Imperial Units

Total Page:16

File Type:pdf, Size:1020Kb

Imperial Units Imperial units From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the post-1824 measures used in the British Empire and countries in the British sphere of influence. For the units used in England before 1824, see English units. For the system of weight, see Avoirdupois. For United States customary units, see Customary units . Imperial units or the imperial system is a system of units, first defined in the British Weights and Measures Act of 1824, later refined (until 1959) and reduced. The system came into official use across the British Empire. By the late 20th century most nations of the former empire had officially adopted the metric system as their main system of measurement. The former Weights and Measures office in Seven Sisters, London. Contents [hide] • 1 Relation to other systems • 2 Units ○ 2.1 Length ○ 2.2 Area ○ 2.3 Volume 2.3.1 British apothecaries ' volume measures ○ 2.4 Mass • 3 Current use of imperial units ○ 3.1 United Kingdom ○ 3.2 Canada ○ 3.3 Australia ○ 3.4 Republic of Ireland ○ 3.5 Other countries • 4 See also • 5 References • 6 External links [edit] Relation to other systems The imperial system is one of many systems of English or foot-pound-second units, so named because of the base units of length, mass and time. Although most of the units are defined in more than one system, some subsidiary units were used to a much greater extent, or for different purposes, in one area rather than the other. The distinctions between these systems are often not drawn precisely. One such system is the US customary system, which is historically derived from units which were in use in England at the time of settlement. Because the United States was already independent at the time, these units were unaffected by the introduction of the imperial system. Units of length and area are mostly shared between the imperial and US systems, albeit being partially and temporarily defined differently. Capacity measures differ the most due to the introduction of the imperial gallon and the unification of wet and dry measures. The avoirdupois system applies only to weights; it has a long designation and a short designation for the hundredweight and ton. Another distinction to be noted is that between these systems and older British/English units/systems or newer additions. The term imperial should not be applied to English units that were outlawed in the Weights and Measures Act 1824 or earlier, or which had fallen out of use by that time, nor to post-imperial inventions such as the slug or poundal. [edit] Units [edit] Length Imperial standards of length 1876 in Trafalgar Square, London. Since 1959, the US and the British yard have been defined identically to be 0.9144 metres, to match the international yard.[citation needed] Metric equivalents in this article usually assume this latest official definition. Before this date, the most precise measurement of the Imperial Standard Yard was 0.914398416 metres.[1] Table of length equivalent units Relative to Unit Feet Millimetres Metres Notes previous 0.000 025 thou (th) 1⁄ 0.0254 25.4 μm 12000 4 1 inch (in) 1000 thous ⁄12 25.4 0.025 4 foot (ft) 12 inches 1 304.8 0.3048 yard Defined as exactly 0.9144 metres 3 feet 3 914.4 0.9144 (yd) since 1959 The British Admiralty in practice used a fathom as 6 feet. This was despite 1 its being ⁄1000 of a nautical mile (i.e. 6.08 feet) until the adoption of the international nautical mile. The commonly accepted definition of a fathom was always 6 feet. The fathom 2 yards 6.08 or 6[2] 1,853.184 1.853184conflict was inconsequential as (ftm) Admiralty nautical charts designated depths shallower than 5 fathoms in feet on older imperial charts. Today all charts worldwide are metric, except for USA Hydrographic Office charts, which use feet for all depth ranges. chain 11 fathoms 66 20116.8 20.1168 (Ch) furlong 10 chains 660 201.168 (fur) mile 8 furlongs 5,280 1,609.344 (mi) league No longer an official unit in any 3 miles 15,840 4,828.032 (Lea) nation. Maritime units cable ~100 fathoms 608 185.3184One tenth of a nautical mile. When in use it was approximated colloquially as 100 fathoms. nautical 10 cables 6,080 1,853.184Used to measure distances at sea. mile Until the adoption of the international definition of 1852 metres in 1970, the British nautical (Admiralty) mile was defined as 6,080 feet. It was not readily expressible in terms of any of the intermediate units, because it was derived from the circumference of the Earth (like the original metre). Gunter's survey units (17th century onwards) 66 link ⁄100 201.168 0.2011687.92 inches 66 rod 25 links ⁄4 5,029.2 5.0292The rod is also called pole or perch. 1 chain 4 poles 66 20.1168 ⁄10 furlong [edit] Area Area Relation Square Square Square Unit to units of Square metres Hectares Notes feet rods miles length Although the proper term is square rod, for centuries this unit has 1 rod × 1 perch 272.25 1 1⁄ 25.29285264 0.002529been called a pole or rod 102400 perch or, more properly square pole or square perch. 1 furlong × The rood is also called a rood 10,890 40 1⁄ 1,011.7141056 0.1012 1 rod[3] 2560 rod.[4][5] 1 furlong × acre 43,560 160 1⁄ 4,046.8564224 0.4047 1 chain 640 Note: All equivalences are exact except the hectares, which are accurate to four significant figures. [edit] Volume In 1824, the United Kingdom adopted a close approximation to the ale gallon known as the imperial gallon. The imperial gallon was based on the volume of 10 lb of distilled water weighed in air with brass weights with the barometer standing at 30 in Hg at a temperature of 62 °F. In 1963 this definition was refined as the space occupied by 10 lb of distilled water of density 0.998859 g/ml weighed in air of density 0.001217 g/ml against weights of density 8.136 g/ml. This works out to 4.545096 l, or 277.420 cu in. The Weights and Measures Act of 1985 switched to a gallon of exactly 4.54609 l (approximately 277.4 cu in).[6] Table of volume units Imperial Cubic Unit Imperial pint Millilitres US ounces US pints ounce inches fluid ounce 1 1⁄ 28.4130625 1.7339 0.96076 0.060047 (fl oz) 20 1 gill (gi) 5 ⁄4 142.0653125 8.6694 4.8038 0.30024 pint (pt) 20 1 568.26125 34.677 19.215 1.2009 quart (qt) 40 2 1,136.5225 69.355 38.430 2.4019 gallon (gal) 160 8 4,546.09 277.42 153.72 9.6076 Note: The millilitre equivalences are exact whereas the conversions to cubic-inch and US measures are correct to five significant figures. [edit] British apothecaries' volume measures Table of British apothecaries' volume units[7] Unit Previous Unit Metric Value minim ... 59.1938802 µL fluid scruple 20 minims 1.1838776 mL fluid drachm 3 fluid scruples 3.5516328 mL fluid ounce 8 fluid drachms 28.4130625 mL pint 20 fluid ounces 568.26125 mL gallon 8 pints 4.54609 L [edit] Mass In the 19th and 20th centuries the UK has used three different systems for mass and weight:[8] • troy weight , used for precious metals; • avoirdupois weight, used for most other purposes; and • apothecaries ' weight , now virtually unused since the metric system is used for all scientific purposes. The troy pound (373.2417216 g) was made the primary unit of mass by the 1824 Act; however, its use was abolished in the UK on 6 January 1879, making the Avoirdupois pound the primary unit of mass with only the troy ounce (31.1034768 g) and its decimal subdivisions retained. In all the systems, the fundamental unit is the pound, and all other units are defined as fractions or multiples of it. Table of mass units Unit Pounds Grams Kilograms Notes 1 grain (gr) ⁄7000 0.06479891 Exactly 64.79891 milligrams. 1 drachm (drc) ⁄256 1.7718451953125 1 ounce (oz) ⁄16 28.349523125 Exactly 453.59237 grams by pound (lb) 1 453.59237 0.45359237 definition. A person's weight is often quoted in stone and pounds in English-speaking countries using the avoirdupois stone (st) 14 6,350.29318 6.35029318 system, with the exception of the United States and Canada, where it is usually quoted in pounds. A "quarter" was also commonly used quarter (qtr) 28 12.70058636to refer to a quarter of a pound in a retail context. hundredweight 112 50.80234544 (cwt) 20 hundredweights in both systems, ton (t) 2240 1,016.0469088 US hundredweight being lighter. The British ton (the long ton) is 2240 pounds, which is very close to a metric tonne, whereas the ton generally used in the United States is the "short ton" of 2000 pounds (907.18474 kg). Each is divided into 20 hundredweights (cwt), the British hundredweight of 112 pounds being 12% heavier than the American hundredweight of 100 pounds. [edit] Current use of imperial units A baby bottle that measures in three measurement systems—metric, imperial (UK), and US customary. [edit] United Kingdom Main article: Metrication in the United Kingdom British law now defines each imperial unit in terms of the metric equivalent. The metric system is in official use within the United Kingdom; however, use of Imperial unit is widespread in many cases.
Recommended publications
  • So, What Is Actually the Distance from the Equator to the Pole? – Overview of the Meridian Distance Approximations
    the International Journal Volume 7 on Marine Navigation Number 2 http://www.transnav.eu and Safety of Sea Transportation June 2013 DOI: 10.12716/1001.07.02.14 So, What is Actually the Distance from the Equator to the Pole? – Overview of the Meridian Distance Approximations A. Weintrit Gdynia Maritime University, Gdynia, Poland ABSTRACT: In the paper the author presents overview of the meridian distance approximations. He would like to find the answer for the question what is actually the distance from the equator to the pole ‐ the polar distance. In spite of appearances this is not such a simple question. The problem of determining the polar distance is a great opportunity to demonstrate the multitude of possible solutions in common use. At the beginning of the paper the author discusses some approximations and a few exact expressions (infinite sums) to calculate perimeter and quadrant of an ellipse, he presents convenient measurement units of the distance on the surface of the Earth, existing methods for the solution of the great circle and great elliptic sailing, and in the end he analyses and compares geodetic formulas for the meridian arc length. 1 INTRODUCTION navigational receivers and navigational systems (ECDIS and ECS [Weintrit, 2009]) suggest the Unfortunately, from the early days of the necessity of a thorough examination, modification, development of the basic navigational software built verification and unification of the issue of sailing into satellite navigational receivers and later into calculations for navigational systems and receivers. electronic chart systems, it has been noted that for the The problem of determining the distance from the sake of simplicity and a number of other, often equator to the pole is a great opportunity to incomprehensible reasons, this navigational software demonstrate the multitude of possible solutions in is often based on the simple methods of limited common use.
    [Show full text]
  • The Meter Greeters
    Journal of Applied Communications Volume 59 Issue 2 Article 3 The Meter Greeters C. Hamilton Kenney Follow this and additional works at: https://newprairiepress.org/jac This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation Kenney, C. Hamilton (1976) "The Meter Greeters," Journal of Applied Communications: Vol. 59: Iss. 2. https://doi.org/10.4148/1051-0834.1951 This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Journal of Applied Communications by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. The Meter Greeters Abstract The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. This article is available in Journal of Applied Communications: https://newprairiepress.org/jac/vol59/iss2/3 Kenney: The Meter Greeters The Meter Greeters C. Hamilton Kenney The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. The U.S. A. was a signatory to the Treaty of the Meter l signed in Paris, France. in 1875, establishing the metric system as an international measurement system, but Canada did not become a signatory nation until 1907.
    [Show full text]
  • AFT Fathom Quick Start Guide
    AFT Fathom™ Quick Start Guide Metric Units AFT Fathom Version 10 Incompressible Pipe Flow Modeling Dynamic solutions for a fluid world ™ CAUTION! AFT Fathom is a sophisticated pipe flow analysis program designed for qualified engineers with experience in pipe flow analysis and should not be used by untrained individuals. AFT Fathom is intended solely as an aide for pipe flow analysis engineers and not as a replacement for other design and analysis methods, including hand calculations and sound engineering judgment. All data generated by AFT Fathom should be independently verified with other engineering methods. AFT Fathom is designed to be used only by persons who possess a level of knowledge consistent with that obtained in an undergraduate engineering course in the analysis of pipe system fluid mechanics and are familiar with standard industry practice in pipe flow analysis. AFT Fathom is intended to be used only within the boundaries of its engineering assumptions. The user should consult the AFT Fathom Help System for a discussion of all engineering assumptions made by AFT Fathom. Information in this document is subject to change without notice. No part of this Quick Start Guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Applied Flow Technology. © 2018 Applied Flow Technology Corporation. All rights reserved. Printed in the United States of America. First Printing. “AFT Fathom”, “Applied Flow Technology”, “Dynamic solutions for a fluid world”, and the AFT logo are trademarks of Applied Flow Technology Corporation. Excel and Windows are trademarks of Microsoft Corporation.
    [Show full text]
  • American and BRITISH UNITS of Measurement to SI UNITS
    AMERICAN AND BRITISH UNITS OF MEASUREMENT TO SI UNITS UNIT & ABBREVIATION SI UNITS CONVERSION* UNIT & ABBREVIATION SI UNITS CONVERSION* UNITS OF LENGTH UNITS OF MASS 1 inch = 40 lines in 2.54 cm 0.393701 1 grain gr 64.7989 mg 0.0154324 1 mil 25.4 µm 0.03937 1 dram dr 1.77185 g 0.564383 1 line 0.635 mm 1.57480 1 ounce = 16 drams oz 28.3495 g 0.0352739 1 foot = 12 in = 3 hands ft 30.48 cm 0.0328084 1 pound = 16 oz lb 0.453592 kg 2.204622 1 yard = 3 feet = 4 spans yd 0.9144 m 1.09361 1 quarter = 28 lb 12.7006 kg 0.078737 1 fathom = 2 yd fath 1.8288 m 0.546807 1 hundredweight = 112 lb cwt 50.8024 kg 0.0196841 1 rod (perch, pole) rd 5.0292 m 0.198839 1 long hundredweight l cwt 50.8024 kg 0.0196841 1 chain = 100 links ch 20.1168 m 0.0497097 1 short hundredweight sh cwt 45.3592 kg 0.0220462 1 furlong = 220 yd fur 0.201168 km 4.97097 1 ton = 1 long ton tn, l tn 1.016047 t 0.984206 1 mile (Land Mile) mi 1.60934 km 0.62137 1 short ton = 2000 lb sh tn 0.907185 t 1.102311 1 nautical mile (intl.) n mi, NM 1.852 km 0.539957 1 knot (Knoten) kn 1.852 km/h 0.539957 UNITS OF FORCE 1 pound-weight lb wt 4.448221 N 0.2248089 UNITS OF AREA 1 pound-force LB, lbf 4.448221 N 0.2248089 1 square inch sq in 6.4516 cm2 0.155000 1 poundal pdl 0.138255 N 7.23301 1 circular inch 5.0671 cm2 0.197352 1 kilogram-force kgf, kgp 9.80665 N 0.1019716 1 square foot = 144 sq in sq ft 929.03 cm2 1.0764 x 10-4 1 short ton-weight sh tn wt 8.896444 kN 0.1124045 1 square yard = 9 sq ft sq yd 0.83613 m2 1.19599 1 long ton-weight l tn wt 9.964015 kN 0.1003611 1 acre = 4 roods 4046.8
    [Show full text]
  • Lesson 1: Length English Vs
    Lesson 1: Length English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter C. 1 inch or 1 centimeter English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 yard = 0.9444 meters English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer 1 mile B. 1 yard or 1 meter C. 1 inch or 1 centimeter 1.6 kilometers 1 inch = 2.54 centimeters 1 yard = 0.9444 meters Metric Units The basic unit of length in the metric system in the meter and is represented by a lowercase m. Standard: The distance traveled by light in absolute vacuum in 1∕299,792,458 of a second. Metric Units 1 Kilometer (km) = 1000 meters 1 Meter = 100 Centimeters (cm) 1 Meter = 1000 Millimeters (mm) Which is larger? A. 1 meter or 105 centimeters C. 12 centimeters or 102 millimeters B. 4 kilometers or 4400 meters D. 1200 millimeters or 1 meter Measuring Length How many millimeters are in 1 centimeter? 1 centimeter = 10 millimeters What is the length of the line in centimeters? _______cm What is the length of the line in millimeters? _______mm What is the length of the line to the nearest centimeter? ________cm HINT: Round to the nearest centimeter – no decimals.
    [Show full text]
  • Water Heater Formulas and Terminology
    More resources http://waterheatertimer.org/9-ways-to-save-with-water-heater.html http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html http://waterheatertimer.org/pdf/Fundamentals-of-water-heating.pdf FORMULAS & FACTS BTU (British Thermal Unit) is the heat required to raise 1 pound of water 1°F 1 BTU = 252 cal = 0.252 kcal 1 cal = 4.187 Joules BTU X 1.055 = Kilo Joules BTU divided by 3,413 = Kilowatt (1 KW) FAHRENHEIT CENTIGRADE 32 0 41 5 To convert from Fahrenheit to Celsius: 60.8 16 (°F – 32) x 5/9 or .556 = °C. 120.2 49 140 60 180 82 212 100 One gallon of 120°F (49°C) water BTU output (Electric) = weighs approximately 8.25 pounds. BTU Input (Not exactly true due Pounds x .45359 = Kilogram to minimal flange heat loss.) Gallons x 3.7854 = Liters Capacity of a % of hot water = cylindrical tank (Mixed Water Temp. – Cold Water – 1⁄ 2 diameter (in inches) Temp.) divided by (Hot Water Temp. x 3.146 x length. (in inches) – Cold Water Temp.) Divide by 231 for gallons. % thermal efficiency = Doubling the diameter (GPH recovery X 8.25 X temp. rise X of a pipe will increase its flow 1.0) divided by BTU/H Input capacity (approximately) 5.3 times. BTU output (Gas) = GPH recovery x 8.25 x temp. rise x 1.0 FORMULAS & FACTS TEMP °F RISE STEEL COPPER Linear expansion of pipe 50° 0.38˝ 0.57˝ – in inches per 100 Ft. 100° .076˝ 1.14˝ 125° .092˝ 1.40˝ 150° 1.15˝ 1.75˝ Grain – 1 grain per gallon = 17.1 Parts Per million (measurement of water hardness) TC-092 FORMULAS & FACTS GPH (Gas) = One gallon of Propane gas contains (BTU/H Input X % Eff.) divided by about 91,250 BTU of heat.
    [Show full text]
  • Maps and Charts
    Name:______________________________________ Maps and Charts Lab He had bought a large map representing the sea, without the least vestige of land And the crew were much pleased when they found it to be, a map they could all understand - Lewis Carroll, The Hunting of the Snark Map Projections: All maps and charts produce some degree of distortion when transferring the Earth's spherical surface to a flat piece of paper or computer screen. The ways that we deal with this distortion give us various types of map projections. Depending on the type of projection used, there may be distortion of distance, direction, shape and/or area. One type of projection may distort distances but correctly maintain directions, whereas another type may distort shape but maintain correct area. The type of information we need from a map determines which type of projection we might use. Below are two common projections among the many that exist. Can you tell what sort of distortion occurs with each projection? 1 Map Locations The latitude-longitude system is the standard system that we use to locate places on the Earth’s surface. The system uses a grid of intersecting east-west (latitude) and north-south (longitude) lines. Any point on Earth can be identified by the intersection of a line of latitude and a line of longitude. Lines of latitude: • also called “parallels” • equator = 0° latitude • increase N and S of the equator • range 0° to 90°N or 90°S Lines of longitude: • also called “meridians” • Prime Meridian = 0° longitude • increase E and W of the P.M.
    [Show full text]
  • Fuel Efficiency: Modes of Transportation Ranked by MPG | True Cost
    Fuel Efficiency: Modes of Transportation Ranked By MPG | True Cost -... http://truecostblog.com/2010/05/27/fuel-efficiency-modes-of-transportati... Fuel Efficiency: Modes of Transportation Ranked By MPG May 27, 2010 at 4:57 pm ∙ Filed under Energy, Environment, Ideas ∙Tagged bicycle mpg, fuel efficiency, running mpg, transportation, walking mpg Building on a previous post on the energy efficiency of various foods, I decided to create a list of transportation modes by fuel efficiency. In order to compare vehicles with different passenger capacities and average utilization, I included both average efficiency and maximum efficiency, at average and maximum passenger loads. The calculations and source data are explained in detail in the footnotes. For human‐powered activities, the mpg ratings might appear high, but many calculations omit the fact that a human’s baseline calorie consumption must be subtracted to find the efficiency of human‐powered transportation. I have subtracted out baseline metabolism, showing the true efficiencies for walking, running, and biking. For vehicles like trucks and large ships which primarily carry cargo, I count 4000 pounds of cargo as equivalent to one person. This is roughly the weight of an average American automobile (cars, minivans, SUVs, and trucks). The pmpg ratings of cars, trucks, and motorcycles are also higher than traditional mpg estimates, since pmpg accounts for the average number of occupants in a vehicle, which according to the Bureau of Transportation Statistics is 1.58 for cars, 1.73 for SUVs, minivans, and trucks, and 1.27 for motorcycles. List of Transportation Modes By Person‐Miles Per Gallon (PMPG) Transport Average PMPG Max PMPG Bicycle [3] 984 984 Walking [1] 700 700 Freight Ship [10] 340 570 Running [2] 315 315 Freight Train [7] 190.5 190.5 Plugin Hybrid [5] 110.6 350 Motorcycle [4] 71.8 113 Passenger Train [7] 71.6 189.7 Airplane [9] 42.6 53.6 Bus [8] 38.3 330 Car [4] 35.7 113 18‐Wheeler (Truck) [5] 32.2 64.4 Light Truck, SUV, Minivan [4] 31.4 91 [0] I used these conversion factors for all calculations.
    [Show full text]
  • Forests Commission Victoria-Australia
    VICTORIA, 1971 FORESTS COMMISSION VICTORIA-AUSTRALIA FIFTY SECOND ANNUAL REPORT FINANCIAL YEAR 1970-71 PRESENTED TO BOTH HOUSES OF PARLIAMENT PURSUANT TO ACT No. 6254, SECTION 35 . .Approximate Cosl of llrport.-Preparation, not given. Printing (250 copies), $1,725.00. No. 14-9238/71.-Price 80 cents FORESTS COMMISSION, VICTORIA TREASURY GARDENS, MELBOURNE, 3002 ANNUAL REPORT 1970-71 In compliance with the provisions of section 35 of the Forests Act 1958 (No. 6254) the Forests Commission has the honour to present to Parliament the following report of its activities and financial statements for the financial year 1970-71. F. R. MOULDS, Chainnan. C. W. ELSEY, Commissioner. A. J. THREADER, Commissioner. F. H. TREYV AUD, Secretary. CONTENTS PAGE 6 FEATURES. 8 fvlANAGEMENT- Forest Area, Surveys, fvlapping, Assessment, Recreation, fvlanagement Plans, Plantation Extension Planning, Forest Land Use Planning, Public Relations. 12 0PERATIONS- Silviculture of Native Forests, Seed Collection, Softwood Plantations, Hardwood Plantations, Total Plantings, Extension Services, Utilization, Grazing, Forest Engineering, Transport, Buildings, Reclamation and Conservation Works, Forest Prisons, Legal, Search and Rescue Operations. 24 ECONOMICS AND fvlARKETING- Features, The Timber Industry, Sawlog Production, Veneer Timber, Pulpwood, Other Forest Products, Industrial Undertakings, Other Activities. 28 PROTBCTION- Fire, Radio Communications, Biological, Fire Research. 32 EDUCATION AND RESEARCH- Education-School of Forestry, University of fvlelbourne, Overseas and Other Studies ; Research-Silviculture, Hydrology, Pathology, Entomology, Biological Survey, The Sirex Wood Wasp; Publications. 38 CONFERENCES. 39 ADMINISTRATJON- Personnel-Staff, Industrial, Number of Employees, Worker's Compensation, Staff Training ; fvlethods ; Stores ; Finance. APPENDICES- 43 I. Statement of Output of Produce. 44 II. Causes of Fires. 44 III. Summary of Fires and Areas Burned.
    [Show full text]
  • U.S. Metric Study Interim Report
    U.S. METRIC STUDY INTERIM REPORT THE CONSUMER imHHMHPHr U.S. METRIC SUBSTUDY REPORTS The results of substudies of the U.S. Metric Study, while being evaluated for the preparation of a comprehensive report to the Congress, are being published in the interim as a series of NBS Special Publications. The titles of the individual reports are listed below. REPORTS ON SUBSTUDIES NBS SP345-I: International Standards (issued December 1970, SD Catalog No. CI 3. 10:345-1, Price $1.25) NBS SP345-2: Federal Government: Civilian Agencies (issued July 1971, SD Catalog No. CI 3. 10:345-2, price $2.25) NBS SP345-3: Commercial Weights and Measures (issued July 1971, SD Catalog No. CI 3. 10:345-3, price $1.00) NBS SP345-4: The Manufacturing Industry (issued July 1971, SD Catalog No. C 1 3. 10:345-4, price $ 1 .25) NBS SP345-5 Nonmanufacturing Businesses (in press) NBS SP345-6 Education (in press) NBS SP345-7 The Consumer (this publication) NBS SP345-8 International Trade (in press) NBS SP345-9 Department of Defense (issued July 1971, SD Catalog No. C 1 3. 1 0:345-9, price $ 1 .25) NBS SP345-10: A History of the Metric System Controversy in the United States (in press) NBSSP345-11: Engineering Standards (issued July 1971, SD Catalog No. C 1 3. 1 0:345-1 1 , price $2.00) NBSSP345-12: Testimony of Nationally Representative Groups (issued July 1971, SD Catalog No. C13. 10:345-12, price $1.50) COMPREHENSIVE REPORT ON THE U.S. METRIC STUDY NBS SP345: To be published in August 1971 Those publications with catalog numbers have already been issued, and may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C.
    [Show full text]
  • Units of Weight and Measure : Definitions and Tables of Equivalents
    Units of Weight and Measure (United States Customary and Metric) Definitions and Tables of Equivalents United States Department of Commerce National Bureau of Standards Miscellaneous Publication 233 THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the fisting of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices
    [Show full text]
  • Download Metric Conversion Factors
    Metric Conversion Factors Imperial Units Factor Metric Units Imperial Units Factor Metric Units LENGTH oz./acre 70 g/ha inches 2.5 centimeters (cm) lb./acre 1.12 kg/ha feet 30 centimeters (cm) bu./acre 0.9 hL/ha feet 0.3 meters (m) tons/acre 2.24 t/ha yards 0.9 meters (m) fl.oz./acre 70 mL/ha miles 1.6 kilometers (km) pt./acre 1.4 L/ha qt./acre 2.8 L/ha AREA gal./acre 11.2 L/ha square inches 6.5 square centimeters (cm2) gal./acre (US) 9.35 L/ha square feet 0.09 square meters (m2) plants/acre 2.47 plants/ha acres 0.40 hectacres (ha) oz./gal. 6.2 mL/L lb/gal. .01 kg/L VOLUME oz./sq.ft. 305 g/m2 cubic inches 16 cubic centimeters (cm3) lb./sq.ft. 4.9 kg/m2 cubic feet 0.03 cubic meters (m3) oz./ft.row 93 g/m row cubic yards 0.8 cubic meters (m3) lb./ft.row 1.5 kg/m row fluid ounces 28 milliliters (mL) ft./sec. 0.3 m/s pints 0.57 liters (L) m.p.h. 1.6 km/h quarts 1.1 liters (L) p.s.i. 6.9 kPa gallons (imperial) 4.5 liters (L) gallons (US) 3.75 liters (L) To convert from imperial to metric, multiply by the conversion factor. bushels 0.36 hectoliters (hL) For example: 10 inches x 2.5 = 25 centimeters To convert from metric to imperial, divide by the conversion factor.
    [Show full text]