May 12, 1970 H. M. Fox ETAL 3,511,760 ELECTROCHEMICAL FLUORINATION of ORGANIC Compounds

Total Page:16

File Type:pdf, Size:1020Kb

May 12, 1970 H. M. Fox ETAL 3,511,760 ELECTROCHEMICAL FLUORINATION of ORGANIC Compounds May 12, 1970 H. M. Fox ETAL 3,511,760 ELECTROCHEMICAL FLUORINATION OF ORGANIC COMPOUNDs . Filed Nov. 2, 1967 3. Sheets-Sheet l NHSHG NHHG NicHG Silic NH H s 2 1. 727-2777AA I H H HS. it s 727-2 ty ZZZZZYZZZYZZYZZYZZYZIS A/G / INVENTORS H. M. FOX BY F. N. RUEHLEN A 77OAPWAYS May 12, 1970 H. M. FOX ETAL 3,511,760 ELECTROCHEMICAL FLUORINATION OF ORGANIC COMPOUNDS 3. Sheets-Sheet 2 AF/G 2 ------ 76 y - / M M / // M / 2227 74 F/G. 5 6 AF/G, 6 INVENTORS H. M. FOX BY F. N. RUEHEN ATTOARWAYS May 12, 1970 H. M. Fox ETAL 3,511,760 ELECTROCHEMICAL FLUORINATION OF ORGANIC COMPOUNDS Faled Nov. 2, 1967 3. Sheets-Sheet 5 S s INVENTORS : H. M. FOX BY F. N. RUEHLEN %ry /42.47 a 77OARWAYS 3,511,760 United States Patent Office Patented May 12, 1970 1. 2 veniently preparing fluorine-containing compounds. In 3,511,760 ELECTROCHEMICAL FLUORNATION OF our process the extent of fluorination of the fluorinatable ORGANIC COMPOUNDS compound can be readily controlled. Consequently, our Homer M. Fox and Forrest N. Ruehlen, Bartlesville, process is capable of producing a wide variety of fluorine Okla., assignors to Phillips Petroleum Company, a cor containing products with high efficiency and good selec poration of Delaware tivity. Compared with the fluorination processes of the Continuation-in-part of application Ser. No. 435,263, prior art, the reaction conditions utilized in our process Feb. 25, 1965. This application Nov. 2, 1967, Ser. are mild, and the yields of product per kilowatt hour or No. 683,089 per unit of anode area are extraordinarily high. Further Int, C. B.01k 3/00 more, as discussed further hereinafter, we have found that U.S. C. 204-59 20 Claims () we can introduce more fluorine into a fluorinatable com pound per kilowatt hour or per unit of anode area (in the order of at least 100 times as much or more in some ABSTRACT OF THE DISCLOSURE instances) than can be accomplished in processes of the Fluorinatable feedstocks are electrochemically fluori 5 prior art. nated in an electrolysis cell provided with a porous Another surprising result or advantage of our inven anode and using an anhydrous liquid hydrogen fluoride tion is that the primary products obtained in our process electrolyte. The fluorination is carried out under condi are predominantly partially fluorinated materials. It is tions such that it occurs within the pores of the anode. difficult to obtain such materials in the methods of the 20 prior art and, as stated above, even more difficult to pro duce moderately fluorinated hydrocarbons containing This application is a continuation-in-part of our co fluorine atoms in certain specific locations in the mole pending application Ser. No. 435,263, filed Feb. 25, 1965, cule. It is the reactive nature of fluorine to bind itself to now abandoned. a carbon atom to which one or more previous fluorine This invention relates to electrochemical fluorination. atoms have already been bound. Thus, any difluoro com In one aspect this invention relates to a process for pre pounds made by direct fluorination techniques of the paring fluorine-containing compounds by electrochemi prior art almost invariably have both the fluorine atoms cal fluorination of a fluorinatable compound. attached to the same carbon atom. This has made it Fuorine-containing organic compounds are known to necessary to employ indirect methods such as the prep possess value in many fields of industrial chemistry. For 30 aration of appropriate chloro- or hydroxy-analogs foll example, many of the lower molecular weight compounds lowed by replacement of such groups with fluorine. Our are useful as refrigerants, dielectrics, fire extinguishing invention provides a direct fluorination process which un materials, and as aerosol propellants. Many fluorine-con expectedly produces good yields of difluoro compounds taining compounds are also useful as intermediates for in which the two fluorine atoms are not on the same car the production of plastics and synthetic elastomers. A bon atom. As specific examples, 1,2-difluoroethane and numer of techniques are known for producing fluorine 1,4-difluorobutane can be easily and directly produced in containing organic compounds. These include pyrolysis good yields by the process of our invention. Thus, in one techniques in which fluorine-containing materials are pyr aspect, our invention provides a direct process for the olyzed in the presence of carbon or carbon-containing production of such materials directly from a hydrocar materials to obtain a mixture of fluorinated compounds. bon starting material in a one-step process. Another technique is to electrolyze a mixture of an elec Broadly speaking, the process of our invention com trolyzable fluoride having the compound to be fluorinated prises electrolyzing a current-conducting essentially an dissolved therein. In many instances, a wider commercial hydrous liquid hydrogen fluoride electrolyte in an electro application of fluorine-containing organic compounds has lysis cell provided with a cathode and a porous anode, in been limited due to difficulties in their preparation. Many 45 troducing a fluorinatable organic compound into the pores of the prior art processes for preparing such compounds of said anode and therein at least partially fluorinating involve several chemical and mechanical steps and re at least a portion of said organic compound within said quire the utilization of costly starting materials. Further pores of said anode, and recovering fluorinated compound more, when employing the methods of the prior art it products from said cell. is difficult to produce moderately or only partially fluori 50 An object of this invention is to provide an improved nated products in satisfactory yields. It is even more dif electrochemical process for the production of fluorine ficult to produce moderately or partially fluorinated prod containing compounds. Another object of this invention ucts, e.g., fluorinated hydracarbons, containing fluorine is to provide an electrochemical process for the produc atoms in certain specific locations in the molecule. It is tion of fluorine-containing organic compounds in good also difficult to produce fluorinated products electrochem 55 yields and with good selectivity. Another object of this ically at high rates of conversion and avoid the formation invention is to provide an improved electrochemical proc of Substantial amounts of cleavage products. ess for the production of fluorine-containing compounds The present invention provides a solution for the which is economical, commercially feasible, provides for above-described difficulties. We have now discovered an the maximum utilization of the starting fluorinatable ma improved electrochemical process for efficiently and con 60 terial, and is accompanied by the minimum formation of 3,511,760 3. 4. undesirable by-products. Another object of this invention Since fluorine is so reactive, no list of practical length is to provide an improved electrochemical process for the could include all starting materials which can be used production of fluorine-containing organic compounds in the practice of our invention. However, representative which process can be readily controlled to yield products examples of the above-described starting materials in having a desired fluorine content. Still another object of clude, among others, the following: methane; ethane; this invention is to provide an improved electrochemical 5 propane; butane; isobutane; pentane; n-hexane; n-octane: . fluorination process for the production of partially fluori cyclopropane; cyclopentane; cyclohexane; cyclooctane; nated fluorine-containing compounds, such as difluoro 1,2-dichloroethane; 1-fluoro-2-chloro-3-methylheptane; compounds, wherein the two fluorine atoms are attached ethylene; propylene; cyclobutene; cyclohexene; 2-meth to different carbon atoms. Other aspects, objects, and ad ylpentene-1; 2,3-dimethylhexene-2; butadiene; vinyl chlo vantages of the invention will be apparent to those skilled 10 ride; 3-fluoropropylene; acetylene; methylacetylene; vinyl in the art in view of this disclosure. acetylene; 3,3-dimethylpentyne-1; allyl chloride; methyl Thus, according to the invention, there is provided a amine; ethylamine; diethylamine; 2-amino-3-ethylpentane; process for the electrochemical fluorination of a fluorina 3-bromopropylamine; triethylamine; dimethyl ether; di table organic compound, which process comprises: Pass 5 ethyl ether; methyl ethyl ether; methyl vinyl ether; 2-iodo ing an electric current through a current-conducting es ethyl methyl ether; di-n-propyl ether; methyl formate; sentially anhydrous liquid hydrogen fluoride electrolyte methyl acetate; ethyl butyrate; ethyl formate; n-amyl contained in an electrolysis cell provided with a cathode acetate; methyl 2-chloroacetate; methyl mercaptan; ethyl and a porous anode; passing said organic compounds into mercaptan; n - propyl mercaptan; 2 - mercaptohexane; the pores of said anode and therein into contact with 20 2-methyl-3-mercaptoheptane; acetonitrile; propionitrile; the fluorinating species produced by said electrolyzing; n-butyronitrile; acrylonitrile; n-hexanonitrile; methanol; and recovering fluorinated organic compound as product ethanol; isopropanol; n-hexanol; 2,2-dimethylhexanol-3; of the process. n-butanol; ethylenebromohydrin; benzene; toluene, cu Very few organic compounds are resistant to fluorina mene; o-xylene; p-xylene; and monochlorobenzene. tion. Consequently, a wide variety of feed materials, both The electrochemical process of the invention is carried
Recommended publications
  • Boiling Rubidium A8 a Reactor : Coolant
    UNITED STATES ATOMlC ENERGY CUMMISSiON -F - - 71013 BOILING RUBIDIUM A8 A REACTOR : COOLANT. PREPARkTION OF RUBDIUM adETAL, PHYBICAL AND 33PBER.MO~AMIcC PROFERTLES, AND COMPATIBILITY WITH INCONEL , technical Infor~ionEx?snsion, Oak Ridgs, Timnessee DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. This mprt em~~$utrraf 2 gtwks, Pcljrt I asd Pea*t 11. *. .I. I *** .* ** . ... .. : :: . :*:. *::: /f- 8. .* .*** . e.. 0.. .* 0.. * *. 0... 0.. *I *to.. 0 *a ** . ..a . .a* .* - -8 OPSE RIDCE SCHOOL OF REACTOR TECHNOUXY ''BOI~RUBIDIUM AS A BEACTOR.COOLANT : , PREPAMTION OF RUBIDIUM METALg PHYSICAL AND THERMJDYNAMIC PROPERTIESg AND COMPATIBILI!PY WII"H INCONEX" This report cont~insinformaticg. geiierated by E. group of @$SORT students under .the leadershim df S; Reed Nixon aa part of an assigned summer project.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Investigations on the Michael Reaction. V. Michael Condensation with Alkali-Metal Fluorides As Catalysts by A
    BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES S6rie des sciences cliliniques Volume XII, No. 1, 1964 ORGANIC CHEMISTRY Investigations on the Michael Reaction. V. Michael Condensation with Alkali-Metal Fluorides as Catalysts by A. OSTASZYIsTSKI, T. URBAN'SKI and J. WIELGAT Piesented by T. URBANSKI on October 15, 1963 In our previous work [1] condensation of ethyl acetoacctate with various accep• tors was carried out by using anhydrous commercial potassium fluoride as ca• talyst. At present, further attempts at Michael condensation between some donor and acceptor compounds were made in the presence of alkali-metal (other than potassium) fluorides as catalysts. In the presence of potassium fluoiide, nitromethane condensed with chalconc to give the crystalline 1.5-dibenzoyl-2,4-diphenyl-3-nitropentane (I). C6H5CHCH2C0C(,H5 I HCN02 I C <,H 5CHCH2COC r,H.5 (1) Two diastereoisomers of (I) have been isolated, m.p's. 244-245°C and 156—157°C [2]. Condensation of nitromethane with /?-benzoquinone catalyzed by potassium fluoride, was vigorous and the reaction mixture darkened immediately. A tar was obtained, from which no crystalline product could be isolated. Modification of reaction conditions, viz., lower temperature, different solvent, and varying amounts of catalyst proved ineffective. Attempts at condensing fluorene with chalcone, and cyclohexanone with methyl vinyl ketone, or chalconc in the presence of potassium fluoride, failed. Even prolonged heating of the reaction mixture for 10, 30 or 120 hr. at 70° gave nothing but recovery of the starting materials. Unexpectedly, the analogous reactions of ethyl a- or y-chloroacetoacetate and ethyl y-fluoroacetoacetate were also a failure.
    [Show full text]
  • Preparation of Fluoroaromatic Compounds in Dispersion of Potassium Fluoride
    Patentamt JEuropaischesEuropean Patent Office Publication number: 0 253 836 B1 Office europeen des brevets EUROPEAN PATENT SPECIFICATION (B) Date of publication of patent specification: 03.10.90 IntCI.5: C 07 C 205/12 (S) Application number: 87900615.3 ® Date of filing: 30.12.86 (8) International application number: PCT/US86/02828 (S) International publication number: WO 87/04151 16.07.87 Gazette 87/15 PREPARATION OF FLUOROAROMATIC COMPOUNDS IN DISPERSION OF POTASSIUM FLUORIDE. (30) Priority: 06.01.86 US 816481 (73) Proprietor: Mallinckrodt, Inc. (a Delaware corporation) 675 McDonnell Boulevard P.O. Box 5840 (§) Date of publication of application: St. Louis Missouri 63134 (US) 27.01.88 Bulletin 88/04 Inventor: CANTRELL, Gary, L. Publication of the grant of the patent: 315 David 03.10.90 Bulletin 90/40 Belleville, IL 62221 (US) Designated Contracting States: Representative: Eyles, Christopher Thomas BE DE FR GB IT W.P. THOMPSON & CO. High Holborn House 52-54 High Holborn London WC1V6RY(GB) References cited: GB-A-2 058 067 US-A-4164 517 US-A-3 064 058 US-A-4226 811 US-A-3 240 824 US-A-4229 365 US-A-3 480 667 US-A-4287 374 US-A-4 069 262 US-A-4294988 US-A-4140 719 US-A-4418229 CO CO CO CO 1A CM o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,091,161 B2 Oldiges, Jr
    US007091161 B2 (12) United States Patent (10) Patent No.: US 7,091,161 B2 Oldiges, Jr. et al. (45) Date of Patent: Aug. 15, 2006 (54) NON-METALLIC THREAD SEALANT AND (56) References Cited ANTI-SEZE COMPOUND HAVING IMPROVED ANT-GALLING PROPERTIES U.S. PATENT DOCUMENTS FOR METAL ALLOYS 3.652,414 A * 3/1972 Bergeron .................... 508,119 (75)75 Inventors: Donald A. OdiOldigsr. Cypress, TX 5,093,0155,015.401 A * 3/19925/1991 OldigesLandry et............ al. ...... 508,124508,169 (US); Herschel McDonald, Red Oak, 5,154,840k - I A * 10, 1992 Drake et al. ...... ... 508,122 TX (US); Tom Blake, Spring, TX (US); 5,286.393 A * 2/1994 Oldiges et al. ............. 508/139 Keyin Stroup, Spring, TX (US); Don 5,348,668 A * 9/1994 Oldiges et al. ............. 508/139 A. Oldiges, III, Crypress, TX (US) 5.498.351 A * 3/1996 Hefling ............. ... 508,111 5,536,422 A * 7/1996 Oldiges et al. ............. 508,121 (73) Assignee: Jet-Lube, Inc., Houston, TX (US) 5,547.503 A * 8/1996 Oldiges et al. ........ 106,287.18 5,891,830 A * 4/1999 Koltermann et al. ........ 508,136 (*) Notice: Subject to any disclaimer, the term of this 6,620,460 B1* 9/2003 Oldiges et al. ............. 427/409 patent is extended or adjusted under 35 6,960,555 B1* 11/2005 Anthony et al. ............ 508,136 U.S.C. 154(b) by 481 days. * cited by examiner (21) Appl. No.: 10/438,301 Primary Examiner Ellen M. McAvoy (22) Filed: May 14, 2003 (74) Attorney, Agent, or Firm—Robert W.
    [Show full text]
  • This Table Gives the Standard State Chemical Thermodynamic Properties of About 2500 Individual Substances in the Crystalline, Liquid, and Gaseous States
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are: DfH° Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol DfG° Standard molar Gibbs energy of formation at 298.15 K in kJ/mol S° Standard molar entropy at 298.15 K in J/mol K Cp Molar heat capacity at constant pressure at 298.15 K in J/mol K The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by: • The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure. • The standard state of a pure liquid substance is that of the liquid under the standard state pressure. • The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure. An entry of 0.0 for DfH° for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available. The data are derived from the sources listed in the references, from other papers appearing in the Journal of Physical and Chemical Reference Data, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.
    [Show full text]
  • United States Patent Office Fatented Sept
    3,052,732 United States Patent Office Fatented Sept. 4, 1962 2 formamide, N-methylpyrrollidone, dimethyl sulfoxide, di 3,052,732 methyl sulfone, dimethoxyethane, and the like. PREPARATION OFIODOFILUOROCARBONS The amount of reaction medium can equal or exceed Carl G. Krespan, Wilmington, Del, assignor to E. I. du the fluoroalkene or fluorocycloalkene by 10 or more fold. Pont de Nemours and Company, Wilmington, Del, a 5 The fluoroalkenes and cycloalkenes usefully employ corporation of Delaware able in the process of this invention include tetrafluoro No Drawing. Fied Aug. 29, 1960, Ser. No. 52,340 ethylene, chlorotrifluoroethylene, vinylidene fluoride, per 10 Clains. (C. 260-648) fluoro-1-butene, 3H-pentafluoropropylene, 4H-heptafiu This invention relates to, and has as its principal ob oro-1-butene, 4-chloroheptafluoro-1-butene, perfluoro-2- ject provision of, a new method for preparing fluoroalkyl 0 decene, 12H-perfluoro-1-dodecene, 8-chloropentadeca iodides and fluorocycloalkyl iodides. fluoro-1-octene, 1,1,2,3,3-pentafluoro-1-pentene, 1,1,2,3,3- Compounds which contain only carbon and fluorine and pentafluoro-1-octene octafluoro-2-butene, 8H-perfluoro-1- optionally hydrogen have been studied very intensely be octene, hexafluoropropylene, hexafluorocyclobutene, octa cause of their valuable and unique properties. Con fluorocyclopentene, decafluorocyclohexene, octafluoroiso 5 butene, dichlorovinylidene fluoride, and the like. The pre pounds of this general type containing iodine in addition ferred fluoroalkenes are those which contain no more than to fluorine have been investigated to a much lesser de 12 carbon atoms and the preferred fluorocycloalkenes are gree because simple, generally applicable methods for those which contain no more than 8 carbon atoms.
    [Show full text]
  • Synthesis, Characterization, and Risk Assessment Planning for Novel Degradable and Imageable Embolic Agents
    SYNTHESIS, CHARACTERIZATION, AND RISK ASSESSMENT PLANNING FOR NOVEL DEGRADABLE AND IMAGEABLE EMBOLIC AGENTS by Jensen S Doucet Submitted in partial fulfillment of the requirements for the degree of Master of Applied Science at Dalhousie University Halifax, Nova Scotia June 2018 © Copyright by Jensen Doucet, 2018 Table of Contents LIST OF TABLES .................................................................................................. vi LIST OF FIGURES ................................................................................................ vii ABSTRACT ............................................................................................................ ix LIST OF ABBREVIATIONS AND SYMBOLS USED ....................................... x ACKNOWLEDGEMENTS .................................................................................... xiii CHAPTER 1: INTRODUCTION .......................................................................... 1 1.1. Uterine Leiomyoma .......................................................................................... 1 1.1.1. Pathophysiology of Uterine Leiomyomas ................................................ 1 1.1.2. Current Treatments .................................................................................. 3 1.1.2.1. Surgical Options ............................................................................... 3 1.1.2.2. Commercially Available UAE Microspheres .................................. 6 1.2. Advances in Degradable Embolic Microspheres: A State of the Art
    [Show full text]
  • HYSYS OLI Interface
    HYSYS® 2004.2 OLI Interface Reference Guide Copyright October 2005 Copyright © 1981-2005 by Aspen Technology, Inc. All rights reserved. Aspen Accounting.21™, Aspen ACM Model Export, Aspen ACOL™, Aspen ACX™ Upgrade to ACOL™, Aspen Adsim®, Aspen Advisor™, Aspen Aerotran®, Aspen Alarm & Event™, Aspen APLE™, Aspen Apollo™, Aspen AtOMS™, Aspen Batch and Event Extractor, Aspen Batch Plus®, Aspen Batch.21™, Aspen Batch.21™ CBT, Aspen BatchCAD™, Aspen BatchSep™, Aspen Blend Model Library™, Aspen Blend™, Aspen BP Crude Oil Database, Aspen Calc CBT, Aspen Calc™, Aspen Capable-to-Promise®, Aspen CatRef®, Aspen Chromatography®, Aspen Cim-IO Core™, Aspen Cim-IO™ for @AGlance, Aspen Cim-IO™ for ABB 1180/ 1190 via DIU, Aspen Cim-IO™ for Bailey SemAPI, Aspen Cim-IO™ for DDE, Aspen Cim-IO™ for Eurotherm Gauge via DCP, Aspen Cim-IO™ for Fisher-Rosemount Chip, Aspen Cim-IO™ for Fisher-Rosemount RNI, Aspen Cim-IO™ for Foxboro FOXAPI, Aspen Cim-IO™ for G2, Aspen Cim-IO™ for GE FANUC via HCT, Aspen Cim-IO™ for Hitachi Ex Series, Aspen Cim-IO™ for Honeywell TDC 3000 via HTL/access, Aspen Cim-IO™ for Intellution Fix, Aspen Cim-IO™ for Measurex MCN, Aspen Cim-IO™ for Measurex ODX, Aspen Cim-IO™ for Moore Apacs via Nim (RNI), Aspen Cim-IO™ for OPC, Aspen Cim-IO™ for PI, Aspen Cim- IO™ for RSLinx, Aspen Cim-IO™ for SetCim/InfoPlus-X/InfoPlus.21, Aspen Cim-IO™ for Toshiba Tosdic, Aspen Cim-IO™ for ULMA 3D, Aspen Cim-IO™ for Westinghouse, Aspen Cim-IO™ for WonderWare InTouch, Aspen Cim-IO™ for Yokogawa ACG10S, Aspen Cim-IO™ for Yokogawa EW3, Aspen Collaborative Forecasting™,
    [Show full text]