Puzzling Machines: a Challenge on Learning from Small Data

Total Page:16

File Type:pdf, Size:1020Kb

Puzzling Machines: a Challenge on Learning from Small Data PuzzLing Machines: A Challenge on Learning From Small Data Gozde¨ Gul¨ S¸ahiny, Yova Kementchedjhievaα, Phillip Rusty, Iryna Gurevychy yUbiquitous Knowledge Processing Lab (UKP), Department of Computer Science, Technical University of Darmstadt αDepartment of Computer Science, University of Copenhagen ywww.ukp.tu-darmstadt.de Abstract Chikasaw English 1. Ofi’at kowi’a˜ lhiyohli. The dog chases the cat. Deep neural models have repeatedly proved 2. Kowi’at ofi’a˜ lhiyohli. The cat chases the dog. excellent at memorizing surface patterns from 3. Ofi’at shoha. The dog stinks. large datasets for various ML and NLP bench- 4. Ihooat hattaka˜ hollo. The woman loves the man. marks. They struggle to achieve human-like 5. Lhiyohlili. I chase her/him. thinking, however, because they lack the skill 6. Salhiyohli. She/he chases me. of iterative reasoning upon knowledge. To ex- 7. Hilha. She/he dances. pose this problem in a new light, we intro- Now you can translate the following into Chickasaw: duce a challenge on learning from small data, The man loves the woman. PuzzLing Machines, which consists of Rosetta The cat stinks. Stone puzzles from Linguistic Olympiads for I love her/him. high school students. These puzzles are care- Translate the following into English: fully designed to contain only the minimal Ihooat sahollo. amount of parallel text necessary to deduce Ofi’at hilha. the form of unseen expressions. Solving them Kowi’a˜ lhiyohlili. does not require external information (e.g., knowledge bases, visual signals) or linguis- Table 1: The “Chickasaw” puzzle (Payne, 2005) tic expertise, but meta-linguistic awareness and deductive skills. Our challenge contains around 100 puzzles covering a wide range to enable learning from just a few examples. This of linguistic phenomena from 81 languages. System2-style modeling is still in its early stages in We show that both simple statistical algo- DL, but is recognized as a much needed next step rithms and state-of-the-art deep neural mod- in the field (McClelland et al., 2019; Marcus, 2020; els perform inadequately on this challenge, as expected. We hope that this benchmark, LeCun, 2020; Bengio, 2020). To foster research in available at https://ukplab.github.io/ this promising direction, we propose a unique chal- PuzzLing-Machines/, inspires further ef- lenge on “learning from small data”: PuzzLing Ma- forts towards a new paradigm in NLP—one chines, based on the Linguistic Olympiads—one of that is grounded in human-like reasoning and the 13 recognized International Science Olympiads understanding. targeted at high-school students. 1 Introduction The PuzzLing Machines challenge is based on arXiv:2004.13161v1 [cs.CL] 27 Apr 2020 one of the most common puzzle types in the Kahneman(2011) discusses the two modes of hu- Linguistic Olympiads: the Rosetta Stone puz- man thinking which perfectly encapsulate the cur- zles (Bozhanov and Derzhanski, 2013), a.k.a. trans- rent (so called System1) and the desired state (Sys- lation puzzles. An example is given in Table1. 1 tem1+System2) of the deep learning field. System1 Although these puzzles take the form of a tradi- handles tasks that humans consider fast, intuitive tional “machine translation” task, they are differ- and automatic, such as object detection and doc- ent in many ways: Rosetta Stone puzzles contain ument classification. Recent deep learning (DL) a minimal, carefully designed set of parallel ex- models have shown great promise at this type of pressions (words, phrases or sentences) in a for- tasks—thanks to large training datasets. Yet, it is through slow, rational and sequential mecha- 1Copyright University of Oregon, Department of Linguis- nisms that human-like abstract reasoning happens, tics. eign and in a familiar language (e.g., Chickasaw- language models as applied to these puzzles. We English). This minimal set is just enough to deduce show that, unsurprisingly, the puzzles cannot be the underlying translation model, which typically easily or robustly solved by currently existing meth- involves deriving mini-grammar rules, extracting a ods. We hope that this benchmark is going to evoke lexicon, and discovering morphological and phono- development of new deep MT/NLP models that op- logical rules. The actual task then is to translate erate in a human-like manner and reason upon lin- new expressions—generally in both directions— guistic knowledge, providing a new future research using the model deduced from the parallel data. direction for NLP. The assignments are carefully designed so that the expressions cannot be generated through simple 2 Meta-linguistics analogy, but rather through the application of the discovered rules. These properties distinguish the Meta-linguistics is defined by Chomsky(1976) as PuzzLing Machines challenge from the modern MT “the knowledge of the characteristics and structures task, as it relies on deductive reasoning with linguis- of language” as realised on the level of phonology, tic concepts that are central to System2, rather than morphology, syntax and semantics. Any English exploiting statistical properties from large datasets speaker would likely have the linguistic capacity to as in System1. produce the word undo when asked “What is the opposite of do?” Only a speaker with some level of The lack of reasoning skills of statistical sys- meta-linguistic awareness, however, would further tems has recently gained a lot of attention. Var- be able to reflect on the structure of the word they ious datasets that require a wide range of back- have produced: to identify un- as a unit that serves ground knowledge and different types of rea- to negate words, to spot its similarity in function soning abilities have been introduced, such as to other units like dis- and de-. He/she would also ARC (Clark et al., 2018), GQA (Hudson and Man- be aware that un- is not interchangeable with dis- ning, 2019), GLUE benchmarks (Wang et al., 2018) and de-, since it attaches to the front of verbs and and SWAG (Zellers et al., 2018). Our challenge adjectives but not to nouns. distinguishes from previous benchmarks with some Meta-linguistic awareness is especially useful key properties. First, most of these reasoning (and often improved) in the process of learning a tasks require external scientific or visual knowl- new language, as it allows the learner to compare edge, which makes it hard to measure the actual and contrast the structure and characteristics of the reasoning performance. On the other hand, our new language to those that he/she is already famil- challenge does not rely on any external, multimodal iar with. It is desirable that systems for natural or expert-level information. Second, and more im- language processing possess meta-linguistic aware- portantly, PuzzLing challenge consists of a minimal ness, too, as that could hugely improve their cross- set of examples required for solution. That means, lingual generalizability, a problem that remains there exists no extra training data, ensuring that open after being approached from various engineer- exploiting surface patterns would not be possible ing perspectives, often with little recourse to lin- unlike in some of existing benchmarks (Gururan- guistics. However, measuring the meta-linguistic gan et al., 2018). awareness of a system is not trivial. Existing prob- In summary, this paper introduces a unique ing techniques are mostly designed to measure how challenge, PuzzLing Machines, made up of ∼100 well neural models capture specific linguistic phe- Rosetta Stone, a.k.a translation puzzles covering nomena, e.g., whether a specific layer of an English 81 languages from 39 different language families language model can capture that undo is negative, based on the Linguistic Olympiads. The challenge instead of testing for meta-linguistic awareness. requires System2 skills—sequential reasoning and Our challenge takes a step further and tests whether abstraction of linguistic concepts, discussed in de- the model can apply the underlying morphological tail in x2. We discuss the dataset and the linguistic processes, e.g. of verbal negation through prefix- phenomena in the resulting dataset supported with ing. In addition, our challenge spans a wide-range statistics and examples in x3. In x4, we present the of language families and covers a variety of lin- results of intuitive baseline methods and strong MT guistic phenomena (see x3.1), that qualifies it as baselines such as Transformers encoder-decoder a favorable testbed for measuring meta-linguistic (Vaswani et al., 2017) with integrated pretrained awareness. Let us demonstrate how meta-linguistic reason- analysis. Expert solutions are available for most ing skills are used to solve the “Chickasaw puzzle” puzzles; we excluded the rest. In addition to the given in Table1. The translation model is itera- translation puzzle type shown in Table1, we also tively deduced as follows: (1) the word order in collected ‘matching’ puzzles. These are two-step Chickasaw is Subject-Object-Verb (SOV), unlike puzzles, in which the participants first align a shuf- the English SVO word order; (2) nouns take dif- fled set of sentences to obtain parallel data, and then ferent suffixes when in a subject or object position translate a set of unseen sentences. We converted (at and a˜, respectively); (3) verbs take a suffix for these puzzles to the translation puzzle format by 1st person singular pronomial subject or object (li referring to the solution files to align the training and sa, respectively). Notice that, crucially, it is sentence pairs. Appendix A.1 describes how we not possible to learn the function of the prefix sa, selected the puzzles and how we transcribed them which corresponds to me in English, without de- into a machine-readable format. ducing that lhiyohli corresponds to the verb chases The final dataset contains 96 unique puzzles and that third person agency in Chickasaw is not from 81 languages that span 39 different language explicitly expressed.
Recommended publications
  • [.35 **Natural Language Processing Class Here Computational Linguistics See Manual at 006.35 Vs
    006 006 006 DeweyiDecimaliClassification006 006 [.35 **Natural language processing Class here computational linguistics See Manual at 006.35 vs. 410.285 *Use notation 019 from Table 1 as modified at 004.019 400 DeweyiDecimaliClassification 400 400 DeweyiDecimali400Classification Language 400 [400 [400 *‡Language Class here interdisciplinary works on language and literature For literature, see 800; for rhetoric, see 808. For the language of a specific discipline or subject, see the discipline or subject, plus notation 014 from Table 1, e.g., language of science 501.4 (Option A: To give local emphasis or a shorter number to a specific language, class in 410, where full instructions appear (Option B: To give local emphasis or a shorter number to a specific language, place before 420 through use of a letter or other symbol. Full instructions appear under 420–490) 400 DeweyiDecimali400Classification Language 400 SUMMARY [401–409 Standard subdivisions and bilingualism [410 Linguistics [420 English and Old English (Anglo-Saxon) [430 German and related languages [440 French and related Romance languages [450 Italian, Dalmatian, Romanian, Rhaetian, Sardinian, Corsican [460 Spanish, Portuguese, Galician [470 Latin and related Italic languages [480 Classical Greek and related Hellenic languages [490 Other languages 401 DeweyiDecimali401Classification Language 401 [401 *‡Philosophy and theory See Manual at 401 vs. 121.68, 149.94, 410.1 401 DeweyiDecimali401Classification Language 401 [.3 *‡International languages Class here universal languages; general
    [Show full text]
  • Les Drapeaux Des Langues Construites
    Les Drapeaux des Langues Construites Patrice de La Condamine Résumé Depuis toujours, les hommes oscillent entre la préservation de leurs identités particulières et leur besoin d’appartenance à des communautés globales. L’idée d’universel et de recherche de la “fusion des origines” hante leur cœur. Dans cet esprit, des langues construites ont été élaborées. Qu’elles soient à vocation auxiliaire ou internationale, destinées à de vastes aires culturelles ou à but strictement philosophique. Des noms connus comme Volapük, Espéranto, Ido, Bolak, Interlingua, Occidental. Mais aussi Glosa, Kotava, Lingua Franca Nova, Atlango. Ou encore Folskpraat, Slovio, Nordien, Afrihili, Slovianski, Hedšdël. Sans parler du langage philosophique Lojban1. Le plus intéressant est de constater que toutes ces langues ont des drapeaux qui traduisent les messages et idéaux des groupes en question! La connaissance des drapeaux des langues construites est primordiale pour plusieurs raisons: elle nous permet de comprendre que tous les drapeaux sans exception délivrent des messages d’une part; que l’existence des drapeaux n’est pas forcément liée à l’unique notion de territoire d’autre part. Le drapeau est d’abord et avant tout, à travers son dessin et ses couleurs, un “territoire mental”. Après avoir montré et expliqué ces différents drapeaux2, nous conclurons avec la présentation du drapeau des Conlang, sorte d’ONU des Langues construites! Folkspraak Proceedings of the 24th International Congress of Vexillology, Washington, D.C., USA 1–5 August 2011 © 2011 North American Vexillological Association (www.nava.org) 1 Sélection de noms parmi d’autres. 2 Une trentaine environ. 175 LES DRAPEAUX DES LANGUES CONSTRUITES introduction A nous tous qui sommes réunis ici pour ce XXIVème Congrès International de la vexillologie à Washington, personne n’a plus besoin d’expliquer la nécessité vitale qu’ont les hommes de se représenter au moyen d’emblèmes, et nous savons la place primordiale qu’occupent les drapeaux dans cette fonction.
    [Show full text]
  • ISO 639-2 Language Code Lis
    ISO 639-2 Language Code List - Codes for the representation of... h p://www.loc.gov/standards/iso639-2/php/code_list.php Library of Congress >> Standards IS0 639-2 HOME - Code List - Changes to Codes ISO 639 Joint Advisory Committee - ISO 639-1 Registration Authority Codes for the Representation of Names of Languages Codes arranged alphabetically by alpha-3/ISO 639-2 Code Note: ISO 639-2 is the alpha-3 code in Codes for the representation of names of languages-- Part 2. There are 21 languages that have alternative codes for bibliographic or terminology purposes. In those cases, each is listed separately and they are designated as "B" (bibliographic) or "T" (terminology). In all other cases there is only one ISO 639-2 code. Multiple codes assigned to the same language are to be considered synonyms. ISO 639-1 is the alpha-2 code. ISO 639-2 Code ISO 639-1 Code English name of French name of Language Language aar aa Afar afar abk ab Abkhazian abkhaze ace Achinese aceh ach Acoli acoli ada Adangme adangme ady Adyghe; Adygei adyghé afa Afro-Asiatic languages afro-asiatiques, langues afh Afrihili afrihili afr af Afrikaans afrikaans ain Ainu aïnou aka ak Akan akan akk Akkadian akkadien alb (B) sq Albanian albanais sqi (T) ale Aleut aléoute alg Algonquian languages algonquines, langues alt Southern Altai altai du Sud amh am Amharic amharique ang English, Old (ca.450-1100) anglo-saxon (ca.450-1100) anp Angika angika apa Apache languages apaches, langues ara ar Arabic arabe arc Official Aramaic (700-300 araméen d'empire BCE); Imperial Aramaic (700-300 BCE) (700-300 BCE) arg an Aragonese aragonais 1 von 15 15.01.2010 15:16 ISO 639-2 Language Code List - Codes for the representation of..
    [Show full text]
  • In 2018 Linguapax Review
    linguapax review6 62018 Languages, Worlds and Action Llengües, mons i acció Linguapax Review 2018 Languages, Worlds and Actions Llengües, mons i acció Editat per: Amb el suport de: Generalitat de Catalunya Departament de Cultura Generalitat de Catalunya Departament d’Acció Exterior Relacions Institucionals i Transparència Secretaria d’Acció Exterior i de la Unió Europea Coordinació editorial: Alícia Fuentes Calle Disseny i maquetació: Maria Cabrera Callís Traduccions: Marc Alba / Violeta Roca Font Aquesta obra està subjecta a una llicència de Reconeixement-NoComercial-CompartirIgual 4.0 Internacional de Creative Commons CONTENTS - CONTINGUTS Introduction. Languages, Worlds and action. Alícia Fuentes-Calle 5 Introducció. Llengües, mons i acció. Alícia Fuentes-Calle Túumben Maaya K’aay: De-stigmatising Maya Language in the 14 Yucatan Region Genner Llanes-Ortiz Túumben Maaya K’aay: desestigmatitzant la llengua maia a la regió del Yucatán. Genner Llanes-Ortiz Into the Heimat. Transcultural theatre. Sonia Antinori 37 En el Heimat. Teatre transcultural. Sonia Antinori Sustaining multimodal diversity: Narrative practices from the 64 Central Australian deserts. Jennifer Green La preservació de la diversitat multimodal: els costums narratius dels deserts d’Austràlia central. Jennifer Green A new era in the history of language invention. Jan van Steenbergen 101 Una nova era en la història de la invenció de llengües. Jan van Steenbergen Tribalingual, a startup for endangered languages. Inky Gibbens 183 Tribalingual, una start-up per a llengües amenaçades. Inky Gibbens The Web Alternative, Dimensions of Literacy, and Newer Prospects 200 for African Languages in Today’s World. Kọ́lá Túbọ̀sún L’alternativa web, els aspectes de l’alfabetització i les perspectives més recents de les llengües africanes en el món actual.
    [Show full text]
  • Trabajo De Fin De Grado Tiene Como Principal Objetivo Establecer Un Estado De La Cuestión Del Fenómeno Tan Actual De La Creación De Lenguas
    Facultad Filosofía y Letras TRABAJO FIN DE GRADO Grado de Español: Lengua y Literatura Las técnicas del conlanging. Un capítulo sobre la lingüística aplicada a la creación de lenguas Presentado por D.ª Irene Mata Garrido Tutelado por Prof. Dr. D. José Manuel Fradejas Rueda Índice 1 Introducción .......................................................................................................... 2 2 Esbozo histórico del fenómeno de la invención de lenguas ............................... 4 3 Intento de clasificación de las lenguas artificiales ............................................. 10 4 ¿Cómo crear una lengua? .................................................................................... 13 5 El fenómeno de la invención de lenguas y su dimensión social y artística en la actualidad .......................................................................................................... 21 6 Conclusiones .......................................................................................................... 26 7 Bibliografía ............................................................................................................ 28 8 Apéndice I: recopilación de las lenguas artificiales ........................................... 30 9 Apéndice II: casos de cambios de acento de los actores .................................... 45 1 1 Introducción Los límites de mi lengua son los límites de mi mente. Ludwig Wittgenstein El presente Trabajo de Fin de Grado tiene como principal objetivo establecer un estado de la cuestión
    [Show full text]
  • The Role of Languages in Intercultural Communication Rolo De Lingvoj En Interkultura Komunikado Rola Języków W Komunikacji Międzykulturowej
    Cross-linguistic and Cross-cultural Studies 1 The Role of Languages in Intercultural Communication Rolo de lingvoj en interkultura komunikado Rola języków w komunikacji międzykulturowej Editors – Redaktoroj – Redakcja Ilona Koutny & Ida Stria & Michael Farris Poznań 2020 The Role of Languages in Intercultural Communication Rolo de lingvoj en interkultura komunikado Rola języków w komunikacji międzykulturowej 1 2 Uniwersytet im. Adama Mickiewicza – Adam Mickiewicz University Instytut Etnolingwistyki – Institute of Ethnolinguistics The Role of Languages in Intercultural Communication Rolo de lingvoj en interkultura komunikado Rola języków w komunikacji międzykulturowej Editors – Redaktoroj – Redakcja Ilona Koutny & Ida Stria & Michael Farris Poznań 2020 3 Cross-linguistic and Cross-cultural Studies 1 Redaktor serii – Series editor: Ilona Koutny Recenzenci: Věra Barandovská-Frank Probal Dasgupta Nicolau Dols Salas Michael Farris Sabine Fiedler Federico Gobbo Wim Jansen Kimura Goro Ilona Koutny Timothy Reagan Ida Stria Bengt-Arne Wickström Projekt okładki: Ilona Koutny Copyright by: Aŭtoroj – Authors – Autorzy Copyright by: Wydawnictwo Rys Wydanie I, Poznań 2020 ISBN 978-83-66666-28-3 DOI 10.48226/978-83-66666-28-3 Wydanie: Wydawnictwo Rys ul. Kolejowa 41 62-070 Dąbrówka tel. 600 44 55 80 e-mail: [email protected] www.wydawnictworys.com 4 Contents – Enhavtabelo – Spis treści Foreword / Antaŭparolo / Przedmowa ................................................................................... 7 1. Intercultural communication:
    [Show full text]
  • PART I: NAME SEQUENCE Name Sequence
    Name Sequence PART I: NAME SEQUENCE A-ch‘ang Abor USE Achang Assigned collective code [sit] Aba (Sino-Tibetan (Other)) USE Chiriguano UF Adi Abaknon Miri Assigned collective code [phi] Miśing (Philippine (Other)) Aborlan Tagbanwa UF Capul USE Tagbanua Inabaknon Abua Kapul Assigned collective code [nic] Sama Abaknon (Niger-Kordofanian (Other)) Abau Abujhmaria Assigned collective code [paa] Assigned collective code [dra] (Papuan (Other)) (Dravidian (Other)) UF Green River Abulas Abaw Assigned collective code [paa] USE Abo (Cameroon) (Papuan (Other)) Abazin UF Ambulas Assigned collective code [cau] Maprik (Caucasian (Other)) Acadian (Louisiana) Abenaki USE Cajun French Assigned collective code [alg] Acateco (Algonquian (Other)) USE Akatek UF Abnaki Achangua Abia Assigned collective code [sai] USE Aneme Wake (South American (Other)) Abidji Achang Assigned collective code [nic] Assigned collective code [sit] (Niger-Kordofanian (Other)) (Sino-Tibetan (Other)) UF Adidji UF A-ch‘ang Ari (Côte d'Ivoire) Atsang Abigar Ache USE Nuer USE Guayaki Abkhaz [abk] Achi Abnaki Assigned collective code [myn] USE Abenaki (Mayan languages) Abo (Cameroon) UF Cubulco Achi Assigned collective code [bnt] Rabinal Achi (Bantu (Other)) Achinese [ace] UF Abaw UF Atjeh Bo Cameroon Acholi Bon (Cameroon) USE Acoli Abo (Sudan) Achuale USE Toposa USE Achuar MARC Code List for Languages October 2007 page 11 Name Sequence Achuar Afar [aar] Assigned collective code [sai] UF Adaiel (South American Indian Danakil (Other)) Afenmai UF Achuale USE Etsako Achuara Jivaro Afghan
    [Show full text]
  • On Tone and Morphophonology of the Akan Reduplication Construction
    Alan Reed Libert & Christo Moskovsky 27 Journal of Universal Language 16-2 September 2015, 27-62 Terms for Bodies of Water in A Posteriori and Mixed Artificial Languages Alan Reed Libert & Christo Moskovsky University of Newcastle, Australia Abstract In this paper we look at words for bodies of water (e.g., words for ‘lake’ and ‘river’) in a large number of a posteriori and mixed artificial languages. After presenting the data and briefly discussing some of them, we analyze some aspects of them, including which meanings seem to be more basic than others. For example, words meaning ‘river’ appear to be unmarked with respect to words meaning similar, but smaller, bodies of water (e.g., ‘brook’), since some artificial languages derive the latter from the former, but no languages in our sample derive the latter from the former. This sort of analysis can be applied to other semantic fields in artificial languages. Keywords: a posteriori languages, mixed languages, lexicon Alan Reed Libert School of Humanities & Social Science, University of Newcastle, Callaghan, NSW 2308, Australia Phone: 61-2-49215117; Email: [email protected] Christo Moskovsky School of Humanities & Social Science, University of Newcastle, Callaghan, NSW 2308, Australia Phone: 61-2-49215163; Email: [email protected] Received August 11, 2015; Revised September 22, 2015; Accepted Septermber 25, 2015 28 Terms for Bodies of Water in A Posteriori and Mixed Artificial Languages 1. Introduction1 Looking at specific areas of the vocabulary of artificial languages (henceforth ALs) can give one an idea of the nature of such languages, at least with respect to the lexicon and perhaps also concerning derivational morphology.
    [Show full text]
  • MARC Code List for Languages
    MARC Code List for Languages MARC 21 IBRARY OF CONGRESS ■ 2000 MARC Code List for Languages 2000 Edition Prepared by Network Development and MARC Standards Office Library of Congress LIBRARY OF CONGRESS CATALOGING DISTRIBUTION SERVICE / WASHINGTON Library of Congress Cataloging-in-Publication Data MARC code list for languages / prepared by Network Development and MARC Standards Office, Library of Congress. — 2000 ed. p.cm. Rev. of: USMARC code list for languages. 1996 ed. 1996. ISBN 0-8444-1012-8 1. MARC formats. 2. Language and languages-Code words. I. Library of Congress. Network Development and MARC Standards Office. III. USMARC code list for languages. Z699.35.M28.U79 2000 025.3'16-dc21 00-022744 [Z663.12] Available in the U.S.A. and other countries from: Cataloging Distribution Service, Library of Congress, Washington, D.C. 20541-4912 U.S.A. Copyright (c) 2000 by the Library of Congress except within the USA. This publication may be reproduced without permission provided the source is fully acknowledged. This publication will be reissued from time to time as needed to incorporate revisions. CONTENTS INTRODUCTION.v PART I: NAME SEQUENCE.11 PART II: CODE SEQUENCE.153 APPENDIX A: CHANGES.159 MARC Code List for Languages February 2000 page iii February 2000 MARC Code List for Languages ■ Introduction INTRODUCTION This document contains a list of languages and their associated three-character alphabetic codes. The purpose of this list is to allow the designation of the language or languages in MARC records. The list contains 434 discrete codes, of which 54 are used for groups of languages.
    [Show full text]
  • Flags of Constructed Languages
    Flags of Constructed Languages Patrice de La Condamine Abstract Since the dawn of humanity, humans have oscillated between the preservation of their own individuality and identity and their need to belong to a global community. The ideal of embracing and of researching the unification of its origins haunts their hearts. With this central to its spirit, constructed languages were developed, whether destined for secondary or international use, intended for vast cultural arenas or with strictly a philosophical use in mind. One will encounter well-known names such as Volapuk, Esperanto, Ido, Bolak, Interlingua, Occidental but also Glosa, Kotava, Lingua Franca Nova, and Atlango. Or even Folkspraat, Slovio, Norden, Afrihili, Slovianski, Hedsdel, etc. And we haven’t even mentioned the philosophical language Lojban. The most interesting aspect is establishing that all these languages have flags which translate the messages and the ideals of the groups in question. Interpreting the flags of constructed languages is essential for several reasons; firstly it allows us to understand that all these flags without exception, deliver the same message that the their existence isn’t necessarily linked to the simple notion of territory, and secondly, the flag is first and foremost, by means of its design and colours, a mental territory. After having shown and explained the different flags we will conclude with the presentation of the flag of Conlang, a language created by the United Nations of constructed languages. Folkspraak Proceedings of the 24th International Congress of Vexillology, Washington, D.C., USA 1–5 August 2011 © 2011 North American Vexillological Association (www.nava.org) 159 FLAGS OF CONSTRUCTED LANGUAGES Introduction For everyone present here for this 24th International Congress of Vexillology in Washington, it is not necessary to explain the vital need that one has to represent oneself through the use of emblems, and we all know the essential place which flags occupy in this role.
    [Show full text]
  • Behavioral Health Data System
    Behavioral Health Data System Behavioral Health Supplemental Transaction Data Guide VERSION: 4.1 PUBLISH DATE: 7/16/2020 APPROVE DATE: 7/16/2020 GUIDE EFFECTIVE DATE: 1/1/2020 LAST UPDATED: 7/16/2020 Table of Contents Data Guide Overview: ........................................................................................................................................................... 10 Overview ........................................................................................................................................................................... 10 Terminology Guide ............................................................................................................................................................ 10 Document Use Guide ........................................................................................................................................................ 11 Navigation ......................................................................................................................................................................... 11 Effective Dates .................................................................................................................................................................. 11 Nationally Accepted Health Information Technology (HIT) Code Crosswalk: .................................................................. 11 General Considerations of Guide .........................................................................................................................................
    [Show full text]
  • Abkhazian Achinese Acoli Adangme Adygei Adyghe Afar Afrihili
    Abkhazian Achinese Acoli Adangme Adygei Adyghe Afar Afrihili Afrikaans Afro-Asiatic (Other) Akan Akkadian Albanian Aleut Algonquian languages Altaic (Other) Amharic Apache languages Arabic Aragonese Aramaic Arapaho Araucanian Arawak Armenian Artificial (Other) Assamese Asturian Athapascan languages Australian languages Austronesian (Other) Avaric Avestan Awadhi Aymara Azerbaijani Bable Balinese Baltic (Other) Baluchi Bambara Bamileke languages Banda Bantu (Other) Basa Bashkir Basque Batak (Indonesia) Beja Belarusian Bemba Bengali; ben Berber (Other) Bhojpuri Bihari Bikol Bilin Bini Bislama Blin Bokm/ Norwegian Bosnian Braj Breton Buginese Bulgarian Buriat Burmese Caddo Carib Castilian Catalan Caucasian (Other) Cebuano Celtic (Other) Central American Indian (Other) Chagatai Chamic languages Chamorro Chechen Cherokee Chewa Cheyenne Chibcha Chichewa Chinese Chinook jargon Chipewyan Choctaw Chuang Church Slavic Church Slavonic Chuukese Chuvash Classical Newari Coptic Cornish Corsican Cree Creek Creoles and pidgins (Other) Creoles and pidgins, English-based (Other) Creoles and pidgins, Frenchbased (Other) Creoles and pidgins, Portuguese-based (Other) Crimean Tatar Crimean Turkish Croatian Cushitic (Other) Czech Dakota Danish Dargwa Dayak Delaware Dinka Divehi Dogri Dogrib Dravidian (Other) Duala Dutch, Middle (ca. 1050-1350) Dutch/ Flemish Dyula Dzongkha Efik Egyptian (Ancient) Ekajuk Elamite English English, Middle (1100-1500) English, Old (ca.450-1100) Erzya Esperanto Estonian Ewe Ewondo Fang Fanti Faroese Fijian Filipino Finnish Finno-Ugrian
    [Show full text]