unity. William Percival in 1936 proposed the architecture of the distributed amplifier to overcome this limit: two or more tubes are connected in such a way to have their anode currents, and hence their outputs, summed in the load impedance, although the parasitic capacitors are not paralleled. Figure 1 illustrates this principle. Grids and plates of the vacuum tubes are connected to the intermediate taps of two transmission lines, formed by the inductances Lg and Lp and by the parasitic capacitance of the tubes themselves, Cg and Cp. The two lines give the same phase delay on the grid and on the anode of each tube. Consequently the output of each tube appears in the plate line exactly in phase with the output of other tubes, summing all together, after a time equal to the propagation delay of the plate line, in the output load impedance Zl. If the output impedance matches the plate line impedance Zp, then the output voltage will be 1/2(eg*gm*Zl)*n, where n is the number of the tubes. The voltage gain of the amplifier with n tubes is therefore 1/2(gm*Zl)*n. Making n great enough, or using the right quantity of tubes, the gain of the amplifier can be made as high as needed, even when the gain of each tube, gm, is lower than unity.
    [Show full text]
  • Broadband Traveling Wave Distributed Amplifier (TWDA) with Variable Gain by Control the Source Bulk Voltage
    International Conference on Electrical, Electronics and Communication Engineering (ICEEC'2012) September 8-9, 2012 Bangkok (Thailand) Broadband Traveling Wave Distributed Amplifier (TWDA) with Variable Gain By Control the Source Bulk Voltage Saeed.Zakeri, Dr. Ebrahim.Abiri, Hefzollah.Mohammadian Abstract— This paper begins with a review of elements of the II. MICROWAVE FREQUENCIES AND ITS APPLICATIONS distributed amplifier and with goal of to design an amplifier with a distributed structure with appropriate parameters has ended .In this TABLE I paper to build the amplifier also helps Structure designed to help and DIVIDES THE FREQUENCY BAND more advanced technology has been used. Now that the parameters at high frequencies with good scattering and other quality attributes surveyed in a microwave amplifier, including power, input and output VSWR values and noise and etc give us. In the design of this amplifier is used two transmission lines that one of them, connected to the gate of several transistors and the other one is connected to the drain of the same transistors. This transmission lines acts like a filter Which Gate – source capacitors and the inductors (that we have designed) create the Gate transmission line Filter. Also drain – source capacitors and the inductors (that we have designed it) create the drain transmission line TABLE II Filter .Finally we will arrive the desired result with Study and DIVISION BAND MICROWAVE FREQUENCIES analysis of whole network and using simulation results with calculate the parameters of amplifiers. Keywords— Scattering Parameters, Vswr, Available Power, Distributed Structure. I. INTRODUCTION IGH frequency circuits and techniques used in H communication systems have grown dramatically in recent years.
    [Show full text]
  • Distributed Power Amplifiers for Software Defined Radio Applications
    Distributed Power Amplifiers for Software Defined Radio Applications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Narendra Kumar, M.Sc B.E(Hons) aus Penang, Malaysia Berichter: Univ.-Prof. Dr.-Ing. Rolf H. Jansen Univ.-Prof. Dr.-Ing. Dirk Heberling Univ.-Prof. Ernesto Limiti Tag der mündlichen Prüfung: 23. Mai 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar i Acknowledgements I would not be able to complete this thesis without the support of numerous individuals and institutions e.g. Prof. Dr.-Ing. Rolf H. Jansen (RWTH Aachen University, Germany), Bob Stengel (Motorola Labs, Florida, US), Chacko Prakash (Motorola Research Center, Malaysia), Prof. Ernesto Limiti (University Roma Tor Vergata, Italy), Prof. Claudio Paoloni (University Roma Tor Vergata, Italy), Prof. Juan-Mari Collantes (University of Basque Country, Spain), Prof. Yarman Siddik (Istanbul University, Turkey), Thomas Chong ((Motorola Research Center, Malaysia), Dr. Vitaliy Zhurbenkho (Technical University Denmark, Denmark). I would like to express my special gratitude to Prof. Dr.-Ing. Rolf H. Jansen, the head of the Chair of Electromagnetic Theory (ITHE), RWTH Aachen University, for giving me the opportunity and the freedom to complete my Ph.D research under his supervision. Also, I would like to thank him for supporting me with the insight in academic aspects and the fruitful discussions. I am grateful to Prof. Dr.-Ing. Dirk Heberling to be co-referee and Prof. Ernesto Limiti as an external examiner for my thesis examination. In addition, I am grateful to Motorola Education Assistance Board (Lee SiewYin, Fam FookTeng, Dr.
    [Show full text]
  • A Review of Advanced CMOS RF Power Amplifier Architecture Trends
    electronics Review A Review of Advanced CMOS RF Power Amplifier Architecture Trends for Low Power 5G Wireless Networks Aleksandr Vasjanov 1,2,* and Vaidotas Barzdenas 1,2 1 Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; [email protected] 2 Micro and Nanoelectronics Systems Design and Research Laboratory, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania * Correspondence: [email protected]; Tel.: +370-5-274-4769 Received: 15 September 2018; Accepted: 19 October 2018; Published: 23 October 2018 Abstract: The structure of the modern wireless network evolves rapidly and maturing 4G networks pave the way to next generation 5G communication. A tendency of shifting from traditional high-power tower-mounted base stations towards heterogeneous elements can be spotted, which is mainly caused by the increase of annual wireless users and devices connected to the network. The radio frequency (RF) power amplifier (PA) performance directly affects the efficiency of any transmitter, therefore, the emerging 5G cellular network requires new PA architectures with improved efficiency without sacrificing linearity. A review of the most promising reported RF PA architectures is presented in this article, emphasizing advantages, disadvantages and concluding with a quantitative comparison. The main scope of reviewed papers are PAs implemented in scalable complementary metal–oxide–semiconductor (CMOS) and SiGe BiCMOS processes with output powers suitable for portable wireless devices under 32 dBm (1.5 W) in the low- and high- 5G network frequency ranges. Keywords: power amplifier; architecture; radio frequency; wireless; network; 5G; trends 1. Introduction The first most primitive radio transmitter that was used for telegraphy was developed in the early 1890s by Guglielmo Marconi.
    [Show full text]
  • A CMOS Distributed Amplifier with Distributed Active Input Balun Using
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 5, MAY 2012 1331 A CMOS Distributed Amplifier With Distributed Active Input Balun Using GBW and Linearity Enhancing Techniques Amin Jahanian, Member, IEEE, and Payam Heydari, Senior Member, IEEE Abstract—ACMOSdistributedamplifier (DA) with distributed transmission lines (t-lines) to improve efficiency for power am- active input balun is presented that achieves a gain-bandwidth plifiers. In [6], t-line tapering and -derived terminations are product of 818 GHz, while improving linearity. Each cell used in a multistage DA to improve BW. A distributed low- within the DA employs dual-output two-stage topology that im- proves gain and linearity without adversely affecting bandwidth noise amplifier (DLNA) is designed for minimum noise figure (BW) and power. Comprehensive analysis and simulations are (NF) for ultra-wideband (UWB) applications in [7]. Reference carried out to investigate gain, BW, linearity, noise, and stability [13] uses differential stages, incorporating cross-connected of the proposed cell, and compare them with conventional capacitive neutralization, distributed along nonuniform down- cells. Fabricated in a 65-nm low-power CMOS process, the sized artificial lines to improve BW. A DA with gain stages 0.9-mm DA achieves 22 dB of gain and a of 10 dBm, while consuming dc power of 97 mW from a 1.3-V supply. A distributed comprising input emitter followers and output cascode stages is balun, designed and fabricated in the same process, using the implementedinanSiGebipolartechnology in [14]. same topology achieves a BW larger than 70 GHz and a gain Besides distributed amplification, many broadband amplifiers of 4 dB with 19.5-mW power consumption from 1.3-V supply.
    [Show full text]
  • Broadband Microwave Distributed Amplifier
    Broadband Microwave Distributed Amplifier KEVIN BOWERS and PATRICK RIEHL Abstract—We present an analysis of distributed amplifiers II. DISCRETE TRANSMISSION LINES suitable for use in the microwave regime. From this we In order to derive design formulae for a FET DA, evaluate several designs using ideal components and the UC- Berkeley 217 GaAs FET. Alterations to the basic design we must first consider propagation of waves on discrete including the use of CASCODE and CASCODE gain cells and transmission structures. Alternative treatements can be 4 the use of series capacitors on the gate lines are discussed. We found (Pozar, op. cit. and in ). Consider the following implement a final design using microstrip components. The 5- circuit (Z and Y are arbitrary complex impedances and all stage design achieves 19.4 dB of power gain (+/- 1.2 dB) from voltages and currents are phasors): 0.1 to 14.3 GHz. Reflected power at the input and output from loads matched to 50 Ohms are all below –20 dB over the in-1 in in+1 in+2 bandwidth of the device, as is power transmitted from the Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 output to the input. The device is stable for broad range of + + + + + Vn-1 Y Vn Vy Y iy Vn+1 Y Vn+2 input and output loads. A novel matching network has been - - - - - designed to minimize reflections along the gate and drain lines d over all frequencies and eliminate resonant peaks that are a potential cause of instability externally. Measurements suggest Applying Kirchoff’s laws to the circuit we arrive at the the design is internally stable as well.
    [Show full text]
  • Design of a Broad-Band Distributed Amplifier And
    DESIGN OF A BROAD-BAND DISTRIBUTED AMPLIFIER AND DESIGN OF CMOS PASSIVE AND ACTIVE FILTERS DALPATADU K. RADIKE SAMANTHA Beng (Hons), NUS NATIONAL UNIVERSITY OF SINGAPORE 2011 DESIGN OF A BROAD-BAND DISTRIBUTED AMPLIFIER AND DESIGN OF CMOS PASSIVE AND ACTIVE FILTERS DALPATADU K. RADIKE SAMANTHA Beng (Hons), NUS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2011 ACKNOWLEDGEMENTS The work described in this thesis could not have been accomplished without the help and support of many individuals. First of all I would like to give my deepest gratitude to my supervisor, Assistant Professor Koen Mouthaan, for his guidance and encouragement throughout the two years. He helped me to overcome difficult problems whenever I got stuck during this period of time. Other than the academic progress he also helped me in my personal growth during the past two years. I would also like to thank Mdm Lee Siew Choo, Mdm Guo Lin and Mr Sing for their help in the fabrication and the measurement of the microwave circuits during the past two years. Also I would like to thank Mdm Zheng for her technical support. I am also thankful to all the friends in the MMIC lab who helped me during the last two years. I am truly grateful to Li Yong Fu, Hu Zijie, Azadeh Taslimi and Hu Feng for their help and technical support at various stages of the project. Also I would like to thank my brother Sandun Dalpatadu for providing support during the thesis writing.
    [Show full text]
  • Design, Analysis and Simulation of a Linear Phase Distributed Amplifier
    Journal of Communication Engineering, Vol. 8, No. 1, January-June 2019 125 Design, Analysis and Simulation of a Linear Phase Distributed Amplifier Hossein Ghani and Mahmoud Mohammad-Taheri School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran, [email protected], [email protected] Corresponding author: Mahmoud Mohammad-Taheri Abstract- In this paper a new method for the design of a linear phase distributed amplifier in 180nm CMOS technology is presented. The method is based on analogy between transversal filters and distributed amplifiers topologies. In the proposed method the linearity of the phase at frequency range of 0-50 GHz is obtained by using proper weighting factors for each gain stage in cascaded amplifier topology. These weighting factors have been extracted using MATLAB software. Finally, by plotting the frequency response of the amplifier resulted from MATLAB code and also simulation from ADS, the phase linearity of the designed amplifier is shown. Index Terms- Distributed Amplifier; Group delay; Transversal Filter; Linear phase; Weighting I. INTRODUCTION In the design of optical receiver, the phase linearity of the pre-amplifier is a main requirement in order to avoid intersymbol interference. Amplifiers used in these receivers should be also wideband. Considering these two main requirements, the distributed amplifiers could be a good candidate as the bandwidth of these amplifiers is theoretically infinite if one does not take into account the transmission line loss. In order to use a distributed amplifier (DA) as a linear phase amplifier we should find an analogy between DA and a transversal filer which has linear phase frequency response.
    [Show full text]