Meridian Distance.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
MERIDIAN DISTANCE R.E.Deakin School of Mathematical & Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE, Australia email: [email protected] March 2006 ABSTRACT These notes provide a detailed derivation of the equations for computing meridian distance on an ellipsoid of revolution given ellipsoid parameters and latitude. Computation of meridian distance is a requirement for geodetic calculations on the ellipsoid, in particular, computations to do with conversion of geodetic coordinates φλ, (latitude, longitude) to Universal Transverse Mercator (UTM) projection coordinates E,N (East,North) that are used in Australia for survey coordination. The "opposite" transformation, E,N to φλ, requires latitude given meridian distance and these note show how series equations for meridian distances are "reversed" to give series equations for latitude. The derivation of equations follow methods set out in Lehrbuch Der Geodäsie (Baeschlin, 1948), Handbuch der Vermessungskunde (Jordan/Eggert/Kneissl, 1958), Geometric Geodesy (Rapp, 1982) and Geodesy and Map Projections (Lauf, 1983) and some of the formula derived are used in the Geocentric Datum of Australia Technical Manual (ICSM, 2002) – an on-line reference manual available from Geoscience Australia. An understanding of the methods introduced in the following pages, in particular the solution of elliptic integrals by series expansion and reversion of a series, will give the student an insight into other geodetic calculations. MATLAB functions for computing (i) meridian distance given latitude (function mdist.m) and (ii) latitude given meridian distance (function latitude.m) are also given. Meridian Distance.doc 1 INTRODUCTION For an ellipsoid defined by the parameter pairs ()af, , semi-major axis and flattening or (ae, 2 ) , semi-major axis and first-eccentricity squared or (ab, ), semi-major and semi-minor axes, let m be the length of an arc of the meridian from the equator to a point in latitude φ then dm= ρφ d (1) where ρ is the radius of curvature in the meridian plane and ae(11−−22) ae( ) ρ ==3 3 (2) (1sin−e22φ)2 W where the first-eccentricity squared e2 and W are ab22− eff2 ==−()2 a2 ab− f = (3) a 1 We=−(1sin22φ)2 Alternatively, the radius of curvature in the meridian plane is also given by ac2 ρ ==3 3 (4) be(1cos+ ′22φ)2 V where the polar radius c, the second-eccentricity squared e′2 and V are aa2 c == bf1 − ab22− ff()2 − e′2 == (5) b2 ()1 − f 2 1 Ve=+(1cos′22φ)2 Substituting the first group of equations [equations (2) and (3)] into equation (1) lead to series formula for the meridian distance m as a function of latitude φ and powers of e2 . Substituting the second group, [(4) and (5)] lead to series formula for m as a function of φ ab− and powers of another ellipsoid constant n = . Series formula for m involving powers ab+ of e2 are more commonly found in the geodetic literature but as will be shown in the following sections, series formula for m involving powers of n are more compact and give identical results at the level of the 5th decimal place of a metre. A further advantage of Meridian Distance.doc 2 the series formula involving powers of n, is that they are easier to "reverse", i.e., given m as a function of latitude φ and powers of n develop a series formula (by reversion of a series) that gives φ as a function m. This is very useful in the conversion of UTM projection coordinates E,N to geodetic coordinates φλ, . MERIDIAN DISTANCE AS A SERIES FORMULA IN POWERS OF e2 Using equations (1), (2) and (3) the meridian distance is given by the integral φφφ2 ae(1 − ) 1 − 3 mdaedaeed==−=−−φφ()111sin2222()( )2 φ (6) ∫∫∫WW33 000 This is an elliptic integral of the second kind that cannot be evaluated directly; instead, 1 − 3 the integrand =−(1sine22φ) 2 is expanded in a series and then evaluated by term- W 3 by-term integration. 1 − 3 The integrand =−(1sine22φ) 2 can be expanded by use of the binomial series W 3 ∞ ⎛⎞β ()1 +=xxβ ⎜ ⎟ n (7) ∑ ⎜n⎟ n =0 ⎝⎠⎜ ⎟ An infinite series where n is a positive integer, β is any real number, −<11x < and the ⎛⎞β β ⎜ ⎟ binomial coefficients Bn = ⎜ ⎟ are given by ⎝⎠⎜n⎟ ⎛⎞β Γ+(β 1) β ⎜ ⎟ Bn ==⎜ ⎟ (8) ⎝⎠⎜n⎟ Γ+Γ−+()nn11()β 1 In equation (8) the gamma function Γ satisfies Γ=( 2 ) π with Γ+=Γ(βββ1) ( ) for all β ≠−−0, 1, 2, and for integer values of n, Γ+=(nn1!) with 0 != 1 . In the case where β is a positive integer, say k, and −<1x < 1, the binomial series (7) can be expressed as the finite sum k ⎛⎞k ()1 +=xxk ⎜ ⎟ n (9) ∑ ⎜n⎟ n =0 ⎝⎠⎜ ⎟ ⎛⎞k k ⎜ ⎟ where the binomial coefficients Bn = ⎜ ⎟ in series (9) are given by ⎝⎠⎜n⎟ Meridian Distance.doc 3 ⎛⎞k k ! k ⎜ ⎟ Bn ==⎜ ⎟ (10) ⎝⎠⎜n⎟ nk!!()− n ⎛⎞− 3 − 3 2 2 ⎜ ⎟ The binomial coefficients Bn = ⎜ ⎟ for the series (7) are given by equation (8) as ⎝⎠⎜ n ⎟ 1 − 3 Γ−( ) B 2 = 2 with the following results for n = 0,1,2 and 3 n 1 nn! Γ−( 2 − ) 1 − 3 Γ−( ) n = 0 B 2 ==2 1 0 1 0!Γ−( 2 ) 133 − 3 Γ−( ) − Γ−( ) 3 n = 1 B 2 ==222 =− 1 33 1!Γ−( 22) 1! Γ−( ) 2 133355 3 Γ−( ) − Γ−( ) ( −)( −) Γ−( ) − 2 22222215 n = 2 B == = = 2 55 5 2!Γ−( 22) 2! Γ−( ) 2! Γ−( 2) 8 1 3577 − 3 Γ−( ) (−−−Γ−222)( )( ) ( 2) 105 n = 3 B 2 ==2 =− 3 77 3!Γ−( 22) 3! Γ−( ) 48 ⎛⎞− 3 − 3 2 2 ⎜ ⎟ Inspecting the results above, we can see that the binomial coefficients Bn = ⎜ ⎟ are a ⎝⎠⎜ n ⎟ sequence of the form 3 35⋅ 357 ⋅⋅ 3579 ⋅⋅⋅ 357911 ⋅⋅⋅⋅ 1,−− , , , , − , 2 24⋅ 246 ⋅⋅ 2468 ⋅⋅⋅ 246810 ⋅⋅⋅⋅ Using these coefficients gives (Baeschlin 1948, p.48; Jordan/Eggert/Kneissl 1958, p.75; Rapp 1982, p.26) 1−3 3 35⋅⋅⋅ 357 =−()1eeee22 sinφφφφ2 =+ 1 22 sin + 44 sin + 66 sin W 3 2 24⋅⋅⋅ 246 3579⋅⋅⋅ 357911 ⋅⋅⋅⋅ ++ee8sin 8φφ 10 sin 10 + (11) 2468⋅⋅⋅ 246810 ⋅⋅⋅⋅ To simplify this expression, and make the eventual integration easier, the powers of sin φ can be expressed in terms of multiple angles using the standard form 11⎛⎞2n ()− n ⎪⎧⎛⎞222nnn ⎛⎞ ⎛⎞ 2n ⎜⎪⎟ ⎪⎜⎜⎜⎟⎟⎟ sinφφφφ=+221nn⎜ ⎟ − ⎨ ⎟⎟⎟ cos() 2nnn −−−+− 0 cos () 2 2 cos() 2 4 22⎜ n ⎟ ⎪⎜⎜⎜012⎟⎟⎟ ⎝⎠ ⎩⎪⎝⎠ ⎝⎠ ⎝⎠ ⎛⎞22nn ⎛ ⎞ ⎪⎫ ⎜⎜⎟⎟n ⎪ −−+−⎜⎜⎟⎟cos() 2n 6φφ () 1 cos 2 ⎬ (12) ⎜⎜31⎟⎟n − ⎪ ⎝⎠ ⎝ ⎠ ⎭⎪ ⎛⎞2n 2n ⎜ ⎟ Using equation (12) and the binomial coefficients Bn = ⎜ ⎟ computed using equation ⎝⎠⎜ n ⎟ (10) gives Meridian Distance.doc 4 11 sin2 φφ=− cos 2 22 31 1 sin4 φφφ=+ cos 4 − cos 2 88 2 51 3 15 sin6 φφφφ=−+− cos 6 cos 4 cos 2 16 32 16 32 35 1 1 7 7 sin8 φφφφφ=+ cos 8 − cos 6 + cos 4 − cos 2 128 128 16 32 16 63 1 5 45 15 105 sin10 φ=− cos10 φφφφφ + cos 8 − cos 6 + cos 4 − cos 2 (13) 256 512 256 512 64 256 Substituting equations (13) into equation (11) and arranging according to cos 2φ , cos 4φ , etc, we obtain (Baeschlin 1948, p.48; Jordan/Eggert/Kneissl 1958, p.75; Rapp 1982, p.27) 1 − 3 =−(1eABCDEF22 sinφφφφφφ) 2 =− cos 2 + cos 4 − cos 6 + cos 8 − cos10 +(14) W 3 where the coefficients A, B, C, etc., are 3 45 175 11025 43659 Aeeee=+1 24 + + 6 + 8 + e 10 + 4 64 256 16384 65536 3 15 525 2205 72765 Beeee=++++24 6 8 e 10 + 4 16 512 2048 65536 15 105 2205 10395 Ceeee=++++46 8 10 64 256 4096 16384 (15) 35 315 31185 Deee=+++68 10 512 2048 131072 315 3465 Ee=+8 e10 + 16384 65536 693 Fe=+10 131072 Substituting equation (14) into equation (6) gives the meridian distance as φ ma=−()1 e2 ∫ {} AB − cos 2φφφφ + C cos 4 − D cos 6 + E cos 8 − F cos10 φφ + d 0 x sin ax Integrating term-by-term using the standard integral result cosax dx = gives the ∫ a 0 meridian distance m from the equator to a point in latitude φ as BC DE F ma=−()1 eA2 φφφφφ − sin 2 + sin 4 − sin 6 + sin 8 − sin 10 φ + (16) { 246810 } Meridian Distance.doc 5 where φ is in radians and the coefficients A, B, C, etc., are given by equations (15) For the Geodetic Reference System 1980 (GRS80) ellipsoid (af==6378137, 1 298.257222101) the coefficients A, B, C, etc., have the numeric values A = 1.005 052 501 813 087 B = 0.005 063 108 622 224 C = 0.000 010 627 590 263 (17) D = 0.000 000 020 820 379 E = 0.000 000 000 039 324 F = 0.000 000 000 000 071 Multiplying each of the coefficients in equation (16) by ae(1 − 2 ) and for latitude φ in degrees, meridian distance on the GRS80 ellipsoid can be expressed as m =−111 132.952 546 998φφ 16 038.508 741 268 sin 2 + 16.832 613 327 sin 4φ − 0.021 984 374 sin 6φ + 0.000 031 142 sin 8φ − 0.000 000 045 sin 10φ (18) 5π and the meridian distance at latitude φ ==50 radians is 18 m50 = 5 540 847.041 560 963 metres (19) From equation (16), the quadrant distance Q, the meridian distance from the equator to the pole, for the GRS80 ellipsoid is 2 1 Qa=−(1 eA) ( 2 π) = 10 001 965.729 229 864 metres (20) Equation (16) may be simplified by multiplying the coefficients by (1 −e2 ) and expressing the meridian distance as maAA=−{ 02φφsin 2 + A 4 sin 4 φφφ − A 6 sin 6 + A 8 sin 8 − A 10 sin 10 φ +} (21) Meridian Distance.doc 6 B C where AeA=−(1 2 ) , Ae=−(1 2 ) , Ae=−()1 2 , etc., and 0 2 2 4 4 1 3 5 175 441 Aeeee=−1 24 − − 6 − 8 − e 10 + 0 4 64 256 16384 65536 3⎛⎞24 1 15 6 35 8 735 10⎟ Aeee2 =++++⎜ e e +⎟ 8⎝⎠⎜ 4 128 512 16384 ⎟ 15⎛⎞46 3 35 8 105 10⎟ Aeeee4 =++++⎜ ⎟ 256⎝⎠⎜ 4 64 256 ⎟ (22) 35⎛⎞68 5 315 10⎟ Aeee6 =+++⎜ ⎟ 3072⎝⎠⎜ 4 256 ⎟ 315⎛⎞810 7 ⎟ Aee8 =++⎜ ⎟ 131072⎝⎠⎜ 4 ⎟ 693 Ae=+()10 10 131072 For the GRS80 ellipsoid, the coefficients AAA024,,,etc., have the numeric values A0 = 0.998 324 298 423 043 A2 = 0.002 514 607 124 555 A4 = 0.000 002 639 111 298 (23) A6 = 0.000 000 003 446 837 A8 = 0.000 000 000 004 883 A10 = 0.000 000 000 000 071 Multiplying each of the coefficients in equation (21) by a and for latitude φ in degrees, meridian distance m on the GRS80 ellipsoid can be expressed as m =−111 132.952 547 005φφ 16 038.508 741 587 sin 2 + 16.832 613 418 sin 4φ − 0.021 984 397 sin 6φ + 0.000 031 145 sin 8φ − 0.000 000 453 sin 10φ (24) 5π and the meridian distance at latitude φ ==50 radians is 18 m50 = 5 540 847.041 560 711 metres From equation (21), the quadrant distance Q on the GRS80 ellipsoid is 1 QaA==0 ( 2 π) 10 001 965.729 230 469 metres Meridian Distance.doc 7 Inspection of equations (18) and (24) for the meridian distance m and the values for the distances m50 and the quadrant distances Q computed from equations (16) and (21) show that for all practical purposes these equations [(16) and (21)] give identical results at the 5th decimal place of a metre.