Common Solutions to Commercial and Military Propulsion Requirements

Total Page:16

File Type:pdf, Size:1020Kb

Common Solutions to Commercial and Military Propulsion Requirements 24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMMON SOLUTIONS TO COMMERCIAL AND MILITARY PROPULSION REQUIREMENTS Stephen John Bradbrook Rolls-Royce plc Keywords: Gas Turbine, Unmanned Air Vehicle. Abstract The propulsion requirements for commercial This analysis enables the identification of transports and military combat aircraft differ those key requirements which drive the basic considerably, so much so that it is usual for gas thermodynamic cycle and architecture of the turbine engines to be developed independently engine and hence enables understanding of the for each application with little or no possibilities for commonality between engines. commonality of parts. As military budgets tighten and with the need in the commercial Examples of engine families with common world to remain competitive on price, there is architectural features are presented to illustrate increasing pressure to search for greater a typical approach to increasing commonality. commonality as a means of reducing These examples highlight the following issues: • development costs. design compromises • potential savings in development cost This paper reports on studies to identify a • other benefits and issues future family of gas turbine engines designed to satisfy a wide range of applications with the Through increased commonality it is maximum commonality. estimated that the development cost for a family of engines to meet three differing applications The propulsion requirements are examined could be reduced by over 25%-30% relative to for a range of applications including the the development of three independent engines. following: • commercial transports, e.g. regional jets A future engine family will benefit from the • military manned aircraft, e.g. fighters, introduction of new technologies, for example, primary and advanced trainers in the fields of aerothermal and mechanical design, environment (emissions and noise), low- • military unmanned aircraft, e.g. high altitude surveillance, strike and multi- observables, materials, controls, monitoring role systems and manufacturing. The paper These requirements cover the following examines technologies which support the attributes: concept of increased commonality. • performance, e.g. thrust, power off-take, inlet mass flow and fuel consumption • mass • environment, e.g. emissions, noise • low observables, e.g. infrared radiation, radar cross section • reliability and maintainability • cost, e.g. development, unit, in-service 1 S J BRADBROOK this analysis it will be shown how the requirements drive towards differing propulsion 1 Introduction system attributes and hence differing In the early days of gas turbine propulsion, architectures. In addition, the analysis will engines such as the Rolls-Royce Avon were indicate where there is scope for commonality used in both high performance military fighters, and hence shared technologies and hardware. In e.g. the Hawker Hunter, and in commercial particular, the paper will explore the concept of transports such as the Sud Aviation Caravelle, a common core approach to engine development with only relatively minor changes between and the technical difficulties this imposes. Mks. As time has progressed the differing requirements for commercial transports and Finally, the paper explores technologies combat aircraft have resulted in different which can be shared between types of engines engines for each of these classes of applications. and highlights those which support the common The benefits in terms of performance and core philosophy. operating cost, which have come from optimizing the engine design to the application, 2 Commonality have outweighed the extra cost associated with When discussing ‘common solutions’ it is engine development. This is particularly the helpful to define what is meant by commonality. case when a large number of units is involved in a particular programme. For example, the Fig 1 illustrates steps of increasing commonality Eurofighter engine programme was planned starting with a minimum of a common ‘house against an anticipated production of in excess of style’ and leading to common part numbers. In 1500 engines. the ‘Common Core’ approach, described in this paper, the aim is to have common part numbers In the future, it is possible that military within the core however in some cases a requirements will call for lower numbers of common architecture with common forgings more specialized vehicles such as: stealthy may be a more likely outcome. subsonic strike Unmanned Combat Air Vehicles (UCAVs), High Altitude Long Endurance (HALE) surveillance Unmanned Air Vehicles 3 Propulsion System Requirements (UAVs), and tactical reconnaissance UAVs. It is In this paper the propulsion system is therefore likely to become increasingly more defined as the basic engine, exhaust and difficult to generate an acceptable business case associated systems, e.g. controls, electrical for developing an all-new military engine with a power system. large step change in technology level. Fig 2 illustrates the considerable An alternative approach is to develop differences between the basic engines in a technologies and hardware that can be used in commercial subsonic transport (low specific more than one engine type suitable for differing thrust) and a military supersonic fighter (high applications, e.g. a strike UCAV and a specific thrust). Although these engine have commercial regional transport. In this way the similar levels of Sea Level Static (SLS) they overall development cost for both engines is have very different architectures which result in reduced, thereby making the business case more different levels of Specific Fuel Consumption attractive. (SFC) and mass. These differences are driven by the differing requirements of the each of the This paper investigates the differing applications as summarized in the following propulsion requirements for a number a sections. commercial and military applications. Through 2 COMMON SOLUTIONS TO COMMERCIAL AND MILITARY PROPULSION REQUIREMENTS Steps What is common? Pros and cons As ‘Step 3' plus Step 4 Part nunmbers As ‘Step 2 plus Step 3 Forgings Manufacturing tooling As ‘Step 1' plus Engine architecture Step 2 Turbo machinery aerodynamics & technology (same scale) Manufacturing facilities "House style" Turbo machinery Increasing commonality Increasing Step 1 aerodynamics & technology design compromises due to (different scale) savings cost unit Increased Lower development risk and cost risk Lower development Materials cost and unit mass increased and/or due to greater manufacturing volume due to greater manufacturing Greater potential for reduced performance, performance, reduced for potential Greater Company name tag Step 0 Fig 1 What is commonality? Effect of specific thrust Low specific thrust High specific thrust Specific thrust High Low SLS Thrust (lbf) 13500 14700 SLS SFC (lb/hr/lbf) 0.8 (approx) 0.4 (approx) Mass (lb) 1700 3600 Airflow (lb/s) 165 435 Fig 2 Comparison of commercial transport engine (low specific thrust) and military fighter engine (high specific thrust) 3 S J BRADBROOK and intake flow distortion, typical of a highly 3.1 Propulsion requirements vs aircraft agile military fighter. requirements NOx = Nitrous oxides, a pollutant Fig 3 identifies four types of commercial generated during combustion. transport aircraft and six types of military aircraft which are typical of those which require ‘Cyclic usage’ refers to the number of gas turbine jet propulsion. In addition, a number major throttle changes required during a mission of propulsion requirements are identified which which has an impact on the rate that Low Cycle are divided into the categories of: performance, Fatigue (LCF) life of various engine environment, low observables, reliability and components is used up. maintainability and cost. RCS = Radar Cross Section The figure indicates which requirements are typically the strongest and weakest drivers IR = Infrared Radiation for each of the applications through the use a High (H), Medium (M) and Low (L) symbol It can be seen that all the commercial where H indicates the greatest influence, applications are typically driven by low SFC, relatively speaking. environmental requirements and low in-service costs, via long life and low maintenance costs . It is noted that the absolute level of thrust, As the commercial applications tend towards although an important parameter when smaller vehicles with shorter range then the specifying propulsion systems for the various emphasis for low SFC is generally replaced by applications, is not included. The subject of greater emphasis on low purchase cost. thrust and its effect on engine scale is discussed separately in later sections of this paper. The military situation is generally more complicated. The majority of the military It should be emphasized that this is a applications have little or no requirement to generalized subjective assessment used to meet environmental standards. The relative illustrate the overall trends in propulsion emphasis on SFC and thrust/weight ratio varies requirements and, therefore, may vary where between applications. For example, a manned individual aircraft are concerned. supersonic fighter requires high maneuverability for air-to-air combat and therefore there is Notes: considerable emphasis on high thrust/weight. In contrast, a HALE UAV is required to have very “High T1 operation” refers to high air inlet long endurance and little maneuverability and total temperature generally encountered at
Recommended publications
  • A Statistical Analysis of Commercial Aviation Accidents 1958-2019
    Airbus A Statistical Analysis of Commercial Aviation Accidents 1958-2019 Contents Scope and definitions 02 1.0 2020 & beyond 05 Accidents in 2019 07 2020 & beyond 08 Forecast increase in number of aircraft 2019-2038 09 2.0 Commercial aviation accidents since the advent of the jet age 10 Evolution of the number of flights & accidents 12 Evolution of the yearly accident rate 13 Impact of technology on aviation safety 14 Technology has improved aviation safety 16 Evolution of accident rates by aircraft generation 17 3.0 Commercial aviation accidents over the last 20 years 18 Evolution of the yearly accident rate 20 Ten year moving average of accident rate 21 Accidents by flight phase 22 Distribution of accidents by accident category 24 Evolution of the main accident categories 25 Controlled Flight Into Terrain (CFIT) accident rates 26 Loss Of Control In-flight (LOC-I) accident rates 27 Runway Excursion (RE) accident rates 28 List of tables & graphs 29 A Statistical Analysis of Commercial Aviation Accidents 1958 / 2019 02 Scope and definitions This publication provides Airbus’ a flight in a commercial aircraft annual analysis of aviation accidents, is a low risk activity. with commentary on the year 2019, Since the goal of any review of aviation as well as a review of the history of accidents is to help the industry Commercial Aviation’s safety record. further enhance safety, an analysis This analysis clearly demonstrates of forecasted aviation macro-trends that our industry has achieved huge is also provided. These highlight key improvements in safety over the factors influencing the industry’s last decades.
    [Show full text]
  • Cambridge University Press 978-1-108-42560-5 — Technology and Society Andrew Ede Index More Information
    Cambridge University Press 978-1-108-42560-5 — Technology and Society Andrew Ede Index More Information Index Adams, Douglas: he Hitchhiker’s Appold, John G., 219 art Guide to the Galaxy, 306 Arab Spring (political movement), earliest developments in, 35–37, 40 Adams, John, 169 280 as forerunner to printing, 73 Africa, 28, 168 ARAPANET, 278 Arthur, W. Brian, 304 agricultural civilization, origins of arch construction system, 95 artifacts, from archeological eras, animal domestication, 47–49 archeological eras 29–31 earliest empires, 54–60 Bronze Age, 29 artiicial intelligence, 303–305 food storage and preservation, 45 Mesolithic, 30 ASDIC sonar system, 300 permanent settlements, 49–53 Neolithic, 30 Asia plant domestication, 45–47 Paleolithic, 29 maritime capabilities, 80 pre-agrarian settlements, 43–45 archeological technology mechanical calculation tools in, sacred structures, 53–54 art and music, 35–37 254 theories of, 42 ire, 31–33 miracle rice in, 207 timeline, 42 Neolithic life, 37–39 assembly line, 193, 223 warfare in, 53 stone tool making, 27–31 Aswan High Dam, 281–282, 292–293 agricultural revolution timeline, 27 Atlantic Ocean region technology. European, 108–110 Upper Paleolithic Revolution, See also United States of Islamic, 102–105 34–35 America Albert, Prince, 160, 164 Venus igurines, 33 engineering, 184–186 Alcuin of York, 112 Archie (search engine), 279 timeline, 166 Alexander the Great, 86, 87 Archimedes Atlantikwall, 241 Allen, Paul, 277 Claw of, 144 Atlantis (space shuttle), 298 Altair 8800 (computer), 275 On Floating
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]
  • Air Transport
    The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field.
    [Show full text]
  • Luchtvaartkennis Inhoudsopgave Jaargang 1 T/M 58
    Het grote LUCHTVAARTKENNIS register Het register van het Luchtvaart Historisch Tijdschrift ‘LUCHTVAARTKENNIS’ en de daaraan voorafgaande ‘Mededelingen’ van de Afdeling Luchtvaartkennis van de KNVvL geeft een overzicht van hetgeen in de afgelopen jaren is gepubliceerd, m.u.v. de eerste jaargang, die helaas niet meer te traceren blijkt. Uiteraard is v.w.b. De eerste jaargangen selectief opgetreden, aangezien daarin veel summiere feiten (vliegtuiggegevens etc.) staan, die zo niet achterhaald, dan toch eenvoudiger elders te vinden zijn. Ook de diverse publicaties van het vooroorlogse Nederlandse burgerlucht- vaartregister zijn weggelaten, omdat deze na het verschijnen van het boek ‘75 jaar Nederlandse burgerluchtvaartregisters’ als overbodig kunnen worden beschouwd. Aangezien eerst in 1987 een volledige paginanummering voor het gehele jaar werd ingevoerd, wordt tot dat jaar de vindplaats aangeduid met jaartal en nummer van de betreffende aflevering van de ‘Mededelingen’. Vanaf 1987 geschied zulks per pagina. De in de Luchtvaartencyclopedie verschenen onderwerpen worden aangeduid conform de aflevering waarin deze verschenen. In een enkel geval uit 1985/86 bleek dit niet te achterhalen. Wanneer in een artikel de gehele productie van een bepaalde fabriek wordt weergegeven, wordt volstaan met de vermelding van de fabriek en worden niet de afzonderlijke types vermeld. Bijgewerkt t/m jaargang 58 (2009) Onderwerp/Artikel Jaar Nummer Pagina Categorie (Mis)rekeningen 2007 - 164 Artikel Algemeen 100 jaar luchtvaart 2002 - 158 Internet 100 jaar luchtvaart 2003 - 34, 72, 108 Internet 100 jaar luchtvaart in Nederland 2009 - 13 Internet 100 jaar vliegen voorbij 2009 - 27 Boekbespreking 1e vlucht over de Noordzee 1980 03 Artikel Algemeen 50 jaar Luchtvaartkennis 2002 - 1 Artikel Algemeen 50 Jaar Van Weerden Poelman Fonds 1998 - 117 Boekbespreking 75 jaar Nederlandse Luchtvaartregisters 1997 - 88 Boekbespreking 75 jaar Nederlandse Luchtvaartregisters (nazorg) 2000 - 79 Artikel Algemeen A.R.B.
    [Show full text]
  • R20 Battleship
    Düsenflugzeuge der Welt (Jet Aircraft of the World) Title: ............................................. Düsenflugzeuge der Welt Manufacturer: . WATO Waren-Verkaufs-Automaten G.M.B.H. Printed in:............................................................... England Number of Cards/ Numbering: ........................ 100 / 1 to 100 Card Dimensions: ........................................ 67 mm x 95 mm Circa: .......................................................................... 1958 Country of Origin: .................................................. Germany Album:............................................................................ No 1 Avro Canada CF100 37 Yakovlev 25 Flashlight 73 Aerjer Sagittario 2 2 Avro Vulcan 38 Lockheed Starfighter 74 Fairey Delta FD2 3 Sud-Aviation Caravelle 39 Avro Canada CF105 Arrow 75 Douglas Skywarrior 4 Boeing B47 Stratojet 40 McDonald Banshee 76 Fiat G.82 Trainer 5 Boeing B52 Stratofortress 41 McDonald Demon 77 Lockheed T2V-1 Seastar 6 Boeing 707 42 McDonald F101A Voodoo 78 Hunting Jet Provost 7 Supermarine Swift 43 Mikoyan Fitter 79 Lockheed 329 Jetstar 8 Chance Cought Cutlass 44 MiG 19 Farmer 80 MiG 15 Fagot 9 Chance Vought F84-1 Crusader 45 North American Sabre 81 Bell X5 10 North American Vigilante 46 North American Super Sabre 82 Lockheed F.80 Shooting Star 11 Hawker Sea Hawk 47 North American X15 83 Ilyushin IL-28 (Beagle) 12 Convair F106A Delta Dart 48 English Electric P.1A 84 Douglas Skynight 13 Dassault Mystere 49 Northrop Scorpion 85 Nord 1500 Griffon II 14 de Havilland Comet IV
    [Show full text]
  • Here Were Still Several Independent Aircraft Manufacturers in the United Kingdom
    ISSN 0967-3474 Hampshire Industrial Archaeology Society Journal www.hias.org.uk from Downloaded No. 13 2005 www.hias.org.uk from Downloaded Cover photo: Demolition of the chimney at Garnier Road Sewage Pumping Station, Winchester, 23rd May 1978. (Picture courtesy of the Hampshire Chronicle, 26th May 1978) 1 Hampshire Industrial Archaeology Society (formerly Southampton University Industrial Archaeology Group) Journal No. 13, 2005 _________________________________________________________________ Contents The Contributors………………………………………………………………………………1 Editorial and Acknowledgements……………………………………………………………..2 The Growth of British Commercial Aviation prior to the Jet Age by Gerald Davies …………………………………………………………………………….3 The Story of Southbourne and its Pier by Jeff Pain ……..…………………………………………………………………...15 Garnier Road Sewage Pumping Station, Winchester by Martin Gregory…………………………………………………………………..23 The American Warship at Wickham by Tony & Mary Yoward …………………………………………………………...29 Captain Thring’s Rate of Change of Range Calculator by Meredith Thring .………………………………………………………………. 34 The Contributors Gerald Davies www.hias.org.uk Gerald Davies’ career was in electronics and aerospace systems which have little in common with his interest in canals and railways, which go back to his childhood days. A Londoner by birth, he has lived in Hampshire and the Isle of Wight for the last fifty years. He spent much of his career at the Royal Aircraft Establishment at Farnborough. He joined SUIAG in 1982 and has a broad interest in Industrial Archaeology.from Martin Gregory Martin Gregory’s interest in the history of technology goes back over 40 years. He has researched and built model steam and Stirling engines for many years and also works on the history of the sewing machine. He has been a member of HIAS and its predecessor for over 30 years, has served as Secretary and Chairman and is the present editor of the Journal.
    [Show full text]
  • Reverse Engineering of Passenger Jets – Classified Design Parameters
    1 Master hesis Emiel De Grave Reverse Engineering of Passenger Jet Classified Design Parameters Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Fahrzeugtechnik und Flugzeugbau Department of Automotive and Aeronautical Engineering 2 Emiel De Grave Reverse Engineering of Passenger Jet Classified Design Parameters Hamburg University of Applied Sciences Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering Berliner Tor 9 20099 Hamburg Germany Author: Emiel De Grave Date: 25.08.2017 1. Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME 3 DOI: https://doi.org/10.15488/9322 URN: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-08-25.017 Associated URLs: https://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2017-08-25.017 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA https://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (https://www.dnb.de) Repositorium der Leibniz Universität Hannover (https://www.repo.uni-hannover.de) Internet Archive (https://archive.org) Item: https://archive.org/details/TextDeGrave.pdf This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/KPHTG7 4 Abstract This thesis explains how the classified design parameters of existing passenger jets can be de- termined.
    [Show full text]
  • History of Aircraft Design
    15th-16th century, Italy: Leonardo Da Vinci’s Flying Machine 15th-16th century, Italy: Leonardo Da Vinci’s Flying Machine 1804&1848, Great Britain: George Cayley’s Glider & Governable Parachute 1890-1897, France: Clément Ader’s Eole and Avion 3 1895, Germany: Otto Lilienthal’s Glider 1895, Germany: Otto Lilienthal’s Glider 1903, USA: Wright Brothers’ Flyer 1903, USA: Wright Brothers’ Flyer 1909, France: Blériot XI 1909, France: Blériot XI 1917, Great Britain: Sopwith Camel 1917, Great Britain: Sopwith Camel 1927, USA: Ryan NYP “Spirit of St. Louis” 1927, USA: Ryan NYP “Spirit of St. Louis” 1935, USA: Douglas DC-3 1935, USA: Douglas DC-3 1936, Great Britain: Supermarine Spitfire 1936, Great Britain: Supermarine Spitfire 1937, Great Britain: Frank Whittle’s Power Jets W.1 1939, Germany: Heinkel He-178 1941, Germany: Messerschmitt Me-262 1941, Germany: Messerschmitt Me-262 1946, USA: Northrop XB-35 1946, USA: Northrop XB-35 1947, USA: Bell X-1 1947, USA: Bell X-1 1948, USSR: Mikoyan-Gurevitch MiG-15 1948, USSR: Mikoyan-Gurevitch MiG-15 1949, Great Britain: De Havilland Comet 1949, Great Britain: De Havilland Comet 1950, USA: Boeing B-47 1950, USA: Boeing B-47 1952, USA: Bell X-5 1952, USA: Bell X-5 1953, USA: X-1A, D-558-1, XF-92A, X-5, D-558-II, X-4, & X-3 1955, France: Sud Aviation Caravelle 1955, France: Sud Aviation Caravelle 1957 (1954), USA: Boeing 707 (367-80) 1957 (1954), USA: Boeing 707 (367-80) 1958, USA: McDonnell-Douglas F-4 1958, USA: McDonnell-Douglas F-4 1959, USA: North American X-15 1959, USA: North American X-15 1961, USA:
    [Show full text]
  • Liikennelentäjä-Lehti Ei Vai- En Koulutusmalli, Joka Ei Anna Mitään P
    2/2020 COVID-19: VAIKUTUKSET ILMAILUUN UUTTA JA VANHAA KONEKALUSTOA PURJEHTIVA KAPTEENI HUUSELA PUHEENJOHTAJAN PALSTA audi.fi #INTHISTOGETHER lobaali markkinatalous ja ih- tiivisessa kanssakäymisessä lentoyh- Akseli Meskanen misten liikkuvuus ovat vii- tiön operatiiviseen johtoon, hallituk- FPA:n puheenjohtaja meistään nyt näyttäneet maa- siin ja omistajiin. Kriisitilanteessa A320-kapteeni G ilmalle vain harvan asian olevan pai- tehdään helposti kriisin varjolla rat- kallinen, eristettävissä oleva ongelma. kaisuja, jotka olisivat normaaliolo- Koronan aiheuttama muutosnopeus suhteissa olleet pitkällisten ja vaikei- kaikilla yhteiskunnan tasoilla vain den neuvottelujen tulos, jos ollenkaan. muutamassa kuukaudessa tai joissa- Kiireessä moni asia jää huomioimat- kin tapauksissa viikoissa on yllättänyt, ta ja epäselvästä, kiireessä sorvatusta väitän, kaikki. ratkaisusta kärsitään helposti pitkään. Taaksepäin katsoessa osa kykenee rakentamaan pienistä signaaleista ver- Korona on lentotöiden hetkellisen lop- kon ja toteamaan; “olisihan tämä pitä- pumisen myötä tuonut monet pohti- nyt nähdä”. Olisiko paremmalla maa- maan omaa minäkuvaa ja elämän pe- ilmankuvalla pystytty esimerkiksi ruspilareita. Toistaiseksi viimeinen lentoyhtiöiden johdossa tai edunval- lentoni Kittilään tunneskaalojen osal- vonnan rintamassa varmistamaan jo- ta oli ääripäitä: iloa upeasta lentoke- takin parempaa? Liikenne on kuiten- listä, innostus siiven nostaessa koneen kin nyt lähes täysin seis ja tulevaisuus ilmaan, ylpeyttä haaveammatista ja lo- on sumea, väistämätön lopputulema.
    [Show full text]
  • Het Grote LUCHTVAARTKENNIS Register
    Het grote LUCHTVAARTKENNIS register Het register van het Luchtvaart Historisch Tijdschrift ‘LUCHTVAARTKENNIS’ en de daaraan voorafgaande ‘Mededelingen’ van de Afdeling Luchtvaartkennis van de KNVvL geeft een overzicht van hetgeen in de afgelopen jaren is gepubliceerd, m.u.v. de eerste jaargang, die helaas niet meer te traceren blijkt. Uiteraard is v.w.b. De eerste jaargangen selectief opgetreden, aangezien daarin veel summiere feiten (vliegtuiggegevens etc.) staan, die zo niet achterhaald, dan toch eenvoudiger elders te vinden zijn. Ook de diverse publicaties van het vooroorlogse Nederlandse burgerlucht- vaartregister zijn weggelaten, omdat deze na het verschijnen van het boek ‘75 jaar Nederlandse burgerluchtvaartregisters’ als overbodig kunnen worden beschouwd. Aangezien eerst in 1987 een volledige paginanummering voor het gehele jaar werd ingevoerd, wordt tot dat jaar de vindplaats aangeduid met jaartal en nummer van de betreffende aflevering van de ‘Mededelingen’. Vanaf 1987 geschied zulks per pagina. De in de Luchtvaartencyclopedie verschenen onderwerpen worden aangeduid conform de aflevering waarin deze verschenen. In een enkel geval uit 1985/86 bleek dit niet te achterhalen. Wanneer in een artikel de gehele productie van een bepaalde fabriek wordt weergegeven, wordt volstaan met de vermelding van de fabriek en worden niet de afzonderlijke types vermeld. Bijgewerkt t/m jaargang 66 (2017) Artikel/Onderwerp Jaar/Nummer/Pagina 'Aalsmeer' (PH-TBM) 2014 02 64 Artikel Algemeen 'De Vliegende Hollander' 2014 03 95 Artikel Algemeen 'Eenige
    [Show full text]
  • Norsk Lovtidend
    Nr. 5 – 2001 Side 511 – 659 NORSK LOVTIDEND Avd. I Lover og sentrale forskrifter mv. Nr. 5 Utgitt 15. mai 2001 Innhold Side Forskrifter 2000 Des. 20. Forskrift om ICAO flyteknikersertifikat (BSL C 7–1a) (Nr. 1672) ......................................... 511 Des. 20. Forskrift om generelle bestemmelser om utstedelse av luftfartssertifikater (BSL C 1–1a) (Nr. 1673) ................................................................................................................................ 553 Des. 20. Forskrift om flygeskoler, registrerte fasiliteter (RFs) for flygende personell (BSL C 10–1a) (Nr. 1674) ................................................................................................................................ 579 Des. 20. Forskrift om instrumentbevis for fly og helikopter (IR-A/H) (BSL C 2–6a) (Nr. 1675) ......... 584 Des. 20. Forskrift om flytelefonistsertifikat (BSL C 5–2a) (Nr. 1676).................................................. 585 Des. 20. Forskrift om ICAO flyteknikersertifikat på motor klasse a – MIV (BSL C 7–5a) (Nr. 1677) ................................................................................................................................ 588 Des. 20. Forskrift om ICAO flyteknikersertifikat på komplett luftfartøy – M (BSL C 7–6a) (Nr. 1678) ................................................................................................................................ 589 Des. 20. Forskrift om gjennomføring av felleseuropeiske bestemmelser om sertifisering av flygende personell på fly, BSL-FCL
    [Show full text]