Distributed Power Amplifiers for Software Defined Radio Applications

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Power Amplifiers for Software Defined Radio Applications Distributed Power Amplifiers for Software Defined Radio Applications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Narendra Kumar, M.Sc B.E(Hons) aus Penang, Malaysia Berichter: Univ.-Prof. Dr.-Ing. Rolf H. Jansen Univ.-Prof. Dr.-Ing. Dirk Heberling Univ.-Prof. Ernesto Limiti Tag der mündlichen Prüfung: 23. Mai 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar i Acknowledgements I would not be able to complete this thesis without the support of numerous individuals and institutions e.g. Prof. Dr.-Ing. Rolf H. Jansen (RWTH Aachen University, Germany), Bob Stengel (Motorola Labs, Florida, US), Chacko Prakash (Motorola Research Center, Malaysia), Prof. Ernesto Limiti (University Roma Tor Vergata, Italy), Prof. Claudio Paoloni (University Roma Tor Vergata, Italy), Prof. Juan-Mari Collantes (University of Basque Country, Spain), Prof. Yarman Siddik (Istanbul University, Turkey), Thomas Chong ((Motorola Research Center, Malaysia), Dr. Vitaliy Zhurbenkho (Technical University Denmark, Denmark). I would like to express my special gratitude to Prof. Dr.-Ing. Rolf H. Jansen, the head of the Chair of Electromagnetic Theory (ITHE), RWTH Aachen University, for giving me the opportunity and the freedom to complete my Ph.D research under his supervision. Also, I would like to thank him for supporting me with the insight in academic aspects and the fruitful discussions. I am grateful to Prof. Dr.-Ing. Dirk Heberling to be co-referee and Prof. Ernesto Limiti as an external examiner for my thesis examination. In addition, I am grateful to Motorola Education Assistance Board (Lee SiewYin, Fam FookTeng, Dr. Hari Narayan, Chacko Prakash, and the team) for providing financial support. Special thank to Prof. Claudio Paoloni for his help in reviewing my thesis and provide comments. Also, sincere gratitude to Fam FookTeng, Chacko Prakash and Joey Ooi (Motorola Research Center, Florida, US) for their encouragement and motivation given during my work. My sincere gratitude extends to my parents, beloved wife and all my colleagues and friends for their kind assistance and support, including Aridas, Indra, Sangeran, Banu, Phuvaneswary, Pragash, Lokesh, Maisarah, Sathish Arumugam, Jesus Cumana, Jens Goliasch, Christian Lautensack, Sun Golian, Koh BoonPing, Solomon Lorthu, Macwien Krishnamurthy, Mohd. Fadli, Joshua Lee, Tan TiekSiew, Prabakar, Mahadev, Kogilavani, Megalah, Yogeswaran, Jeevan Kanesan, Harikrishnan, Ramesh Kumar, Shankar Karuppayah and Loganathan. ii Contents List of Acronyms and Symbols …………………………………………………………………………………vi List of Figures ….………………………………………………………………. …………………………………ix List of Tables ….………………………………………………………………. …………………………………xvi 1 Introduction ......................................................................................................................................... 1 1.1 Objective of This Work ............................................................................................................ 1 1.2 Thesis Organization ................................................................................................................ 2 2 Broadband Amplifier Limitations and Designs................................................................................ 3 2.1 Bandwidth Limitation Analysis ................................................................................................. 3 2.2 Broadband switched-mode amplifier ....................................................................................... 5 2.2.1 Parallel-circuit class E with reactance compensation technique ............................................ 5 2.2.2 Excessive capacitance absorption with shunt C-LC network ................................................. 7 2.3 Broadband High Linearity and Efficient amplifier .................................................................. 10 2.4 Multi-stage broadband amplifier ............................................................................................ 11 2.5 Balanced amplifier (BA) ........................................................................................................ 12 2.6 Unified Broadband Matching Approach ................................................................................ 14 2.7 Conclusion ............................................................................................................................. 15 3 Distributed Amplification Concept and Practical Distributed Amplifiers Design methodology .. ............................................................................................................................................................ 16 3.1 Concept of Distributed Amplification ..................................................................................... 16 3.1.1 Introduction ............................................................................................................................ 16 3.1.2 Image impedance method ..................................................................................................... 18 3.2 Theoretical Analysis of DA .................................................................................................... 20 3.2.1 Analytical approach of Beyer model (Two-port theory) ......................................................... 21 3.2.2 Analytical approach of Niclas model (Admittance matrix) ..................................................... 23 3.2.3 Analytical approach of McKay model (Wave theory) ............................................................ 25 3.3 Gain/ Power-bandwidth trade-off .......................................................................................... 27 3.4 Design Methodology of Practical DA .................................................................................... 31 3.5 Conclusion ............................................................................................................................. 39 4 Efficiency Analysis in Distributed Amplifier .................................................................................. 40 4.1 Efficiency Limitations in DA ................................................................................................... 40 4.2 Virtual Impedance analysis due to multi current sources ..................................................... 41 4.3 High Efficiency DA Development .......................................................................................... 50 4.3.1 Simulation Analysis ............................................................................................................... 50 4.3.2 Design Example of High Efficiency DA ................................................................................. 52 iii 4.3.3 Broadband Impedance Transformer Design ......................................................................... 56 4.3.4 Measurement Results ........................................................................................................... 61 4.4 Dual Fed DA with Termination Adjustment ........................................................................... 64 4.4.1 Motivation .............................................................................................................................. 64 4.4.2 Principle Operation ................................................................................................................ 64 4.4.3 Design Example of DFDA with termination adjustment ........................................................ 69 4.4.4 Measurement Results ........................................................................................................... 73 4.5 Conclusion ............................................................................................................................. 75 5 Stability Analysis in Distributed Amplifiers ................................................................................... 76 5.1 Motivation of Stability Analysis .............................................................................................. 76 5.2 Stability Analysis Methods .................................................................................................... 77 5.2.1 K-factor stability of a two port network .................................................................................. 77 5.2.2 Feedback and NDF factor ..................................................................................................... 79 5.2.3 Pole-zero identification method ............................................................................................. 82 5.3 Analysis and Conditions of Stability in DAs .......................................................................... 83 5.4 Parametric oscillations detection in DAs ............................................................................... 91 5.4.1 Introduction ............................................................................................................................ 91 5.4.2 Stability Analysis of DA ......................................................................................................... 91 5.4.3 Circuit Stabilization and Measurement Results .................................................................... 93 5.5 Conclusion ............................................................................................................................
Recommended publications
  • Design of a Low Noise Distributed Amplifier with Adjustable Gain Control in 0.15 M Gaas PHEMT
    Vol. 33, No. 3 Journal of Semiconductors March 2012 Design of a low noise distributed amplifier with adjustable gain control in 0.15 m GaAs PHEMT Zhang Ying(张瑛), Wang Zhigong(王志功), Xu Jian(徐建), and Luo Yin(罗寅) Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China Abstract: A low noise distributed amplifier consisting of 9 gain cells is presented. The chip is fabricated with 0.15-m GaAs pseudomorphic high electron mobility transistor (PHEMT) technology from Win Semiconductor of Taiwan. A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB. A novel cascode structure is adopted to extend the output voltage and bandwidth. The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of 1 dB in the 2–20 GHz band. The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz. The amplifier˙ also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point (IIP3), which demonstrates the excellent performance of linearity. The power consumption is 300 mW with a supply of 5 V, and the chip area is 2.36 1.01 mm2. Key words: distributed amplifiers; low noise; adjustable gain control; GaAs PHEMT DOI: 10.1088/1674-4926/33/3/035003 EEACC: 2570 1. Introduction structure is introduced to extend the output voltage and band- width. A special optional gate bias technique is used to allow With the rapid development of wireless and optical com- an adjustable gain control range of 10 dB.
    [Show full text]
  • Distributed Integrated Circuits: Wideband Communications for the 21St Century by Ali Hajimiri
    Distributed Integrated Circuits: Wideband Communications for the 21st Century by Ali Hajimiri lobal communications mitted per second (i.e., bit rate) G have rendered our world a determines the speed of a digital smaller, yet more interest- communications system. C.E. ing place, making it possi- Shannon, the founder of modern ble to exchange visions, ideas, information theory, proved that the goals, dreams—and PoKéMoN maximum achievable bit rate of a cards—across our small planet. digital communications system Modern communications systems, increases linearly with the available such as the internet and portable range of frequencies (i.e., channel wireless systems, have added new bandwidth) and logarithmically dimensions to an already complex with the signal-to-noise ratio. world. They make us aware of our Thus, three critical parameters, similarities and differences and give namely, bandwidth, signal power, us an opportunity to communicate and noise, are the most important with people we have never met parameters in determining the per- from places we have never been. formance of any given communica- The fusion of education with com- Ali Hajimiri tions system. munication is already bringing One of the more common about new levels of awareness, methods of increasing the band- accompanied by creative upheavals million) of reliable active (e.g., tran- width, and hence the bit rate, of in all aspects of modern life. sistors) and passive (e.g., intercon- any given system is to migrate to However, the ever-increasing nect) devices. Further, they are rela- higher operating frequencies. The demand for more connectivity tively inexpensive to incorporate maximum speed of operation in inevitably increases the complexity into mass-market products.
    [Show full text]
  • Breaking Bandwidth Limit: a Review of Broadband Doherty Power Amplifier Design for 5G
    1 Breaking Bandwidth Limit: A Review of Broadband Doherty Power Amplifier Design for 5G Gholamreza Nikandish, Member, IEEE, Robert Bogdan Staszewski, Fellow, IEEE, and Anding Zhu, Senior Member, IEEE I. INTRODUCTION [6]–[11]. However, there is no complete review on broadband HE next generation wireless network, 5G, is expected to design techniques for the DPA, an essential subject for 5G T provide ubiquitous connections to billions of devices as wireless transmitters. well as to unlock many new services with multi-Gigabit-per- In this paper, we present a comprehensive review and second data transmission. To meet ever increasing demands for critical discussion on bandwidth enhancement techniques for higher data rates and larger capacity, new modulation schemes the DPA proposed in the literature, in order to provide a have been developed and wider frequency bands, e.g., at mm- thorough understating of broadband design of DPA for high- wave, have been designated to 5G [1], [2]. Massive multi-input efficiency 5G wireless transmitters. The paper is organized multi-output (MIMO), that uses a large number of antennas at as follows. In Section II, we discuss the main bandwidth the transmitter and receiver, has been considered as one of the limitation factors. In Section III, we review various bandwidth key enabling technologies in 5G to improve data throughput enhancement techniques for the DPA, including modified load and spectrum efficiency [3]. These new application scenarios modulation networks, frequency response optimization, para- pose stringent requirements on the wireless transceiver front- sitic compensation, post-matching, distributed DPA, and dual- ends and call for special considerations at both circuit and input digital DPA.
    [Show full text]
  • P020190719536109927550.Pdf
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to www.springer.com/series/7236 Eric Vittoz Low-Power Crystal and MEMS Oscillators The Experience of Watch Developments Eric Vittoz Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland [email protected] ISSN 1558-9412 ISBN 978-90-481-9394-3 e-ISBN 978-90-481-9395-0 DOI 10.1007/978-90-481-9395-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010930852 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: Spi Publisher Services Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To my wife Monique Contents Preface ...................................................... xi Symbols ..................................................... xiii 1 Introduction ............................................. 1 1.1 Applications of Quartz Crystal Oscillators. ................ 1 1.2 HistoricalNotes ...................................... 2 1.3 TheBookStructure...................................
    [Show full text]
  • Parasitic Oscillation (Power MOSFET Paralleling)
    MOSFET Parallening (Parasitic Oscillation between Parallel Power MOSFETs) Description This document explains structures and characteristics of power MOSFETs. © 2017 - 2018 1 2018-07-26 Toshiba Electronic Devices & Storage Corporation Table of Contents Description ............................................................................................................................................ 1 Table of Contents ................................................................................................................................. 2 1. Parallel operation of MOSFETs ........................................................................................................... 3 2. Current imbalance caused by a mismatch in device characteristics (parallel operation) ..................... 3 2.1. Current imbalance in steady-state operation ......................................................................................... 3 2.2. Current imbalance during switching transitions ............................................................................. 3 3. Parasitic oscillation (parallel operation) ............................................................................................... 4 3.1. Gate voltage oscillation caused by drain-source voltage oscillation ........................................... 4 3.2. Parasitic oscillation of parallel MOSFETs .......................................................................................... 5 3.2.1. Preventing parasitic oscillation of parallel MOSFETs ..............................................................................
    [Show full text]
  • Parasitic Oscillation and Ringing of Power Mosfets Application Note
    Parasitic Oscillation and Ringing of Power MOSFETs Application Note Parasitic Oscillation and Ringing of Power MOSFETs Description This document describes the causes of and solutions for parasitic oscillation and ringing of power MOSFETs. © 2017 - 2018 1 2018-07-26 Toshiba Electronic Devices & Storage Corporation Parasitic Oscillation and Ringing of Power MOSFETs Application Note Table of Contents Description ............................................................................................................................................ 1 Table of Contents ................................................................................................................................. 2 1. Parasitic oscillation and ringing of a standalone MOSFET .......................................................... 3 2. Forming of an oscillation network ....................................................................................................... 3 2.1. Oscillation phenomenon ..................................................................................................................... 3 2.1.1. Feedback circuit (positive and negative feedback) ......................................................................... 4 2.1.2. Conditions for oscillation ...................................................................................................................... 5 2.2. MOSFET oscillation .............................................................................................................................. 5 2.2.1.
    [Show full text]
  • Self-Oscillation
    Self-oscillation Alejandro Jenkins∗ High Energy Physics, 505 Keen Building, Florida State University, Tallahassee, FL 32306-4350, USA Physicists are very familiar with forced and parametric resonance, but usually not with self- oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vi- bration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a \relaxation oscillator," i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (\entrained"). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot's theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.
    [Show full text]
  • Broadband Mm-Wave Signal Generation and Amplification In
    Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 ○c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 22, 2015 Certified by. Ruonan Han Assistant Professor Thesis Supervisor Accepted by........................................................... Albert R. Meyer Chairman, Masters of Engineering Thesis Committee 2 Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science on May 22, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract This thesis explores the concept of synthesizing tunable impedances by establishing the appropriate phase relationship between the drain voltage and drain current of a MOS transistor. A high frequency, wide tuning range 105-121GHz oscillator and a small-footprint 20-40GHz oscillator using synthetic resonance are presented. The concept of impedance synthesis is also used to generate a novel frequency-adaptive loss compensation scheme for distributed amplifiers which is shown to improve the bandwidth by 30%. The performance of these circuits was analyzed and simulated on a TSMC 65nm bulk CMOS process. Thesis Supervisor: Ruonan Han Title: Assistant Professor 3 4 Acknowledgments Firstly, I would like to thank my advisor Professor Ruonan Han for giving me an interesting research area to explore and encouraging me throughout.
    [Show full text]
  • Preventing Gan Device VHF Oscillation APEC 2017
    Preventing GaN Device VHF Oscillation APEC 2017 Zan Huang, Jason Cuadra APEC 2017 | 1 Parasitic oscillation • Parasitic oscillation can occur in any switching circuit with fast- changing voltage and current that stimulate a parasitic LC network • The oscillation becomes sustained when positive feedback with gain is present • The feedback could be through parasitic capacitance, parasitic inductance, shared or coupling inductance, etc. • Together with the device gain in the linear region, creates an oscillator • Preventing oscillation in fast-switching GaN devices is more challenging than in silicon due to • Faster dv/dt and di/dt • Higher transconductance • Violent sustained VHF oscillation (50-200MHz) will cause destruction APEC 2017 | 2 Sustained oscillation • In a half-bridge circuit with high speed devices on both the high and low side, there are three steps that yield sustained oscillation on the high-side device during low-side device turn-on, and vice versa Note: Sustained oscillation can occur even in a single-ended circuit, with very fast switching, e.g. a boost converter using a FET+diode; the analysis is similar to a half-bridge APEC 2017 | 3 Step 1: VGS change due to high dv/dt • During low-side turn-on, the high-side FET is subjected to a large positive dv/dt, which couples through CGD to increase VGS, (“Miller effect”) reducing its off-voltage margin against gate threshold VTH • To counter this, Transphorm devices are designed with a low ratio of CGD to CGS to minimize the Miller effect APEC 2017 | 4 Step 2: VGS change due
    [Show full text]
  • The Vacuum Tube Distributed Amplifier
    The vacuum tube distributed amplifier I want to spend few words about a smart solution found in the past to the apparently insoluble problem of building very wide band amplifiers. When the frequency raises, the bandwidth of any conventional amplifiers is limited by its gain decrease, until the gain of each stage approaches the unity. William Percival in 1936 proposed the architecture of the distributed amplifier to overcome this limit: two or more tubes are connected in such a way to have their anode currents, and hence their outputs, summed in the load impedance, although the parasitic capacitors are not paralleled. Figure 1 illustrates this principle. Grids and plates of the vacuum tubes are connected to the intermediate taps of two transmission lines, formed by the inductances Lg and Lp and by the parasitic capacitance of the tubes themselves, Cg and Cp. The two lines give the same phase delay on the grid and on the anode of each tube. Consequently the output of each tube appears in the plate line exactly in phase with the output of other tubes, summing all together, after a time equal to the propagation delay of the plate line, in the output load impedance Zl. If the output impedance matches the plate line impedance Zp, then the output voltage will be 1/2(eg*gm*Zl)*n, where n is the number of the tubes. The voltage gain of the amplifier with n tubes is therefore 1/2(gm*Zl)*n. Making n great enough, or using the right quantity of tubes, the gain of the amplifier can be made as high as needed, even when the gain of each tube, gm, is lower than unity.
    [Show full text]
  • Circuit Design for RF Transceivers Text.Pdf
    Circuit Design for RF Transceivers Domine Leenaerts, Johan van der Tang and Cicero Vaucher Kluwer Academic Publishers CIRCUIT DESIGN FOR RF TRANSCEIVERS CIRCUIT DESIGN FOR RF TRANSCEIVERS By Domine Leenaerts Philips Research Laboratories Eindhoven Johan van derTang Eindhoven University of Technology and Cicero S. Vaucher Philips Research Laboratories Eindhoven KLUWER ACADEMIC PUBLISHERS BOSTON / DORDRECHT / LONDON EELCl|tTj A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 0-7923-7551-3 Published by Kluwer Academic Publishers, P.O. Box 1 7, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Nonwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved © 2001 Kluwer Academic Publishers, Boston No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Printed in the Netherlands. To Lisanne, Nienke, and Viviane Contents Preface xiii 1 1 . RF DESIGN: CONCEPTS AND TECHNOLOGY 1 1 . 1 RF Specifications 1.1.1 Gain 2 1.1.2 Noise 6 1.1.3 Non-linearity 10 1.1.4 Sensitivity 14 1.2 RF Device Technology 14 1.2.1 Characterization and Modeling 15 Modeling 15 Cut-off Frequency 17 Maximum Oscillation Frequency 20 Input Limited Frequency 21 Output Limited Frequency 22 Maximum Available Bandwidth 23 1.2.2 Technology Choice 23 Double Poly Devices 24 Silicon-on-Anything 26 Comparison 28 SiGe Bipolar Technology 30 RF CMOS 30 1.3 Passives 33 1.3.1 Resistors 34 1.3.2 Capacitors 35 1.3.3 Planar Monolithic Inductors 37 References 42 2.
    [Show full text]
  • In This Issue Editors’ Notes
    Volume 41, Number 3, 2007 A forum for the exchange of circuits, systems, and software for real-world signal processing In This Issue Editors’ Notes . 2 If All Else Fails, Read This Article—Avoid Common Problems When Designing Amplifier Circuits. 3 Product Introductions and Authors . 7 40 Years of Analog Dialogue, Featuring the Authors . 8 8-Channel, 12-Bit, 10-MSPS to 50-MSPS Front End: The AD9271—A Revolutionary Solution for Portable Ultrasound. 10 Toward More-Compact Digital Microphones . 13 www.analog.com/analogdialogue Editors’ Notes Some possible areas for research include underground and IN THIS ISSUE underwater radio antennas, RFID-radar, black hole antennas, and Modern op amps and in-amps provide great NIST WWVB radio broadcasts. More information can be found benefits to the designer, and a great many at the Location Challenge (http://www.wearablesmartsensors. clever, useful, and tempting circuit applications com/location_challenge.html). have been published. But all too often, in one’s Do any of your readers have an idea that no one has yet thought of? haste to assemble a circuit, some very basic issues are overlooked, leading to the circuit not Bob Paddock [[email protected]] functioning as expected—or perhaps at all. The Dan Chimes In article on page 3, destined to be a classic, will A productive place to start may be with locating tunnels used discuss a few of the most common application problems and suggest by escaping convicts, terrorists, and smugglers of dope, other practical solutions. contraband, and people. As a medium for R&D, there are many Medical ultrasound systems, among the more complex signal processing more of them to be found, and if we can solve that problem, it devices in use today, are used for real-time detection of health problems may be a big step toward locating the (less frequently) lost miners.
    [Show full text]