So, What Is Actually the Distance from the Equator to the Pole? – Overview of the Meridian Distance Approximations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
From Lacaille to Gill and the Start of the Arc of the 30 Meridian
From LaCaille to Gill and the start of the Arc of the 30th Meridian Jim R. SMITH, United Kingdom Key words: LaCaille. Maclear. Gill. Meridian Arcs. 30th Arc. SUMMARY If one looks at a map of European arcs of meridian and parallel at the beginning of the 20th century there will be seen to be a plethora them. Turning to Africa there was the complete opposite. Other than the arcs of Eratosthenes (c 300 BC) and the short arcs by LaCaille (1752) and Maclear (1841-48) the continent was empty. It was in 1879 that David Gill had the idea for a Cape to Cairo meridian arc but 1954 before it was completed. This presentation summaries the work of LaCaille and Maclear and then concentrates on a description of the 30th Meridian Arc in East Africa. The only other comparable arcs at the time were that through the centre of India by Lambton and Everest observed between 1800 and 1843; the Struve arc of 1816 to 1852 and the various arcs in France during the 18th century. The usefulness of such arcs was highlighted in 2005 with the inscription by UNESCO of the Struve Geodetic Arc on the World Heritage Monument list. A practical extension to the Struve Arc Monument is the 30th Meridian Arc since there is a connection between the two. At an ICA Symposium in Cape Town, 2003, Lindsay Braun gave a presentation that detailed the political machinations of the history of the 30th Arc; here it is hoped to fill in other aspects of this work including some facts and figures since that is what surveyors thrive upon. -
Geodesy Methods Over Time
Geodesy methods over time GISC3325 - Lecture 4 Astronomic Latitude/Longitude • Given knowledge of the positions of an astronomic body e.g. Sun or Polaris and our time we can determine our location in terms of astronomic latitude and longitude. US Meridian Triangulation This map shows the first project undertaken by the founding Superintendent of the Survey of the Coast Ferdinand Hassler. Triangulation • Method of indirect measurement. • Angles measured at all nodes. • Scaled provided by one or more precisely measured base lines. • First attributed to Gemma Frisius in the 16th century in the Netherlands. Early surveying instruments Left is a Quadrant for angle measurements, below is how baseline lengths were measured. A non-spherical Earth • Willebrod Snell van Royen (Snellius) did the first triangulation project for the purpose of determining the radius of the earth from measurement of a meridian arc. • Snellius was also credited with the law of refraction and incidence in optics. • He also devised the solution of the resection problem. At point P observations are made to known points A, B and C. We solve for P. Jean Picard’s Meridian Arc • Measured meridian arc through Paris between Malvoisine and Amiens using triangulation network. • First to use a telescope with cross hairs as part of the quadrant. • Value obtained used by Newton to verify his law of gravitation. Ellipsoid Earth Model • On an expedition J.D. Cassini discovered that a one-second pendulum regulated at Paris needed to be shortened to regain a one-second oscillation. • Pendulum measurements are effected by gravity! Newton • Newton used measurements of Picard and Halley and the laws of gravitation to postulate a rotational ellipsoid as the equilibrium figure for a homogeneous, fluid, rotating Earth. -
Maps and Charts
Name:______________________________________ Maps and Charts Lab He had bought a large map representing the sea, without the least vestige of land And the crew were much pleased when they found it to be, a map they could all understand - Lewis Carroll, The Hunting of the Snark Map Projections: All maps and charts produce some degree of distortion when transferring the Earth's spherical surface to a flat piece of paper or computer screen. The ways that we deal with this distortion give us various types of map projections. Depending on the type of projection used, there may be distortion of distance, direction, shape and/or area. One type of projection may distort distances but correctly maintain directions, whereas another type may distort shape but maintain correct area. The type of information we need from a map determines which type of projection we might use. Below are two common projections among the many that exist. Can you tell what sort of distortion occurs with each projection? 1 Map Locations The latitude-longitude system is the standard system that we use to locate places on the Earth’s surface. The system uses a grid of intersecting east-west (latitude) and north-south (longitude) lines. Any point on Earth can be identified by the intersection of a line of latitude and a line of longitude. Lines of latitude: • also called “parallels” • equator = 0° latitude • increase N and S of the equator • range 0° to 90°N or 90°S Lines of longitude: • also called “meridians” • Prime Meridian = 0° longitude • increase E and W of the P.M. -
Great Elliptic Arc Distance1
GREAT ELLIPTIC ARC DISTANCE1 R. E. Deakin School of Mathematical & Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA email: [email protected] January 2012 ABSTRACT These notes provide a detailed derivation of series formula for (i) Meridian distance M as a function of latitude φ and the ellipsoid constant eccentricity-squared e2, and φ and the ellipsoid constant third flattening n; (ii) Rectifying latitude µ as functions of φ,e2 and φ,n; and (iii) latitude φ as functions of µ,e2 and µ,n These series can then be used in solving the direct and inverse problems on the ellipsoid (using great elliptic arcs) and are easily obtained using the Computer Algebra System Maxima. In addition, a detailed derivation of the equation for the great elliptic arc on an ellipsoid is provided as well as defining the azimuth and the vertex of a great elliptic. And to assist in the solution of the direct and inverse problems the auxiliary sphere is introduced and equations developed. INTRODUCTION In geodesy, the great elliptic arc between P1 and P2 on the ellipsoid is the curve created by intersecting the ellipsoid with the plane containing P1 , P2 and O (the centre of the ellipsoid) and these planes are great elliptic planes or sections. Figure 1 shows P on the great elliptic arc between P1 and P2 . P is the geocentric latitude of P and P is the longitude of P. There are an infinite number of planes that cut the surface of the ellipsoid and contain the chord PP12 but only one of these will contain the centre O. -
The Meridian Arc Measurement in Peru 1735 – 1745
The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time. -
Distances Between United States Ports 2019 (13Th) Edition
Distances Between United States Ports 2019 (13th) Edition T OF EN CO M M T M R E A R P C E E D U N A I C T I E R D E S M T A ATES OF U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary of Commerce National Oceanic and Atmospheric Administration (NOAA) RDML Timothy Gallaudet., Ph.D., USN Ret., Assistant Secretary of Commerce for Oceans and Atmosphere and Acting Under Secretary of Commerce for Oceans and Atmosphere National Ocean Service Nicole R. LeBoeuf, Deputy Assistant Administrator for Ocean Services and Coastal Zone Management Cover image courtesy of Megan Greenaway—Great Salt Pond, Block Island, RI III Preface Distances Between United States Ports is published by the Office of Coast Survey, National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA), pursuant to the Act of 6 August 1947 (33 U.S.C. 883a and b), and the Act of 22 October 1968 (44 U.S.C. 1310). Distances Between United States Ports contains distances from a port of the United States to other ports in the United States, and from a port in the Great Lakes in the United States to Canadian ports in the Great Lakes and St. Lawrence River. Distances Between Ports, Publication 151, is published by National Geospatial-Intelligence Agency (NGA) and distributed by NOS. NGA Pub. 151 is international in scope and lists distances from foreign port to foreign port and from foreign port to major U.S. ports. The two publications, Distances Between United States Ports and Distances Between Ports, complement each other. -
Imperial Units
Imperial units From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the post-1824 measures used in the British Empire and countries in the British sphere of influence. For the units used in England before 1824, see English units. For the system of weight, see Avoirdupois. For United States customary units, see Customary units . Imperial units or the imperial system is a system of units, first defined in the British Weights and Measures Act of 1824, later refined (until 1959) and reduced. The system came into official use across the British Empire. By the late 20th century most nations of the former empire had officially adopted the metric system as their main system of measurement. The former Weights and Measures office in Seven Sisters, London. Contents [hide] • 1 Relation to other systems • 2 Units ○ 2.1 Length ○ 2.2 Area ○ 2.3 Volume 2.3.1 British apothecaries ' volume measures ○ 2.4 Mass • 3 Current use of imperial units ○ 3.1 United Kingdom ○ 3.2 Canada ○ 3.3 Australia ○ 3.4 Republic of Ireland ○ 3.5 Other countries • 4 See also • 5 References • 6 External links [edit] Relation to other systems The imperial system is one of many systems of English or foot-pound-second units, so named because of the base units of length, mass and time. Although most of the units are defined in more than one system, some subsidiary units were used to a much greater extent, or for different purposes, in one area rather than the other. The distinctions between these systems are often not drawn precisely. -
The History of Geodesy Told Through Maps
The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe. -
B10.Pdf (774.2Kb)
Page 1 Coordinates Series B, No. 10 The History of Cartography in a Nutshell Persistent URL for citation: http://purl.oclc.org/ coordinates/b10.pdf Vladimiro Valerio Vladimiro Valerio (e-mail: [email protected]) is full Professor of Projective Geometry at the Date of Publication: 06/03/08 Department of History of Architecture at the University IUAV of Venice. His publications include "Cartography in the Kingdom of Naples During the Early Modern Period" in vol. 3 of The History of Cartography (University of Chicago Press). Abstract This is a very short history of cartography. Notes and links to images are included at the end. Keywords: maps, cartography, history, portolan charts, map projections, Claudius Ptolemy, Gerardus Mercator, Fra Mauro, Peutinger Table, C.F. Cassini de Thury Editor’s Note: About five years ago Professor Valerio was asked to prepare a short article on the history of cartography for a multimedia presentation by the Istituto e Museo di Storia della Scienza of Florence. He was astounded to learn that his article could only be thirteen lines long, but he nonetheless complied. The following is a translation of that article. Most of us are familiar with much longer accounts of this subject, such as the multi-volume History of Cartography being published by the University of Chicago Press, or the single volume edited by James R. Akerman and Robert W. Karrow, Jr., Maps: Finding Our Place in the World (Chicago: University of Page 2 Chicago Press, 2007). But, as the Reader’s Digest has taught us, there are few limits to condensation. Prof. -
Meridian Distance.Pdf
MERIDIAN DISTANCE R.E.Deakin School of Mathematical & Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE, Australia email: [email protected] March 2006 ABSTRACT These notes provide a detailed derivation of the equations for computing meridian distance on an ellipsoid of revolution given ellipsoid parameters and latitude. Computation of meridian distance is a requirement for geodetic calculations on the ellipsoid, in particular, computations to do with conversion of geodetic coordinates φλ, (latitude, longitude) to Universal Transverse Mercator (UTM) projection coordinates E,N (East,North) that are used in Australia for survey coordination. The "opposite" transformation, E,N to φλ, requires latitude given meridian distance and these note show how series equations for meridian distances are "reversed" to give series equations for latitude. The derivation of equations follow methods set out in Lehrbuch Der Geodäsie (Baeschlin, 1948), Handbuch der Vermessungskunde (Jordan/Eggert/Kneissl, 1958), Geometric Geodesy (Rapp, 1982) and Geodesy and Map Projections (Lauf, 1983) and some of the formula derived are used in the Geocentric Datum of Australia Technical Manual (ICSM, 2002) – an on-line reference manual available from Geoscience Australia. An understanding of the methods introduced in the following pages, in particular the solution of elliptic integrals by series expansion and reversion of a series, will give the student an insight into other geodetic calculations. MATLAB functions for computing (i) meridian distance given -
How to Compute a Distance and Bearing from Two Positions
HowHowHow tototo ComputeComputeCompute thethethe DistanceDistanceDistance andandand BearingBearingBearing fromfromfrom TwoTwoTwo PositionsPositionsPositions ononon thethethe EarthEarthEarth PositionPosition InformationInformation isis neededneeded inin LatitudeLatitude andand LongitudeLongitude formatformat John McHale Sept 2008 Oct 2008 1 What are We Going to Talk About • How did I find your school? • How does the GPS work – is it magic or is it math? • Why study math? 2 Why Do You Need Math? • Why do you need to add & subtract? • Why do you need to multiply & divide? • Why else do you need math? 3 This Seminar is an Example of How Math Can Be Used. • The Law of Squares - Also called the Pythagorean Theorem • Works for any Right Triangle •A2 = B2 + C2 4 C Any Shape of Right Triangle A2 = B2 + C2 A B A B C A B C 5 How is Math Used to Navigate? The Earth is approximately a Sphere. Actually, Earth is an Oblate Spheroid. Earth is squashed at the poles. A Grid of Latitude and Longitude is used to Divide up the Earth’s Surface. 6 7 Position is Definitionsa combination of Latitude, Longitude, and Altitude above Sea Level. Position is Expressed in Degrees (O), Minutes (‘) and Seconds (“) This format is better to use for a more accurate determination of Distance and Bearing. Bearing is sometimes called Course. 8 Earth’s Shape Latitude is the measurement from the Equator at 0 Degrees to 90 Degrees at the North (N) or South (S) Pole. A Minute of Latitude Equals a Nautical Mile. 9 LatitudeLatitute -lines-lines that go around thethe Eagloberth 10 Longitude is the Measurement from Zero MeridianEarth’s (Greenwich, Shape England) East or West to 180 Degrees at the International Date Line, or Antimeridian (in the Pacific Ocean). -
The International System of Units (SI) - Conversion Factors For
NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v