Distributed Integrated Circuits: Wideband Communications for the 21St Century by Ali Hajimiri

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Integrated Circuits: Wideband Communications for the 21St Century by Ali Hajimiri Distributed Integrated Circuits: Wideband Communications for the 21st Century by Ali Hajimiri lobal communications mitted per second (i.e., bit rate) G have rendered our world a determines the speed of a digital smaller, yet more interest- communications system. C.E. ing place, making it possi- Shannon, the founder of modern ble to exchange visions, ideas, information theory, proved that the goals, dreams—and PoKéMoN maximum achievable bit rate of a cards—across our small planet. digital communications system Modern communications systems, increases linearly with the available such as the internet and portable range of frequencies (i.e., channel wireless systems, have added new bandwidth) and logarithmically dimensions to an already complex with the signal-to-noise ratio. world. They make us aware of our Thus, three critical parameters, similarities and differences and give namely, bandwidth, signal power, us an opportunity to communicate and noise, are the most important with people we have never met parameters in determining the per- from places we have never been. formance of any given communica- The fusion of education with com- Ali Hajimiri tions system. munication is already bringing One of the more common about new levels of awareness, methods of increasing the band- accompanied by creative upheavals million) of reliable active (e.g., tran- width, and hence the bit rate, of in all aspects of modern life. sistors) and passive (e.g., intercon- any given system is to migrate to However, the ever-increasing nect) devices. Further, they are rela- higher operating frequencies. The demand for more connectivity tively inexpensive to incorporate maximum speed of operation in inevitably increases the complexity into mass-market products. electrical systems is determined by of such systems. Integrated systems The realization of revolution- the performance of both active and and circuits continue to play a cen- ary ideas in communications passive devices. While in modern tral role in the evolution of compo- depends heavily on the perform- integrated-circuit technologies the nent design. Silicon-based integrat- ance of the integrated electronic single-transitor maximum frequen- ed-circuit technologies (particularly circuits used to implement them. cy of operation can be quite high, complementary metal oxide semi- Let’s consider some well-estab- actual circuits rarely operate any- conductor, or CMOS) are the only lished theoretical background for a where near these frequencies.1 This technologies to date capable of pro- moment. The maximum number of provides further motivation to pur- viding a very large number (over a bits (1s and 0s) that can be trans- sue alternative approaches to allevi- 1 A transistor in a given process technology is usually characterized by its unity-gain frequency shown as fT . This is the frequency at which the cur- rent gain (the ratio of the output current to input current) of a transistor drops to unity. While the unity-gain frequency of a transistor provides an approximate measure to compare transistors in different technologies, the circuits built using these transistors scarcely operate close to the fT and usually operate at frequencies 4 to 100 times smaller depending on the complexity of their function. There are two main reasons for this behavior. First, many systems rely on closed-loop operation based on negative feedback to perform a given function independent of the parameter variations. An open-loop gain much higher than one is thus required for the negative feedback to be effective. This higher gain can be only achieved by operat- ing the transistors at a lower frequency than the fT to provide the desired gain. Second, integrated passive devices necessary in most of the high- speed analog circuits have their own frequency limitations due to parasitic components that can become design bottlenecks. The combination of these two effects significantly lowers the maximum frequency of reliable operation in most conventional circuit building blocks engenious winter 2003 progress reports ate bandwidth limitations, particu- traveling wave on the input line. larly in silicon-based systems Each transistor adds power in which, despite their reliability, suf- phase to the signal at each tap fer from low transistor speed, poor point on the output line. The for- passive performance, and high ward traveling wave on the gate noise compared with other tech- line and the backward (traveling to nologies. the left) wave on the drain line are The complex and strong inter- Figure 1. A distributed amplifier consisting of absorbed by terminations matched relations between constraints in two transmission lines and multiple transis- to the loaded characteristic imped- tors providing gain through multiple signal modern communications systems ance of the input line, R , and out- paths that amplify the forward traveling in have forced us to reinvestigate our wave. Each transistor adds power in phase to put line, Rout, respectively, to avoid approach to system design. “Divide the signal at each tap point on the output reflections. and conquer” has been the principle line. Each pathway provides some gain and In a distributed amplifier, one therefore the whole amplifier is capable of used to solve many scientific and providing a higher gain-bandwidth product tries to avoid a “weakest-link” situ- engineering problems. Over many than a conventional amplifier. ation by providing multiple, equally years, we have devised systematic strong (or equally weak) parallel ways to divide a design objective paths for the signal. In the absence into a collection of smaller projects gle signal path, distributed inte- of passive loss, additional gain can and tasks defined at multiple levels grated systems and circuits rely on be achieved without a significant of abstraction artificially created to multiple parallel paths operating in reduction in the bandwidth by render the problem more tractable. harmony to achieve an objective. addition of extra transistor seg- While this divide-and-conquer However, this multiple signal-path ments. This is the direct result of process has been rather successful feature often results in strong elec- multiple signal paths in the circuit. in streamlining innovation, it is a tromagnetic couplings between cir- The extended bandwidth of the double-edged sword, as some of the cuit components, which makes it distributed amplifier comes at the most interesting possibilities fall in necessary to perform the analysis price of a larger time delay between the boundary between different and the design of distributed cir- its input and output, as there is a disciplines and thus hide from the cuits across multiple levels, a task trade-off between the bandwidth narrow field of view available at not crucial when using the “divide and delay in an amplifier. each level. Thus, approaching the and conquer” approach. Alternatively, one can think of this problem across multiple levels of This concept can be best seen approach as a method of absorbing abstraction seems to be the most through the distributed amplifier the parasitic capacitances of the promising way to find solutions not (originally suggested by Percival transistors into the transmission easily seen when one confines the and first implemented by Ginzton) lines and making them a part of search space to one level. sketched in Figure 1. This amplifier the passive network. Distributed circuit and system consists of two transmission design is a multi-level approach lines on the input and the out- allowing more integral co-design of put, and multiple transistors t Caltech, one of our most the building blocks at the circuit providing gain through multi- A exciting breakthroughs and device levels. This approach ple signal paths. The forward has been in the area of can be used to greatly alleviate the (to the right in the figure) silicon-based distributed frequency, noise, and energy effi- wave on the input line is amplified circuits for communication systems; ciency limitations of conventional by each transistor. The incident we have achieved unprecedented circuits. Unlike conventional cir- wave on the output line travels for- performance for communication cuits, which often consist of a sin- ward in synchronization with the blocks and systems. 12 13 In particular, we have used the This concept has been successfully have been made in this direction, a concept of distributed systems to demonstrated in the distributed watt-level, truly fully integrated demonstrate an extremely high- voltage-controlled oscillator of CMOS power amplifier has not speed voltage-controlled oscillator Figure 2b where alternative signal been demonstrated using the tradi- using a low-performance CMOS paths have been introduced to tional power-amplifier design tech- technology with small cut-off fre- change the electrical length seen by niques. quencies for the active and passive the traveling wave. components (see Figure 2). This Another component we oscillator uses the delay introduced have devised is the distributed wo main obstacles in the by the distributed amplifier to sus- active transformer (DAT) T design of a fully integrated tain electrical oscillation by contin- power amplifier. The design of power amplifier are the uous amplification of the signal a fully integrated silicon-based low breakdown voltages of around a loop. The oscillation fre- power amplifier with high output transistors and the high losses of quency is determined by the round- power, efficiency, and gain has been passive components. The low trip time delay, i.e., the time it takes one of the unsolved major chal- breakdown voltage limits the volt- the wave to travel through the lenges in today’s pursuit of a single- age swing at the output node, transmission lines and get amplified chip integrated communication sys- which in turn lowers the produced by the transistors. tems. Although several advances output power. The high passive loss Tunability is an essential fea- reduces the amplifier’s power effi- ture for such distributed voltage- ciency by dissipating the generated controlled oscillators (DVCOs), and power in the signal path.
Recommended publications
  • Design of a Low Noise Distributed Amplifier with Adjustable Gain Control in 0.15 M Gaas PHEMT
    Vol. 33, No. 3 Journal of Semiconductors March 2012 Design of a low noise distributed amplifier with adjustable gain control in 0.15 m GaAs PHEMT Zhang Ying(张瑛), Wang Zhigong(王志功), Xu Jian(徐建), and Luo Yin(罗寅) Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China Abstract: A low noise distributed amplifier consisting of 9 gain cells is presented. The chip is fabricated with 0.15-m GaAs pseudomorphic high electron mobility transistor (PHEMT) technology from Win Semiconductor of Taiwan. A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB. A novel cascode structure is adopted to extend the output voltage and bandwidth. The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of 1 dB in the 2–20 GHz band. The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz. The amplifier˙ also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point (IIP3), which demonstrates the excellent performance of linearity. The power consumption is 300 mW with a supply of 5 V, and the chip area is 2.36 1.01 mm2. Key words: distributed amplifiers; low noise; adjustable gain control; GaAs PHEMT DOI: 10.1088/1674-4926/33/3/035003 EEACC: 2570 1. Introduction structure is introduced to extend the output voltage and band- width. A special optional gate bias technique is used to allow With the rapid development of wireless and optical com- an adjustable gain control range of 10 dB.
    [Show full text]
  • Breaking Bandwidth Limit: a Review of Broadband Doherty Power Amplifier Design for 5G
    1 Breaking Bandwidth Limit: A Review of Broadband Doherty Power Amplifier Design for 5G Gholamreza Nikandish, Member, IEEE, Robert Bogdan Staszewski, Fellow, IEEE, and Anding Zhu, Senior Member, IEEE I. INTRODUCTION [6]–[11]. However, there is no complete review on broadband HE next generation wireless network, 5G, is expected to design techniques for the DPA, an essential subject for 5G T provide ubiquitous connections to billions of devices as wireless transmitters. well as to unlock many new services with multi-Gigabit-per- In this paper, we present a comprehensive review and second data transmission. To meet ever increasing demands for critical discussion on bandwidth enhancement techniques for higher data rates and larger capacity, new modulation schemes the DPA proposed in the literature, in order to provide a have been developed and wider frequency bands, e.g., at mm- thorough understating of broadband design of DPA for high- wave, have been designated to 5G [1], [2]. Massive multi-input efficiency 5G wireless transmitters. The paper is organized multi-output (MIMO), that uses a large number of antennas at as follows. In Section II, we discuss the main bandwidth the transmitter and receiver, has been considered as one of the limitation factors. In Section III, we review various bandwidth key enabling technologies in 5G to improve data throughput enhancement techniques for the DPA, including modified load and spectrum efficiency [3]. These new application scenarios modulation networks, frequency response optimization, para- pose stringent requirements on the wireless transceiver front- sitic compensation, post-matching, distributed DPA, and dual- ends and call for special considerations at both circuit and input digital DPA.
    [Show full text]
  • Broadband Mm-Wave Signal Generation and Amplification In
    Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 ○c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 22, 2015 Certified by. Ruonan Han Assistant Professor Thesis Supervisor Accepted by........................................................... Albert R. Meyer Chairman, Masters of Engineering Thesis Committee 2 Broadband mm-Wave Signal Generation and Amplification in CMOS Using Synthetic Impedance by Pranav R Kaundinya Submitted to the Department of Electrical Engineering and Computer Science on May 22, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract This thesis explores the concept of synthesizing tunable impedances by establishing the appropriate phase relationship between the drain voltage and drain current of a MOS transistor. A high frequency, wide tuning range 105-121GHz oscillator and a small-footprint 20-40GHz oscillator using synthetic resonance are presented. The concept of impedance synthesis is also used to generate a novel frequency-adaptive loss compensation scheme for distributed amplifiers which is shown to improve the bandwidth by 30%. The performance of these circuits was analyzed and simulated on a TSMC 65nm bulk CMOS process. Thesis Supervisor: Ruonan Han Title: Assistant Professor 3 4 Acknowledgments Firstly, I would like to thank my advisor Professor Ruonan Han for giving me an interesting research area to explore and encouraging me throughout.
    [Show full text]
  • The Vacuum Tube Distributed Amplifier
    The vacuum tube distributed amplifier I want to spend few words about a smart solution found in the past to the apparently insoluble problem of building very wide band amplifiers. When the frequency raises, the bandwidth of any conventional amplifiers is limited by its gain decrease, until the gain of each stage approaches the unity. William Percival in 1936 proposed the architecture of the distributed amplifier to overcome this limit: two or more tubes are connected in such a way to have their anode currents, and hence their outputs, summed in the load impedance, although the parasitic capacitors are not paralleled. Figure 1 illustrates this principle. Grids and plates of the vacuum tubes are connected to the intermediate taps of two transmission lines, formed by the inductances Lg and Lp and by the parasitic capacitance of the tubes themselves, Cg and Cp. The two lines give the same phase delay on the grid and on the anode of each tube. Consequently the output of each tube appears in the plate line exactly in phase with the output of other tubes, summing all together, after a time equal to the propagation delay of the plate line, in the output load impedance Zl. If the output impedance matches the plate line impedance Zp, then the output voltage will be 1/2(eg*gm*Zl)*n, where n is the number of the tubes. The voltage gain of the amplifier with n tubes is therefore 1/2(gm*Zl)*n. Making n great enough, or using the right quantity of tubes, the gain of the amplifier can be made as high as needed, even when the gain of each tube, gm, is lower than unity.
    [Show full text]
  • Broadband Traveling Wave Distributed Amplifier (TWDA) with Variable Gain by Control the Source Bulk Voltage
    International Conference on Electrical, Electronics and Communication Engineering (ICEEC'2012) September 8-9, 2012 Bangkok (Thailand) Broadband Traveling Wave Distributed Amplifier (TWDA) with Variable Gain By Control the Source Bulk Voltage Saeed.Zakeri, Dr. Ebrahim.Abiri, Hefzollah.Mohammadian Abstract— This paper begins with a review of elements of the II. MICROWAVE FREQUENCIES AND ITS APPLICATIONS distributed amplifier and with goal of to design an amplifier with a distributed structure with appropriate parameters has ended .In this TABLE I paper to build the amplifier also helps Structure designed to help and DIVIDES THE FREQUENCY BAND more advanced technology has been used. Now that the parameters at high frequencies with good scattering and other quality attributes surveyed in a microwave amplifier, including power, input and output VSWR values and noise and etc give us. In the design of this amplifier is used two transmission lines that one of them, connected to the gate of several transistors and the other one is connected to the drain of the same transistors. This transmission lines acts like a filter Which Gate – source capacitors and the inductors (that we have designed) create the Gate transmission line Filter. Also drain – source capacitors and the inductors (that we have designed it) create the drain transmission line TABLE II Filter .Finally we will arrive the desired result with Study and DIVISION BAND MICROWAVE FREQUENCIES analysis of whole network and using simulation results with calculate the parameters of amplifiers. Keywords— Scattering Parameters, Vswr, Available Power, Distributed Structure. I. INTRODUCTION IGH frequency circuits and techniques used in H communication systems have grown dramatically in recent years.
    [Show full text]
  • Distributed Power Amplifiers for Software Defined Radio Applications
    Distributed Power Amplifiers for Software Defined Radio Applications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Narendra Kumar, M.Sc B.E(Hons) aus Penang, Malaysia Berichter: Univ.-Prof. Dr.-Ing. Rolf H. Jansen Univ.-Prof. Dr.-Ing. Dirk Heberling Univ.-Prof. Ernesto Limiti Tag der mündlichen Prüfung: 23. Mai 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar i Acknowledgements I would not be able to complete this thesis without the support of numerous individuals and institutions e.g. Prof. Dr.-Ing. Rolf H. Jansen (RWTH Aachen University, Germany), Bob Stengel (Motorola Labs, Florida, US), Chacko Prakash (Motorola Research Center, Malaysia), Prof. Ernesto Limiti (University Roma Tor Vergata, Italy), Prof. Claudio Paoloni (University Roma Tor Vergata, Italy), Prof. Juan-Mari Collantes (University of Basque Country, Spain), Prof. Yarman Siddik (Istanbul University, Turkey), Thomas Chong ((Motorola Research Center, Malaysia), Dr. Vitaliy Zhurbenkho (Technical University Denmark, Denmark). I would like to express my special gratitude to Prof. Dr.-Ing. Rolf H. Jansen, the head of the Chair of Electromagnetic Theory (ITHE), RWTH Aachen University, for giving me the opportunity and the freedom to complete my Ph.D research under his supervision. Also, I would like to thank him for supporting me with the insight in academic aspects and the fruitful discussions. I am grateful to Prof. Dr.-Ing. Dirk Heberling to be co-referee and Prof. Ernesto Limiti as an external examiner for my thesis examination. In addition, I am grateful to Motorola Education Assistance Board (Lee SiewYin, Fam FookTeng, Dr.
    [Show full text]
  • A Review of Advanced CMOS RF Power Amplifier Architecture Trends
    electronics Review A Review of Advanced CMOS RF Power Amplifier Architecture Trends for Low Power 5G Wireless Networks Aleksandr Vasjanov 1,2,* and Vaidotas Barzdenas 1,2 1 Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; [email protected] 2 Micro and Nanoelectronics Systems Design and Research Laboratory, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania * Correspondence: [email protected]; Tel.: +370-5-274-4769 Received: 15 September 2018; Accepted: 19 October 2018; Published: 23 October 2018 Abstract: The structure of the modern wireless network evolves rapidly and maturing 4G networks pave the way to next generation 5G communication. A tendency of shifting from traditional high-power tower-mounted base stations towards heterogeneous elements can be spotted, which is mainly caused by the increase of annual wireless users and devices connected to the network. The radio frequency (RF) power amplifier (PA) performance directly affects the efficiency of any transmitter, therefore, the emerging 5G cellular network requires new PA architectures with improved efficiency without sacrificing linearity. A review of the most promising reported RF PA architectures is presented in this article, emphasizing advantages, disadvantages and concluding with a quantitative comparison. The main scope of reviewed papers are PAs implemented in scalable complementary metal–oxide–semiconductor (CMOS) and SiGe BiCMOS processes with output powers suitable for portable wireless devices under 32 dBm (1.5 W) in the low- and high- 5G network frequency ranges. Keywords: power amplifier; architecture; radio frequency; wireless; network; 5G; trends 1. Introduction The first most primitive radio transmitter that was used for telegraphy was developed in the early 1890s by Guglielmo Marconi.
    [Show full text]
  • A CMOS Distributed Amplifier with Distributed Active Input Balun Using
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 5, MAY 2012 1331 A CMOS Distributed Amplifier With Distributed Active Input Balun Using GBW and Linearity Enhancing Techniques Amin Jahanian, Member, IEEE, and Payam Heydari, Senior Member, IEEE Abstract—ACMOSdistributedamplifier (DA) with distributed transmission lines (t-lines) to improve efficiency for power am- active input balun is presented that achieves a gain-bandwidth plifiers. In [6], t-line tapering and -derived terminations are product of 818 GHz, while improving linearity. Each cell used in a multistage DA to improve BW. A distributed low- within the DA employs dual-output two-stage topology that im- proves gain and linearity without adversely affecting bandwidth noise amplifier (DLNA) is designed for minimum noise figure (BW) and power. Comprehensive analysis and simulations are (NF) for ultra-wideband (UWB) applications in [7]. Reference carried out to investigate gain, BW, linearity, noise, and stability [13] uses differential stages, incorporating cross-connected of the proposed cell, and compare them with conventional capacitive neutralization, distributed along nonuniform down- cells. Fabricated in a 65-nm low-power CMOS process, the sized artificial lines to improve BW. A DA with gain stages 0.9-mm DA achieves 22 dB of gain and a of 10 dBm, while consuming dc power of 97 mW from a 1.3-V supply. A distributed comprising input emitter followers and output cascode stages is balun, designed and fabricated in the same process, using the implementedinanSiGebipolartechnology in [14]. same topology achieves a BW larger than 70 GHz and a gain Besides distributed amplification, many broadband amplifiers of 4 dB with 19.5-mW power consumption from 1.3-V supply.
    [Show full text]
  • Broadband Microwave Distributed Amplifier
    Broadband Microwave Distributed Amplifier KEVIN BOWERS and PATRICK RIEHL Abstract—We present an analysis of distributed amplifiers II. DISCRETE TRANSMISSION LINES suitable for use in the microwave regime. From this we In order to derive design formulae for a FET DA, evaluate several designs using ideal components and the UC- Berkeley 217 GaAs FET. Alterations to the basic design we must first consider propagation of waves on discrete including the use of CASCODE and CASCODE gain cells and transmission structures. Alternative treatements can be 4 the use of series capacitors on the gate lines are discussed. We found (Pozar, op. cit. and in ). Consider the following implement a final design using microstrip components. The 5- circuit (Z and Y are arbitrary complex impedances and all stage design achieves 19.4 dB of power gain (+/- 1.2 dB) from voltages and currents are phasors): 0.1 to 14.3 GHz. Reflected power at the input and output from loads matched to 50 Ohms are all below –20 dB over the in-1 in in+1 in+2 bandwidth of the device, as is power transmitted from the Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 output to the input. The device is stable for broad range of + + + + + Vn-1 Y Vn Vy Y iy Vn+1 Y Vn+2 input and output loads. A novel matching network has been - - - - - designed to minimize reflections along the gate and drain lines d over all frequencies and eliminate resonant peaks that are a potential cause of instability externally. Measurements suggest Applying Kirchoff’s laws to the circuit we arrive at the the design is internally stable as well.
    [Show full text]
  • Design of a Broad-Band Distributed Amplifier And
    DESIGN OF A BROAD-BAND DISTRIBUTED AMPLIFIER AND DESIGN OF CMOS PASSIVE AND ACTIVE FILTERS DALPATADU K. RADIKE SAMANTHA Beng (Hons), NUS NATIONAL UNIVERSITY OF SINGAPORE 2011 DESIGN OF A BROAD-BAND DISTRIBUTED AMPLIFIER AND DESIGN OF CMOS PASSIVE AND ACTIVE FILTERS DALPATADU K. RADIKE SAMANTHA Beng (Hons), NUS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2011 ACKNOWLEDGEMENTS The work described in this thesis could not have been accomplished without the help and support of many individuals. First of all I would like to give my deepest gratitude to my supervisor, Assistant Professor Koen Mouthaan, for his guidance and encouragement throughout the two years. He helped me to overcome difficult problems whenever I got stuck during this period of time. Other than the academic progress he also helped me in my personal growth during the past two years. I would also like to thank Mdm Lee Siew Choo, Mdm Guo Lin and Mr Sing for their help in the fabrication and the measurement of the microwave circuits during the past two years. Also I would like to thank Mdm Zheng for her technical support. I am also thankful to all the friends in the MMIC lab who helped me during the last two years. I am truly grateful to Li Yong Fu, Hu Zijie, Azadeh Taslimi and Hu Feng for their help and technical support at various stages of the project. Also I would like to thank my brother Sandun Dalpatadu for providing support during the thesis writing.
    [Show full text]
  • Design, Analysis and Simulation of a Linear Phase Distributed Amplifier
    Journal of Communication Engineering, Vol. 8, No. 1, January-June 2019 125 Design, Analysis and Simulation of a Linear Phase Distributed Amplifier Hossein Ghani and Mahmoud Mohammad-Taheri School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran, [email protected], [email protected] Corresponding author: Mahmoud Mohammad-Taheri Abstract- In this paper a new method for the design of a linear phase distributed amplifier in 180nm CMOS technology is presented. The method is based on analogy between transversal filters and distributed amplifiers topologies. In the proposed method the linearity of the phase at frequency range of 0-50 GHz is obtained by using proper weighting factors for each gain stage in cascaded amplifier topology. These weighting factors have been extracted using MATLAB software. Finally, by plotting the frequency response of the amplifier resulted from MATLAB code and also simulation from ADS, the phase linearity of the designed amplifier is shown. Index Terms- Distributed Amplifier; Group delay; Transversal Filter; Linear phase; Weighting I. INTRODUCTION In the design of optical receiver, the phase linearity of the pre-amplifier is a main requirement in order to avoid intersymbol interference. Amplifiers used in these receivers should be also wideband. Considering these two main requirements, the distributed amplifiers could be a good candidate as the bandwidth of these amplifiers is theoretically infinite if one does not take into account the transmission line loss. In order to use a distributed amplifier (DA) as a linear phase amplifier we should find an analogy between DA and a transversal filer which has linear phase frequency response.
    [Show full text]
  • Broadband Microwave Amplifiers in Deep Sub-Micron CMOS Technology
    BROADBAND MICROWAVE AMPLIFIERS IN DEEP SUB-MICRON CMOS BROADBAND MICROWAVE AMPLIFIERS IN DEEP SUB­ MICRON CMOS TECHNOLOGY By JUAN C. RANUAREZ, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of th~ Requirements for the Degree Master of Applied Science McMaster University Copyright by Juan C. Ranuarez, July 2005 MASTER OF APPLIED SCIENCE (2004) McMaster University (Electrical and Computer Engineering) Hamilton, Ontario TITLE: Broadband Microwave Amplifiers in Deep Sub-micron CMOS Technology AUTHOR: Juan C. Ranuarez, B.Sc. (Simon Bolivar University) SUPERVISOR: Professor M. Jamal Deen NUMBER OF PAGES: xxviii, 172 ii Abstract Thanks to geometry scaling, CMOS is becoming the technology of choice for the implementation of radio-frequency and microwave integrated circuits. While CMOS has several advantages over other technologies, such as low-cost and the possibility to integrate analog and digital circuitry on the same chip, its use for high-frequency analog circuits also presents several challenges, because there are some areas where scaling has impaired instead of improving the active and passive device performance. While several techniques can be used to minimize these undesirable effects, many of them only work over very narrow frequency bands; the implementation of circuits that achieve a desired performance over a very wide frequency band is thus a major challenge. Moreover, with further reduction of the transistor dimensions, new effects, such as gate current due to quantum-mechanical tunneling through the gate oxide, will become increasingly significant. This thesis deals with the analysis and design of CMOS broadband amplifiers. A distributed amplifier in a 0.18 J.1m standard CMOS technology was designed, implemented and measured.
    [Show full text]