GREAT ELLIPTIC ARC DISTANCE1 R. E. Deakin School of Mathematical & Geospatial Sciences, RMIT University, GPO Box 2476V, MELBOURNE VIC 3001, AUSTRALIA email:
[email protected] January 2012 ABSTRACT These notes provide a detailed derivation of series formula for (i) Meridian distance M as a function of latitude φ and the ellipsoid constant eccentricity-squared e2, and φ and the ellipsoid constant third flattening n; (ii) Rectifying latitude µ as functions of φ,e2 and φ,n; and (iii) latitude φ as functions of µ,e2 and µ,n These series can then be used in solving the direct and inverse problems on the ellipsoid (using great elliptic arcs) and are easily obtained using the Computer Algebra System Maxima. In addition, a detailed derivation of the equation for the great elliptic arc on an ellipsoid is provided as well as defining the azimuth and the vertex of a great elliptic. And to assist in the solution of the direct and inverse problems the auxiliary sphere is introduced and equations developed. INTRODUCTION In geodesy, the great elliptic arc between P1 and P2 on the ellipsoid is the curve created by intersecting the ellipsoid with the plane containing P1 , P2 and O (the centre of the ellipsoid) and these planes are great elliptic planes or sections. Figure 1 shows P on the great elliptic arc between P1 and P2 . P is the geocentric latitude of P and P is the longitude of P. There are an infinite number of planes that cut the surface of the ellipsoid and contain the chord PP12 but only one of these will contain the centre O.