Reverse Engineering of Passenger Jets – Classified Design Parameters

Total Page:16

File Type:pdf, Size:1020Kb

Reverse Engineering of Passenger Jets – Classified Design Parameters 1 Master hesis Emiel De Grave Reverse Engineering of Passenger Jet Classified Design Parameters Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Fahrzeugtechnik und Flugzeugbau Department of Automotive and Aeronautical Engineering 2 Emiel De Grave Reverse Engineering of Passenger Jet Classified Design Parameters Hamburg University of Applied Sciences Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering Berliner Tor 9 20099 Hamburg Germany Author: Emiel De Grave Date: 25.08.2017 1. Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME 3 DOI: https://doi.org/10.15488/9322 URN: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-08-25.017 Associated URLs: https://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2017-08-25.017 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA https://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (https://www.dnb.de) Repositorium der Leibniz Universität Hannover (https://www.repo.uni-hannover.de) Internet Archive (https://archive.org) Item: https://archive.org/details/TextDeGrave.pdf This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/KPHTG7 4 Abstract This thesis explains how the classified design parameters of existing passenger jets can be de- termined. The classified design parameters are; the maximum lift coefficient for landing and take-off, the maximum aerodynamic efficiency and the specific fuel consumption. The entire concept is based on the preliminary sizing of jet powered civil aeroplanes. This preliminary sizing is explained in detail because it is the foundation of the final result. The preliminary sizing is combined using reverse engineering which is not a strict method. Therefore, only the basics are explained. By applying reverse engineering on the preliminary sizing and aiming for the classified design parameters as output, formulas are deviated to calculate the maximum lift coefficients, the maximum aerodynamic efficiency and the specific fuel consumption. The goal is to calculate these parameters, using only aircraft specifications that are made public by the manufacturer. The calculations are complex with mutual relations, iterative processes and op- timizations. Therefore, it is interesting to integrate everything in a tool. The tool is built in Microsoft Excel and explained in detail adding operating instructions. The program is executed for miscellaneous aeroplanes, supported with the necessary comments. Investigated aeroplanes are: Caravelle 10B (Sud-Aviation), Boeing 707-320C, BAe 146-200 (British Aerospance), A320-200 (Airbus), ‘Rebel’ (based on A320), Boeing SUGAR High, Boeing 747-400, Blended Wing Body VELA 2 (VELA) and Dassault Falcon 8X. 5 DEPARTMENT OF AUTOMOTIVE AND AERONAUTICAL ENGINEERING Reverse Engineering of Passenger Jet Classified Design Parameters Task for a Master thesis according to university regulations Background For competitive reasons manufacturers try to protect their product design with its inherent pa- rameters. This is done to protect company know-how and to maintain a possible design ad- vantage with respect to competing products. This principle is followed not only in case of mil- itary aircraft, but also for civil passenger jets. Parameters like maximum take-off mass are known as part of the certification process. Further parameters may be given, because they are uncritical or needed for aircraft operation. Other parameters like aerodynamic efficiency or en-gine efficiency are classified information. It would be beneficial to know such parameters to do own flight performance calculations or even redo a preliminary sizing of the aircraft under in-vestigation. This can be done out of interest, educational exercise or for a more in depth case study. Knowing classified parameters would enable a comparison of various similar contempo-rary aircraft or to investigate the evolution of aircraft with their parameters throughout aviation history. Reverse Engineering is a legal possibility to acquire the knowledge withheld. Task The task of this thesis is to investigate classified design parameters and find a method to calcu-late them from known aircraft parameters. This should be done by preliminary aircraft sizing in combination with reverse engineering. The tasks of the project are as follows: Review the basics of preliminary sizing of large (CS-25) passenger jet aircraft. Examine the concept of reverse engineering. Apply reverse engineering to preliminary sizing of large passenger jet aircraft. Construct a tool to enable reverse engineering to the given domain and level of detail. 6 Apply the tool to a number of interesting passenger jets. Analyze and interpret the results. Summarize the results in a case study for every investigated and reverse engineered aircraft. Compare the results of the case studies. The report has to be written in English based on German or international standards on report writing. 7 Declaration Herewith I affirm that this master thesis is entirely my own work. Where use has been made of the work of others, it has been fully acknowledged and referenced. Date Signature 24.08.2017 Emiel De Grave 8 Table of Content Page Abstract ...................................................................................................................................... 4 List of Figures .......................................................................................................................... 11 List of Tables ............................................................................................................................ 13 Nomenclature ........................................................................................................................... 14 List of Abbreviations and Acronyms ....................................................................................... 17 List of Definitions .................................................................................................................... 18 1 Introduction..................................................................................................... 20 1.1 Motivation......................................................................................................... 20 1.2 Definitions ........................................................................................................ 21 1.3 Objective of the Thesis ..................................................................................... 23 1.4 Literature Review ............................................................................................. 24 1.5 Structure of the Work ....................................................................................... 25 2 Aircraft Preliminary Sizing ........................................................................... 27 2.1 Landing ............................................................................................................. 28 2.2 Take-off ............................................................................................................ 29 2.3 Second Segment................................................................................................ 30 2.4 Missed Approach .............................................................................................. 31 2.5 Cruise ................................................................................................................ 32 2.5.1 Thrust-to-Weight Ratio ..................................................................................... 32 2.5.2 Wing Loading ................................................................................................... 35 2.6 Matching Chart and Design Point..................................................................... 37 2.7 Estimation of the Aircraft Design Parameters .................................................. 38 3 Reverse Engineering ....................................................................................... 41 3.1 Definition and Use ............................................................................................ 41 3.2 Permissibility to Perform Reverse Engineering ............................................... 42 3.3 Methodology of Reverse Engineering .............................................................. 43 3.4 STEP 1: Prescreening and Black-box ............................................................... 43 3.5 STEP 2: Functional Analysis ............................................................................ 44 3.6 Summary of the Reverse Engineering Process ................................................. 45 4 Reverse Engineering in Aircraft Preliminary Sizing .................................. 46 4.1 STEP 1: Prescreening and Black-box ............................................................... 46 4.2 STEP 2: Functional Analysis ............................................................................ 49 4.2.1 Maximum Lift Coefficient for
Recommended publications
  • A Statistical Analysis of Commercial Aviation Accidents 1958-2019
    Airbus A Statistical Analysis of Commercial Aviation Accidents 1958-2019 Contents Scope and definitions 02 1.0 2020 & beyond 05 Accidents in 2019 07 2020 & beyond 08 Forecast increase in number of aircraft 2019-2038 09 2.0 Commercial aviation accidents since the advent of the jet age 10 Evolution of the number of flights & accidents 12 Evolution of the yearly accident rate 13 Impact of technology on aviation safety 14 Technology has improved aviation safety 16 Evolution of accident rates by aircraft generation 17 3.0 Commercial aviation accidents over the last 20 years 18 Evolution of the yearly accident rate 20 Ten year moving average of accident rate 21 Accidents by flight phase 22 Distribution of accidents by accident category 24 Evolution of the main accident categories 25 Controlled Flight Into Terrain (CFIT) accident rates 26 Loss Of Control In-flight (LOC-I) accident rates 27 Runway Excursion (RE) accident rates 28 List of tables & graphs 29 A Statistical Analysis of Commercial Aviation Accidents 1958 / 2019 02 Scope and definitions This publication provides Airbus’ a flight in a commercial aircraft annual analysis of aviation accidents, is a low risk activity. with commentary on the year 2019, Since the goal of any review of aviation as well as a review of the history of accidents is to help the industry Commercial Aviation’s safety record. further enhance safety, an analysis This analysis clearly demonstrates of forecasted aviation macro-trends that our industry has achieved huge is also provided. These highlight key improvements in safety over the factors influencing the industry’s last decades.
    [Show full text]
  • Cambridge University Press 978-1-108-42560-5 — Technology and Society Andrew Ede Index More Information
    Cambridge University Press 978-1-108-42560-5 — Technology and Society Andrew Ede Index More Information Index Adams, Douglas: he Hitchhiker’s Appold, John G., 219 art Guide to the Galaxy, 306 Arab Spring (political movement), earliest developments in, 35–37, 40 Adams, John, 169 280 as forerunner to printing, 73 Africa, 28, 168 ARAPANET, 278 Arthur, W. Brian, 304 agricultural civilization, origins of arch construction system, 95 artifacts, from archeological eras, animal domestication, 47–49 archeological eras 29–31 earliest empires, 54–60 Bronze Age, 29 artiicial intelligence, 303–305 food storage and preservation, 45 Mesolithic, 30 ASDIC sonar system, 300 permanent settlements, 49–53 Neolithic, 30 Asia plant domestication, 45–47 Paleolithic, 29 maritime capabilities, 80 pre-agrarian settlements, 43–45 archeological technology mechanical calculation tools in, sacred structures, 53–54 art and music, 35–37 254 theories of, 42 ire, 31–33 miracle rice in, 207 timeline, 42 Neolithic life, 37–39 assembly line, 193, 223 warfare in, 53 stone tool making, 27–31 Aswan High Dam, 281–282, 292–293 agricultural revolution timeline, 27 Atlantic Ocean region technology. European, 108–110 Upper Paleolithic Revolution, See also United States of Islamic, 102–105 34–35 America Albert, Prince, 160, 164 Venus igurines, 33 engineering, 184–186 Alcuin of York, 112 Archie (search engine), 279 timeline, 166 Alexander the Great, 86, 87 Archimedes Atlantikwall, 241 Allen, Paul, 277 Claw of, 144 Atlantis (space shuttle), 298 Altair 8800 (computer), 275 On Floating
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]
  • Air Transport
    The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field.
    [Show full text]
  • Luchtvaartkennis Inhoudsopgave Jaargang 1 T/M 58
    Het grote LUCHTVAARTKENNIS register Het register van het Luchtvaart Historisch Tijdschrift ‘LUCHTVAARTKENNIS’ en de daaraan voorafgaande ‘Mededelingen’ van de Afdeling Luchtvaartkennis van de KNVvL geeft een overzicht van hetgeen in de afgelopen jaren is gepubliceerd, m.u.v. de eerste jaargang, die helaas niet meer te traceren blijkt. Uiteraard is v.w.b. De eerste jaargangen selectief opgetreden, aangezien daarin veel summiere feiten (vliegtuiggegevens etc.) staan, die zo niet achterhaald, dan toch eenvoudiger elders te vinden zijn. Ook de diverse publicaties van het vooroorlogse Nederlandse burgerlucht- vaartregister zijn weggelaten, omdat deze na het verschijnen van het boek ‘75 jaar Nederlandse burgerluchtvaartregisters’ als overbodig kunnen worden beschouwd. Aangezien eerst in 1987 een volledige paginanummering voor het gehele jaar werd ingevoerd, wordt tot dat jaar de vindplaats aangeduid met jaartal en nummer van de betreffende aflevering van de ‘Mededelingen’. Vanaf 1987 geschied zulks per pagina. De in de Luchtvaartencyclopedie verschenen onderwerpen worden aangeduid conform de aflevering waarin deze verschenen. In een enkel geval uit 1985/86 bleek dit niet te achterhalen. Wanneer in een artikel de gehele productie van een bepaalde fabriek wordt weergegeven, wordt volstaan met de vermelding van de fabriek en worden niet de afzonderlijke types vermeld. Bijgewerkt t/m jaargang 58 (2009) Onderwerp/Artikel Jaar Nummer Pagina Categorie (Mis)rekeningen 2007 - 164 Artikel Algemeen 100 jaar luchtvaart 2002 - 158 Internet 100 jaar luchtvaart 2003 - 34, 72, 108 Internet 100 jaar luchtvaart in Nederland 2009 - 13 Internet 100 jaar vliegen voorbij 2009 - 27 Boekbespreking 1e vlucht over de Noordzee 1980 03 Artikel Algemeen 50 jaar Luchtvaartkennis 2002 - 1 Artikel Algemeen 50 Jaar Van Weerden Poelman Fonds 1998 - 117 Boekbespreking 75 jaar Nederlandse Luchtvaartregisters 1997 - 88 Boekbespreking 75 jaar Nederlandse Luchtvaartregisters (nazorg) 2000 - 79 Artikel Algemeen A.R.B.
    [Show full text]
  • R20 Battleship
    Düsenflugzeuge der Welt (Jet Aircraft of the World) Title: ............................................. Düsenflugzeuge der Welt Manufacturer: . WATO Waren-Verkaufs-Automaten G.M.B.H. Printed in:............................................................... England Number of Cards/ Numbering: ........................ 100 / 1 to 100 Card Dimensions: ........................................ 67 mm x 95 mm Circa: .......................................................................... 1958 Country of Origin: .................................................. Germany Album:............................................................................ No 1 Avro Canada CF100 37 Yakovlev 25 Flashlight 73 Aerjer Sagittario 2 2 Avro Vulcan 38 Lockheed Starfighter 74 Fairey Delta FD2 3 Sud-Aviation Caravelle 39 Avro Canada CF105 Arrow 75 Douglas Skywarrior 4 Boeing B47 Stratojet 40 McDonald Banshee 76 Fiat G.82 Trainer 5 Boeing B52 Stratofortress 41 McDonald Demon 77 Lockheed T2V-1 Seastar 6 Boeing 707 42 McDonald F101A Voodoo 78 Hunting Jet Provost 7 Supermarine Swift 43 Mikoyan Fitter 79 Lockheed 329 Jetstar 8 Chance Cought Cutlass 44 MiG 19 Farmer 80 MiG 15 Fagot 9 Chance Vought F84-1 Crusader 45 North American Sabre 81 Bell X5 10 North American Vigilante 46 North American Super Sabre 82 Lockheed F.80 Shooting Star 11 Hawker Sea Hawk 47 North American X15 83 Ilyushin IL-28 (Beagle) 12 Convair F106A Delta Dart 48 English Electric P.1A 84 Douglas Skynight 13 Dassault Mystere 49 Northrop Scorpion 85 Nord 1500 Griffon II 14 de Havilland Comet IV
    [Show full text]
  • Here Were Still Several Independent Aircraft Manufacturers in the United Kingdom
    ISSN 0967-3474 Hampshire Industrial Archaeology Society Journal www.hias.org.uk from Downloaded No. 13 2005 www.hias.org.uk from Downloaded Cover photo: Demolition of the chimney at Garnier Road Sewage Pumping Station, Winchester, 23rd May 1978. (Picture courtesy of the Hampshire Chronicle, 26th May 1978) 1 Hampshire Industrial Archaeology Society (formerly Southampton University Industrial Archaeology Group) Journal No. 13, 2005 _________________________________________________________________ Contents The Contributors………………………………………………………………………………1 Editorial and Acknowledgements……………………………………………………………..2 The Growth of British Commercial Aviation prior to the Jet Age by Gerald Davies …………………………………………………………………………….3 The Story of Southbourne and its Pier by Jeff Pain ……..…………………………………………………………………...15 Garnier Road Sewage Pumping Station, Winchester by Martin Gregory…………………………………………………………………..23 The American Warship at Wickham by Tony & Mary Yoward …………………………………………………………...29 Captain Thring’s Rate of Change of Range Calculator by Meredith Thring .………………………………………………………………. 34 The Contributors Gerald Davies www.hias.org.uk Gerald Davies’ career was in electronics and aerospace systems which have little in common with his interest in canals and railways, which go back to his childhood days. A Londoner by birth, he has lived in Hampshire and the Isle of Wight for the last fifty years. He spent much of his career at the Royal Aircraft Establishment at Farnborough. He joined SUIAG in 1982 and has a broad interest in Industrial Archaeology.from Martin Gregory Martin Gregory’s interest in the history of technology goes back over 40 years. He has researched and built model steam and Stirling engines for many years and also works on the history of the sewing machine. He has been a member of HIAS and its predecessor for over 30 years, has served as Secretary and Chairman and is the present editor of the Journal.
    [Show full text]
  • History of Aircraft Design
    15th-16th century, Italy: Leonardo Da Vinci’s Flying Machine 15th-16th century, Italy: Leonardo Da Vinci’s Flying Machine 1804&1848, Great Britain: George Cayley’s Glider & Governable Parachute 1890-1897, France: Clément Ader’s Eole and Avion 3 1895, Germany: Otto Lilienthal’s Glider 1895, Germany: Otto Lilienthal’s Glider 1903, USA: Wright Brothers’ Flyer 1903, USA: Wright Brothers’ Flyer 1909, France: Blériot XI 1909, France: Blériot XI 1917, Great Britain: Sopwith Camel 1917, Great Britain: Sopwith Camel 1927, USA: Ryan NYP “Spirit of St. Louis” 1927, USA: Ryan NYP “Spirit of St. Louis” 1935, USA: Douglas DC-3 1935, USA: Douglas DC-3 1936, Great Britain: Supermarine Spitfire 1936, Great Britain: Supermarine Spitfire 1937, Great Britain: Frank Whittle’s Power Jets W.1 1939, Germany: Heinkel He-178 1941, Germany: Messerschmitt Me-262 1941, Germany: Messerschmitt Me-262 1946, USA: Northrop XB-35 1946, USA: Northrop XB-35 1947, USA: Bell X-1 1947, USA: Bell X-1 1948, USSR: Mikoyan-Gurevitch MiG-15 1948, USSR: Mikoyan-Gurevitch MiG-15 1949, Great Britain: De Havilland Comet 1949, Great Britain: De Havilland Comet 1950, USA: Boeing B-47 1950, USA: Boeing B-47 1952, USA: Bell X-5 1952, USA: Bell X-5 1953, USA: X-1A, D-558-1, XF-92A, X-5, D-558-II, X-4, & X-3 1955, France: Sud Aviation Caravelle 1955, France: Sud Aviation Caravelle 1957 (1954), USA: Boeing 707 (367-80) 1957 (1954), USA: Boeing 707 (367-80) 1958, USA: McDonnell-Douglas F-4 1958, USA: McDonnell-Douglas F-4 1959, USA: North American X-15 1959, USA: North American X-15 1961, USA:
    [Show full text]
  • Liikennelentäjä-Lehti Ei Vai- En Koulutusmalli, Joka Ei Anna Mitään P
    2/2020 COVID-19: VAIKUTUKSET ILMAILUUN UUTTA JA VANHAA KONEKALUSTOA PURJEHTIVA KAPTEENI HUUSELA PUHEENJOHTAJAN PALSTA audi.fi #INTHISTOGETHER lobaali markkinatalous ja ih- tiivisessa kanssakäymisessä lentoyh- Akseli Meskanen misten liikkuvuus ovat vii- tiön operatiiviseen johtoon, hallituk- FPA:n puheenjohtaja meistään nyt näyttäneet maa- siin ja omistajiin. Kriisitilanteessa A320-kapteeni G ilmalle vain harvan asian olevan pai- tehdään helposti kriisin varjolla rat- kallinen, eristettävissä oleva ongelma. kaisuja, jotka olisivat normaaliolo- Koronan aiheuttama muutosnopeus suhteissa olleet pitkällisten ja vaikei- kaikilla yhteiskunnan tasoilla vain den neuvottelujen tulos, jos ollenkaan. muutamassa kuukaudessa tai joissa- Kiireessä moni asia jää huomioimat- kin tapauksissa viikoissa on yllättänyt, ta ja epäselvästä, kiireessä sorvatusta väitän, kaikki. ratkaisusta kärsitään helposti pitkään. Taaksepäin katsoessa osa kykenee rakentamaan pienistä signaaleista ver- Korona on lentotöiden hetkellisen lop- kon ja toteamaan; “olisihan tämä pitä- pumisen myötä tuonut monet pohti- nyt nähdä”. Olisiko paremmalla maa- maan omaa minäkuvaa ja elämän pe- ilmankuvalla pystytty esimerkiksi ruspilareita. Toistaiseksi viimeinen lentoyhtiöiden johdossa tai edunval- lentoni Kittilään tunneskaalojen osal- vonnan rintamassa varmistamaan jo- ta oli ääripäitä: iloa upeasta lentoke- takin parempaa? Liikenne on kuiten- listä, innostus siiven nostaessa koneen kin nyt lähes täysin seis ja tulevaisuus ilmaan, ylpeyttä haaveammatista ja lo- on sumea, väistämätön lopputulema.
    [Show full text]
  • Het Grote LUCHTVAARTKENNIS Register
    Het grote LUCHTVAARTKENNIS register Het register van het Luchtvaart Historisch Tijdschrift ‘LUCHTVAARTKENNIS’ en de daaraan voorafgaande ‘Mededelingen’ van de Afdeling Luchtvaartkennis van de KNVvL geeft een overzicht van hetgeen in de afgelopen jaren is gepubliceerd, m.u.v. de eerste jaargang, die helaas niet meer te traceren blijkt. Uiteraard is v.w.b. De eerste jaargangen selectief opgetreden, aangezien daarin veel summiere feiten (vliegtuiggegevens etc.) staan, die zo niet achterhaald, dan toch eenvoudiger elders te vinden zijn. Ook de diverse publicaties van het vooroorlogse Nederlandse burgerlucht- vaartregister zijn weggelaten, omdat deze na het verschijnen van het boek ‘75 jaar Nederlandse burgerluchtvaartregisters’ als overbodig kunnen worden beschouwd. Aangezien eerst in 1987 een volledige paginanummering voor het gehele jaar werd ingevoerd, wordt tot dat jaar de vindplaats aangeduid met jaartal en nummer van de betreffende aflevering van de ‘Mededelingen’. Vanaf 1987 geschied zulks per pagina. De in de Luchtvaartencyclopedie verschenen onderwerpen worden aangeduid conform de aflevering waarin deze verschenen. In een enkel geval uit 1985/86 bleek dit niet te achterhalen. Wanneer in een artikel de gehele productie van een bepaalde fabriek wordt weergegeven, wordt volstaan met de vermelding van de fabriek en worden niet de afzonderlijke types vermeld. Bijgewerkt t/m jaargang 66 (2017) Artikel/Onderwerp Jaar/Nummer/Pagina 'Aalsmeer' (PH-TBM) 2014 02 64 Artikel Algemeen 'De Vliegende Hollander' 2014 03 95 Artikel Algemeen 'Eenige
    [Show full text]
  • Norsk Lovtidend
    Nr. 5 – 2001 Side 511 – 659 NORSK LOVTIDEND Avd. I Lover og sentrale forskrifter mv. Nr. 5 Utgitt 15. mai 2001 Innhold Side Forskrifter 2000 Des. 20. Forskrift om ICAO flyteknikersertifikat (BSL C 7–1a) (Nr. 1672) ......................................... 511 Des. 20. Forskrift om generelle bestemmelser om utstedelse av luftfartssertifikater (BSL C 1–1a) (Nr. 1673) ................................................................................................................................ 553 Des. 20. Forskrift om flygeskoler, registrerte fasiliteter (RFs) for flygende personell (BSL C 10–1a) (Nr. 1674) ................................................................................................................................ 579 Des. 20. Forskrift om instrumentbevis for fly og helikopter (IR-A/H) (BSL C 2–6a) (Nr. 1675) ......... 584 Des. 20. Forskrift om flytelefonistsertifikat (BSL C 5–2a) (Nr. 1676).................................................. 585 Des. 20. Forskrift om ICAO flyteknikersertifikat på motor klasse a – MIV (BSL C 7–5a) (Nr. 1677) ................................................................................................................................ 588 Des. 20. Forskrift om ICAO flyteknikersertifikat på komplett luftfartøy – M (BSL C 7–6a) (Nr. 1678) ................................................................................................................................ 589 Des. 20. Forskrift om gjennomføring av felleseuropeiske bestemmelser om sertifisering av flygende personell på fly, BSL-FCL
    [Show full text]
  • Common Solutions to Commercial and Military Propulsion Requirements
    24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMMON SOLUTIONS TO COMMERCIAL AND MILITARY PROPULSION REQUIREMENTS Stephen John Bradbrook Rolls-Royce plc Keywords: Gas Turbine, Unmanned Air Vehicle. Abstract The propulsion requirements for commercial This analysis enables the identification of transports and military combat aircraft differ those key requirements which drive the basic considerably, so much so that it is usual for gas thermodynamic cycle and architecture of the turbine engines to be developed independently engine and hence enables understanding of the for each application with little or no possibilities for commonality between engines. commonality of parts. As military budgets tighten and with the need in the commercial Examples of engine families with common world to remain competitive on price, there is architectural features are presented to illustrate increasing pressure to search for greater a typical approach to increasing commonality. commonality as a means of reducing These examples highlight the following issues: • development costs. design compromises • potential savings in development cost This paper reports on studies to identify a • other benefits and issues future family of gas turbine engines designed to satisfy a wide range of applications with the Through increased commonality it is maximum commonality. estimated that the development cost for a family of engines to meet three differing applications The propulsion requirements are examined could be reduced by over 25%-30% relative to for a range of applications including the the development of three independent engines. following: • commercial transports, e.g. regional jets A future engine family will benefit from the • military manned aircraft, e.g. fighters, introduction of new technologies, for example, primary and advanced trainers in the fields of aerothermal and mechanical design, environment (emissions and noise), low- • military unmanned aircraft, e.g.
    [Show full text]