Not Made to Measure

Total Page:16

File Type:pdf, Size:1020Kb

Not Made to Measure Made in Britain: Not made to measure. Ronnie Cohen © 2011 Ronnie Cohen. All rights reserved. 1 Table of Contents Foreword...............................................................................................................................................5 Introduction..........................................................................................................................................6 Central Role of Measurement in Daily Life.........................................................................................7 Why Measurement Matters..................................................................................................................8 Quest for Honest Measurements since Ancient Times.........................................................................9 Measurement Facts: Did you know that....?.......................................................................................10 Description of the British Imperial System........................................................................................11 Introduction to the British Imperial System..............................................................................11 Units of Length..........................................................................................................................11 Units of Area.............................................................................................................................11 Units of Volume........................................................................................................................12 Units of Mass............................................................................................................................12 Commodity Measurements.......................................................................................................13 Other Imperial Measurements...................................................................................................14 Possible Imperial Measurements of Some Physical Quantities................................................14 No Imperial Units for Certain Physical Phenomena.................................................................15 Description of the Modern Metric System.........................................................................................16 Introduction to the Modern Metric System...............................................................................16 SI Prefixes.................................................................................................................................17 SI Base Units.............................................................................................................................18 SI Derived Units........................................................................................................................19 Non-SI Approved Units............................................................................................................20 Weights and Measures used in the UK Today....................................................................................21 History of the British Metrication Programme...................................................................................22 Aims and Objectives.................................................................................................................22 Problems and Issues with the Metrication Programme.............................................................22 Conversion of the Transport and Retail Sectors........................................................................22 Political Opposition to Metrication...........................................................................................23 What is Wrong with Two Measurement Systems?.............................................................................24 Potential for Error.....................................................................................................................24 Historical Recognition for the Need for One Measurement System.........................................24 Untidy Dual Labels and Road Signs.........................................................................................25 Inconsistent and Illogical Measurement Rules.........................................................................25 Odd Use of Measurement Units by the DfT.............................................................................25 Odd Use of Measurement Units in the Media...........................................................................26 Use and Abuse of Fluid Ounces................................................................................................26 Not Good Enough.....................................................................................................................26 British Measurement Anomalies: How does it affect us?...................................................................27 Patriotic Argument Fallacy.......................................................................................................27 Two Measurement Systems: Whom does it help?....................................................................28 Q. Does it help schoolchildren?.......................................................................................28 Q. Does it help drivers?...................................................................................................28 Q. Does it help consumers?.............................................................................................29 Q. Does it help tourists?...................................................................................................29 Q. Does it help the emergency services?.........................................................................29 Q. Does it help builders and DIY enthusiasts?................................................................29 Q. Does it help businesses, house buyers and tenants?...................................................29 Q. Does it help farmers?..................................................................................................30 © 2011 Ronnie Cohen. All rights reserved. 2 Q. Does it help chefs?......................................................................................................30 Q. Does it help dieters?....................................................................................................30 Q. Does it help holidaymakers?.......................................................................................30 Q. Does it help drinkers?.................................................................................................30 Q. Does it help car buyers?..............................................................................................31 Q. Does it help road contractors?....................................................................................31 Q. Does it help manufacturers and exporters?.................................................................31 Q. Does it help professionals?.........................................................................................32 Q. Does it help workers?.................................................................................................32 Q. Does it help newspaper readers and television and radio audiences?.........................32 Q. Does it help walkers?..................................................................................................32 Q. Does it help international travellers?..........................................................................32 Q. Does it help advertisers?.............................................................................................33 Q. Does it help retailers?.................................................................................................33 Q. Does it help other Europeans?....................................................................................33 Q. Does it help Americans?.............................................................................................33 Q. Does it help Commonwealth citizens?........................................................................33 Metrication Opposition: Not for Your Benefit..........................................................................34 Judge the Metric System on its Own Merits.............................................................................34 Need to Standardise on One System. Which One?............................................................................35 Can we go back to Exclusive Use of Imperial?........................................................................35 Factors to Consider for Standardisation....................................................................................35 Advantages of Metric over Imperial.........................................................................................36 Full Metrication and the Anti-Metric Lobby.............................................................................36 Problems with the Imperial System and their Metric Solutions.........................................................37 Too Many Names......................................................................................................................37 Too Many Multiples..................................................................................................................37 Unpredictable Relationships.....................................................................................................38
Recommended publications
  • Varying Constants, Gravitation and Cosmology
    Varying constants, Gravitation and Cosmology Jean-Philippe Uzan Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France) and Department of Mathematics and Applied Mathematics, Cape Town University, Rondebosch 7701 (South Africa) and National Institute for Theoretical Physics (NITheP), Stellenbosch 7600 (South Africa). email: [email protected] http//www2.iap.fr/users/uzan/ September 29, 2010 Abstract Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to mat- ter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local posi- tion invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pul- sar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we arXiv:1009.5514v1 [astro-ph.CO] 28 Sep 2010 describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of differ- ent constants.
    [Show full text]
  • In Physical Chemistry
    INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Physical and Biophysical Chemistry Division IUPAC Vc^llclllul LICb . U 111 Lb cillCl Oy 111 DOlo in Physical Chemistry Third Edition Prepared for publication by E. Richard Cohen Tomislav Cvitas Jeremy G. Frey BcTt.il Holmstrom Kozo Kuchitsu R,oberto Marquardt Ian Mills Franco Pavese Martin Quack Jiirgen Stohner Herbert L. Strauss Michio Takanii Anders J Thor The first and second editions were prepared for publication by Ian Mills Tomislav Cvitas Klaus Homann Nikola Kallay Kozo Kuchitsu IUPAC 2007 RSC Publishing CONTENTS v PREFACE ix HISTORICAL INTRODUCTION xi 1 PHYSICAL QUANTITIES AND UNITS 1 1.1 Physical quantities and quantity calculus 3 1.2 Base quantities and derived quantities 4 1.3 Symbols for physical quantities and units 5 1.3.1 General rules for symbols for quantities 5 1.3.2 General rules for symbols for units 5 1.4 Use of the words "extensive", "intensive", "specific", and "molar" 6 1.5 Products and quotients of physical quantities and units 7 1.6 The use of italic and Roman fonts for symbols in scientific publications 7 2 TABLES OF PHYSICAL QUANTITIES 11 2.1 Space and time 13 2.2 Classical mechanics 14 2.3 Electricity and magnetism 16 2.4 Quantum mechanics and quantum chemistry 18 2.4.1 Ab initio Hartree-Fock self-consistent field theory (ab initio SCF) 20 2.4.2 Hartree-Fock-Roothaan SCF theory, using molecular orbitals expanded as linear combinations of atomic-orbital basis . functions (LCAO-MO theory) . 21 2.5 Atoms and molecules 22 2.6 Spectroscopy 25 2.6.1 Symbols for angular
    [Show full text]
  • American and BRITISH UNITS of Measurement to SI UNITS
    AMERICAN AND BRITISH UNITS OF MEASUREMENT TO SI UNITS UNIT & ABBREVIATION SI UNITS CONVERSION* UNIT & ABBREVIATION SI UNITS CONVERSION* UNITS OF LENGTH UNITS OF MASS 1 inch = 40 lines in 2.54 cm 0.393701 1 grain gr 64.7989 mg 0.0154324 1 mil 25.4 µm 0.03937 1 dram dr 1.77185 g 0.564383 1 line 0.635 mm 1.57480 1 ounce = 16 drams oz 28.3495 g 0.0352739 1 foot = 12 in = 3 hands ft 30.48 cm 0.0328084 1 pound = 16 oz lb 0.453592 kg 2.204622 1 yard = 3 feet = 4 spans yd 0.9144 m 1.09361 1 quarter = 28 lb 12.7006 kg 0.078737 1 fathom = 2 yd fath 1.8288 m 0.546807 1 hundredweight = 112 lb cwt 50.8024 kg 0.0196841 1 rod (perch, pole) rd 5.0292 m 0.198839 1 long hundredweight l cwt 50.8024 kg 0.0196841 1 chain = 100 links ch 20.1168 m 0.0497097 1 short hundredweight sh cwt 45.3592 kg 0.0220462 1 furlong = 220 yd fur 0.201168 km 4.97097 1 ton = 1 long ton tn, l tn 1.016047 t 0.984206 1 mile (Land Mile) mi 1.60934 km 0.62137 1 short ton = 2000 lb sh tn 0.907185 t 1.102311 1 nautical mile (intl.) n mi, NM 1.852 km 0.539957 1 knot (Knoten) kn 1.852 km/h 0.539957 UNITS OF FORCE 1 pound-weight lb wt 4.448221 N 0.2248089 UNITS OF AREA 1 pound-force LB, lbf 4.448221 N 0.2248089 1 square inch sq in 6.4516 cm2 0.155000 1 poundal pdl 0.138255 N 7.23301 1 circular inch 5.0671 cm2 0.197352 1 kilogram-force kgf, kgp 9.80665 N 0.1019716 1 square foot = 144 sq in sq ft 929.03 cm2 1.0764 x 10-4 1 short ton-weight sh tn wt 8.896444 kN 0.1124045 1 square yard = 9 sq ft sq yd 0.83613 m2 1.19599 1 long ton-weight l tn wt 9.964015 kN 0.1003611 1 acre = 4 roods 4046.8
    [Show full text]
  • Dien Mit Zukunft Meyer-Stoll, Phil.-Hist
    Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 20.12.2010 BAYERISCHE AKADEMIE DER WISSENSCHAFTEN PHILOSOPHISCH-HISTORISCHE KLASSE ABHANDLUNGEN . NEUE FOLGE, HEFT 136 Revision Cornelia Meyer-Stoll Die Maß- und Gewichtsreformen in Deutschland im 19. Jahrhundert unter besonderer Berücksichtigung der Rolle Carl August Steinheils und der Bayerischen Akademie der Wissenschaften Vorgelegt von Knut Borchardt in der Sitzung vom 7. Mai 2010 MÜNCHEN 2010 VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN IN KOMMISSION BEIM VERLAG C. H. BECK MÜNCHEN Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 20.12.2010 ISSN 0005–710X ISBN 978 3 7696 0124 4 © Bayerische Akademie der Wissenschaften, München 2010 Gesamtherstellung: Druckerei C. H. Beck, Nördlingen Gedruckt auf säurefreiem, alterungsbeständigem Papier (hergestellt aus chlorfrei gebleichtem Zellstoff) Printed in Germany Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 21.12.2010 Ludwig Thiersch: Carl August Ritter von Steinheil (1801–1870) Bayerische Akademie der Wissenschaften Revision Druckerei C.H . Beck Medien mit Zukunft Meyer-Stoll, Phil.-hist. Abh. 136 ..................................... Revision, 21.12.2010 Druckerei C. H . Beck Medien mit Zukunft .................Meyer-Stoll, Phil.-hist..................... Abh. 136 Revision, 17.12.2010
    [Show full text]
  • CAPACITY One Gallon Split Into Fourths Is Four Quarts
    CAPACITY One gallon split into fourths is four quarts. Take that and divide by two and you got a pint. NAME: Split that pint up into halves and make a cup, DATE: and that cup will fit eight fluid ounces inside of it. One gallon is four quarts (or eight pints, or sixteen cups)! One quart is two pints (or four cups, or thirty-two fluid ounces)! WATCH VIDEO One pint is two cups (or sixteen fluid ounces)! One cup is eight fluid ounces! A gallon of milk split in fourths makes four quarts. Split a quart of milk in half; then a pint is what you’ll have, which can make two cups you see often when you drink your school milk carton. If you can drink the milk in eight sips, each is about an ounce going through your lips! Volume is a word that’s familiar, and capacity and volume are similar; and though it’s easy to assume, capacity’s not exactly volume. Capacity’s how much something can hold; the amount is always the same. Volume’s the measure of what’s inside, and that amount can change. Logo 1 www.numberock.com CAPACITY One gallon split into fourths is four . Take that and divide by two and you got a . NAME: Split that pint up into halves and make a , DATE: and that cup will fit eight inside of it. One gallon is quarts (or 8 pints, or 16 cups)! One quart is pints (or four cups, or thirty-two fluid ounces)! One pint is cups (or sixteen fluid ounces)! One cup is fluid ounces! A of milk split in fourths makes four quarts.
    [Show full text]
  • Math Assessment 5.0A
    Math Assessment 5.0A . Name:_______________________________Date: 1. Solve. 2. Solve. 3 x (6 +1) = [8 x (10 - 3)] * 12= a. iq a. 68 b. 21 b. 80 c. 10 c. 152 d. 16 d. 02 3. Solve. H. Add parentheses to make {[5 * (2 x 3)] x (3 x 6)}= the statement true. 8 x 10 + 5 = 120 a. 378 b. 108 a (8) x 10 * 5 c. 201 b. (8x0) *5 d. 388 c. 8 x (10 + 5) d. The statement is already true. 5. Compare 36 - (3 + 6) and 6. How do parentheses in an 36 - 3 ♦ 6. equation affect the answer? viam Assessmem 5.0A .2 N am e-_____________________ ___________ Date: 1. Choose the words that 2. Choose the numerical match the numerical expression that matches expression. (3 +13) x 2 the words. Add 6 and 6. then divide b y 2. a. Add three and thirteen multiplied by two. a. 6 + 6 * 2 b. Add three and thirteen, b. (6 *6) *2 then multiply by two. c. 2 * 6 + 6 c. Add three and thirteen, d. 2 * (6 + 6) then add two. 3. Choose the numerical H. Choose the words that expression that matches match the numerical the words. Multiply the sum expression. IHH * 12 o f 3 and 2 by the sum o f 5 and i a. 12 divided by IHH a. 3 x 2 + 5 x 1 b. Divide IHH by 12 b. 3 + 2 + 5 +1 c. IHH multiplied by 12 c. (3 + 2) x (5 +1) d. Divide 12 by IHH d.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • U.S. Metric Study Interim Report
    U.S. METRIC STUDY INTERIM REPORT THE CONSUMER imHHMHPHr U.S. METRIC SUBSTUDY REPORTS The results of substudies of the U.S. Metric Study, while being evaluated for the preparation of a comprehensive report to the Congress, are being published in the interim as a series of NBS Special Publications. The titles of the individual reports are listed below. REPORTS ON SUBSTUDIES NBS SP345-I: International Standards (issued December 1970, SD Catalog No. CI 3. 10:345-1, Price $1.25) NBS SP345-2: Federal Government: Civilian Agencies (issued July 1971, SD Catalog No. CI 3. 10:345-2, price $2.25) NBS SP345-3: Commercial Weights and Measures (issued July 1971, SD Catalog No. CI 3. 10:345-3, price $1.00) NBS SP345-4: The Manufacturing Industry (issued July 1971, SD Catalog No. C 1 3. 10:345-4, price $ 1 .25) NBS SP345-5 Nonmanufacturing Businesses (in press) NBS SP345-6 Education (in press) NBS SP345-7 The Consumer (this publication) NBS SP345-8 International Trade (in press) NBS SP345-9 Department of Defense (issued July 1971, SD Catalog No. C 1 3. 1 0:345-9, price $ 1 .25) NBS SP345-10: A History of the Metric System Controversy in the United States (in press) NBSSP345-11: Engineering Standards (issued July 1971, SD Catalog No. C 1 3. 1 0:345-1 1 , price $2.00) NBSSP345-12: Testimony of Nationally Representative Groups (issued July 1971, SD Catalog No. C13. 10:345-12, price $1.50) COMPREHENSIVE REPORT ON THE U.S. METRIC STUDY NBS SP345: To be published in August 1971 Those publications with catalog numbers have already been issued, and may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C.
    [Show full text]
  • Maße & Gewichte
    Maße & Gewichte Die Geschichte der Maße und Gewichte Inhaltsverzeichnis 0.1 Geschichte der Maße und Gewichte .................................. 1 0.1.1 Überblick ........................................... 1 0.1.2 Längeneinheiten ....................................... 1 0.1.3 Gewichtseinheiten ...................................... 1 0.1.4 Beispiel der Vielfalt ..................................... 1 0.1.5 Einheiten für Zeit und Winkel ................................ 2 0.1.6 Angelsächsische Maßeinheiten ................................ 2 0.1.7 Das metrische System .................................... 3 0.1.8 Typografische Maßeinheiten ................................. 3 0.1.9 Listen von historischen Maßen und Gewichten ........................ 3 0.1.10 Gebräuchliche Masseeinheiten ................................ 4 0.1.11 Siehe auch .......................................... 4 0.1.12 Literatur ........................................... 4 0.1.13 Weblinks ........................................... 4 0.1.14 Einzelnachweise ....................................... 5 1 Die Anfänge des Messens in der Frühzeit des Menschen 6 1.1 Kognitive Archäologie ......................................... 6 1.1.1 Entstehung .......................................... 6 1.1.2 Kognitive Archäologie heute ................................. 6 1.1.3 Kognitive Archäologie im deutschsprachigen Raum ..................... 7 1.1.4 Kognitive Archäologie in der Diskussion ........................... 7 1.1.5 Literatur ........................................... 7 1.1.6
    [Show full text]
  • Units of Weight and Measure : Definitions and Tables of Equivalents
    Units of Weight and Measure (United States Customary and Metric) Definitions and Tables of Equivalents United States Department of Commerce National Bureau of Standards Miscellaneous Publication 233 THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the fisting of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices
    [Show full text]
  • A History of the National Bureau of Standards
    APPENDIX A FERDINAND RUDOLPH HASSLER First Superintendent of the Coast Survey and of Weights and Measures When Professor Stratton arrived at the Office of Weights and Measures on B Street in Washington in the spring of 1898 to survey its equipment and operations, he found there in the person of Louis A. Fischer, the adjuster, a link with Ferdinand Rudolph Hassler, the first Superintendent of Weights and Measures in the Federal Government. It was in the atmosphere of the office over which Hassler had presided, Stratton said, with its sacred traditions concerning standards, its unsurpassed instrument shop, its world-known experts in the construction and comparison of standards, and especially in the most precise measurement of length and mass, that the boy Fischer, scarcely over 16, found himself when he entered the employ of Govern- ment in a minor capacity [about the year 18801. * * Scarcely 40 years had passed since the end of Hassler's services and the beginning of Fischer's. His first instructors were the direct disciples of Hassler and he knew and talked with those who had come in personal contact with the first superintendent.1 Fischer's reminiscences concerning the early historyof the Weights and Measures office, gathered from his association with the successors of Hassler, were never recorded, to Stratton's regret, and the only biography of Hassler, by Florian Cajori, professor of mathematics at the University of California, centers on his career in the Coast Survey gathered from his association with the successors of Hassler, were never recorded, to in the history of science in the Federal Government, is the principal source of the present sketch.2 1 Stratton, "Address Memorializing Louis Albert Fischer, 1864.—1921," 15th Annual Con.
    [Show full text]
  • Fundamentals of Math CHAPTER 1
    © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION Fundamentals of Math CHAPTER 1 OBJECTIVES ■ Understand the difference between the Arabic and Roman numeral systems ■ Translate Arabic numerals to Roman numerals ■ Translate Roman numerals to Arabic numerals ■ Understand the metric system ■ Understand the apothecary system ■ Be able to convert metric to apothecary ■ Be able to convert apothecary to metric ARABIC NUMERALS The Arabic number system uses the numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and zero (0). It is also known as the decimal system. Depending on how these numbers are arranged determines the value of the number. For example, digits 4, 7, and 2 placed together (472) represent the number four hundred seventy-two. A decimal point (.) separates whole numbers, or units, from fractional num- bers, or fractional units. All numbers on the left side of the decimal point are considered whole numbers. All numbers placed on the right of the decimal point are considered fractional units, or less than one whole unit. The following num- ber line shows the relationship of Arabic numerals based on their position in a number. Ten-thousands hundreds ones tenths thousandths hundred-thousandths -----5------8------2-----4-----3---- . ----6------7------9------3------2-------------- thousands tens hundredths ten-thousandths The number 43.6 contains the numerals 4, 3, and 6. This represents forty-three units of one and six-tenths of one unit. Decimals will be covered in more detail in Chapter 2. 1 59612_CH01_FINAL.indd 1 8/20/09 7:38:45 PM © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 2 Chapter 1 ■ Fundamentals of Math ROMAN NUMERALS The Roman numeral system does not utilize numerals.
    [Show full text]