Space Security 2006

Total Page:16

File Type:pdf, Size:1020Kb

Space Security 2006 SPACE SECURITY 2006 SPACESECURITY.ORG SPACE SECURITY 2006 SPACESECURITY.ORG PARTNERS Governance Group Simon Collard-Wexler International Security Research and Outreach Programme, Department of Foreign Affairs and International Trade, Canada Amb. Thomas Graham Jr. Cypress Fund for Peace and Security Dr. Wade Huntley Simons Centre for Disarmament and Non-proliferation Research, University of British Columbia Dr. Ram Jakhu Institute of Air and Space Law, McGill University Dr. William Marshall Belfer Centre for Science and International Affairs, Harvard University and Space Policy Institute, George Washington University John Siebert Project Ploughshares Sarah Estabrooks Project Manager, Project Ploughshares Library and Archives Canada Cataloguing in Publications Data Advisory Board Space Security 2006 Amb. Thomas Graham Jr. (Chairman of the Board), Cypress Fund for Peace and Security ISBN 13: 978-1-895722-53-6 Philip Coyle III ISBN 10: 1-895722-53-5 Center for Defense Information Air Marshall Lord Garden © 2006 Spacesecurity.org House of Lords, UK Design and layout by Graphics, University of Waterloo, Waterloo, Ontario, Canada Theresa Hitchens Center for Defense Information Cover image: ESA-J.Huart Dr. John Logsdon Space Policy Institute, George Washington University Printed in Canada Dr. Lucy Stojak Institute of Air and Space Law, McGill University First published July 2006 Dr. S. Pete Worden Brigadier General USAF (ret.) TABLE OF CONTENTS PAGE 8 Acronyms PAGE 11 Introduction PAGE 13 Executive Summary PAGE 26 Chapter One: The Space Environment PAGE 44 Chapter Two: Space Security Laws, Policies, and Doctrines PAGE 62 Chapter Three: Civil Space Programs and Global Utilities PAGE 79 Chapter Four: Commercial Space PAGE 96 Chapter Five: Space Support for Terrestrial Military Operations PAGE 114 Chapter Six: Space Systems Protection PAGE 130 Chapter Seven: Space Systems Negation PAGE 146 Chapter Eight: Space-Based Strike Weapons PAGE 157 Annex One: 2005 Space Security Survey Results PAGE 159 Annex Two: Expert Participation PAGE 162 Annex Three: Active Military Satellites PAGE 161 Endnotes Space Security 2006 Acronyms ABM Anti-Ballistic Missile GAGAN GPS and GEO Augmented Navigation ANGELS Autonomous Nanosatellite Guardian for Evaluating GEO Geostationary Orbit Local Space GEOSS Global Earth Observation System of Systems ASEAN Association of Southeast Asian Nations GLONASS Global Navigation Satellite System ASAT Anti-Satellite Weapon GMES Global Monitoring for Environment and Security ASLV Augmented Satellite Launch Vehicle GNSS Global Navigator Satellite System ATV Automated Transfer Vehicle GPS Global Positioning System AWS Advanced Wideband System HAND High Altitude Nuclear Detonation BMD Ballistic Missile Defense HEL High Energy Laser CBM Confidence-Building Measures HELSTF High Energy Laser Systems Test Facility CD Conference on Disarmament HEO Highly Elliptical Orbit CEV Crew Exploration Vehicle IADC Inter-Agency Debris Coordinating Committee CNES Centre National d’Études Spatiales ICBM Intercontinental Ballistic Missile CNSA Chinese National Space Administration ILS International Launch Services ACRONYMS CONUS Continental United States INMARSAT International Maritime Satellite Organization COPUOS United Nations Committee on the Peaceful Uses of INTELSAT International Telecommunications Satellite Consortium Outer Space ISO International Organization for Standardization COSPAR-SARSAT Committee On Space Research – Search and Rescue ISRO Indian Space Research Organization Satellite-Aided Tracking ISS International Space Station CSA Canadian Space Agency ITAR International Traffic in Arms Regulation CX-OLEV ConeXpress Orbital Life Extension Vehicle ITU International Telecommunications Union DARPA Defense Advanced Research Projects Agency JAXA Japan Aerospace Exploration Agency DART Demonstration of Autonomous Rendezvous Technology JHPSSL Joint High-Power Solid-State Laser DBS Direct Broadcasting by Satellite LEO Low Earth Orbit DGA Délégation Générale pour l’Armement MDA Missile Defense Agency DOD United States Department of Defense MEO Medium Earth Orbit DSCS Defense Satellite Communications System MIRACL Mid-Infrared Advanced Chemical Laser DSP Defense Support Program MKV Miniature Kill Vehicle DTRA Defense Threat Reduction Agency MOD Ministry of Defence (UK) EADS European Aeronautics Defence and Space Company MOST Microvariability and Oscillations of Stars EC European Commission MPX Micro-satellite Propulsion Experiment EELV Evolved Expendable Launch Vehicle MSV Mobile Satellite Ventures EHF Advanced Extremely High Frequency MTCR Missile Technology Control Regime EKV Exoatmospheric Kill Vehicle NASA National Aeronautics and Space Administration (US) ELINT Electronic Intelligence NEO Near-Earth Object ESA European Space Agency NFIRE Near-Field Infrared Experiment EU European Union NGA National Geospatial-Intelligence Agency (US) FALCON Force Application and Launch from the Continental NGO Non-Governmental Organization United States NOAA National Oceanic and Atmospheric Administration (US) FAA Federal Aviation Administration (US) NORAD North American Aerospace Defense command FCC Federal Communications Commission (US) NSTAC National Security Telecommunications Advisory Committee FMCT Fissile Material Cut-off Treaty NTM National Technical Means FOBS Fractional Orbital Bombardment System 8 9 Space Security 2006 Introduction ORS Operationally Responsive Spacelift The strategic environment of outer space is evolving rapidly. A growing number and diversity INTRODUCTION OST Outer Space Treaty of actors are accessing and using space; revenues from its commercial exploitation are growing; PAROS Prevention of an Arms Race in Outer Space satellite services affect daily life all over the world; and military space applications are continually expanding. While demonstrating the vital importance of this environment, PEIS Programmatic Environmental Impact Statement intensifying space use creates governance challenges including management of space traffic, QZSS Quazi-Zenith Satellite System orbital debris, and the distribution of scarce resources such as orbital slots and radio frequency. RAIDRS Rapid Attack Identification Detections Reporting System It has become clear that technological and political developments are outstripping the existing RAMOS Russian-American Observation Satellite program governance framework for outer space. These governance challenges will become increasingly RASCAL Responsive Access, Small Cargo, Affordable Launch salient as states’ dependence on space for national security grows. program Space Security 2006 aims to provide a comprehensive and integrated assessment of the state of RFTWARS Radio Frequency, Threat Warning, and Attack Reporting space security. It is the third such annual evaluation of space security, which for these purposes ROKVISS Robotic Components Verification on the International is defined as the secure and sustainable access to and use of space, and freedom from space- Space Station based threats. The report examines international developments in space security according to RSSS Remote Sensing Satellite System eight indicators, providing a comprehensive overview of the concerns of military, civilian, and commercial space stakeholders from around the world. SAINT Satellite Interceptor SALT Strategic Arms Limitations Talks This project accepts the position that space is a global commons, as enshrined in the 1967 SAR Search and Rescue (Satellite-based) Outer Space Treaty, bordering every community on Earth. There is no doubt that national and international security dynamics on Earth and space security are interlinked: space systems can SBI Space-Based Interceptors enhance national security by providing transparency and by supporting military operations SBIRS Space-Based Infrared System and international security concerns on Earth risk spilling over into the space environment. SBL Space-Based Laser However, our approach posits that there are policies that can enhance the security of all actors SBSS Space-Based Surveillance System in space. Space security need not be a zero-sum game but instead can be a path to prosperity SBSW Space-Based Strike Weapon and a path to peace. SDI Strategic Defense Initiative The pursuit of space security is plagued by certain contradictions. For example, the acquisition SHF Super High Frequency of independent space access by more actors could aggravate environmental concerns in space. SIGINT Signals Intelligence Technologies that enable more effective use of space for some often have the inherent potential SMV Space Maneuver Vehicle to negate the secure use of space for others. Indeed, the same assets used for space surveillance and collision avoidance could provide precision targeting of space assets. These contradictions SOI Silicon-On-Insulator are commonly interpreted from the national security vantage points of individual space actors. SSL Solid State Laser However, these concerns need to be explored and collectively managed, and, by their very SSN Space Surveillance Network nature, require a common understanding of space security. We expect this report will provide SSS Space Surveillance System food for thought in this regard. STSS Space Tracking and Surveillance System It is our hope that Space Security 2006 will improve the transparency of activity in outer space. SUPARCO Space and Upper Atmospheric Research Commission As with all security matters, perceptions and misperceptions are tremendously important. The TECSAS Technology Satellite for Demonstration and
Recommended publications
  • Pete Aldridge Well, Good Afternoon, Ladies and Gentlemen, and Welcome to the Fifth and Final Public Hearing of the President’S Commission on Moon, Mars, and Beyond
    The President’s Commission on Implementation of United States Space Exploration Policy PUBLIC HEARING Asia Society 725 Park Avenue New York, NY Monday, May 3, and Tuesday, May 4, 2004 Pete Aldridge Well, good afternoon, ladies and gentlemen, and welcome to the fifth and final public hearing of the President’s Commission on Moon, Mars, and Beyond. I think I can speak for everyone here when I say that the time period since this Commission was appointed and asked to produce a report has elapsed at the speed of light. At least it seems that way. Since February, we’ve heard testimonies from a broad range of space experts, the Mars rovers have won an expanded audience of space enthusiasts, and a renewed interest in space science has surfaced, calling for a new generation of space educators. In less than a month, we will present our findings to the White House. The Commission is here to explore ways to achieve the President’s vision of going back to the Moon and on to Mars and beyond. We have listened and talked to experts at four previous hearings—in Washington, D.C.; Dayton, Ohio; Atlanta, Georgia; and San Francisco, California—and talked among ourselves and we realize that this vision produces a focus not just for NASA but a focus that can revitalize US space capability and have a significant impact on our nation’s industrial base, and academia, and the quality of life for all Americans. As you can see from our agenda, we’re talking with those experts from many, many disciplines, including those outside the traditional aerospace arena.
    [Show full text]
  • Magisterarbeit
    MAGISTERARBEIT Titel der Magisterarbeit „How does China’s space program fit their development goals?“ Verfasser Manfred Steinkellner, Bakk. phil. angestrebter akademischer Grad Magister der Philosophie (Mag.phil.) Innsbruck, Juni 2009 Studienkennzahl lt. Studienblatt: A 066 811 Studienrichtung lt. Studienblatt: Sinologie Betreuer: Prof. Dr. Rüdiger Frank, Prof. Dr. Susanne Weigelin-Schwiedrzik Zusammenfassung Diese Diplomarbeit befasst sich mit dem chinesischen Weltraumprogramm und seiner Rolle im Kontext der chinesischen Entwicklungspolitik. Die Bedeutung ist einerseits durch Chinas wirtschaftlichen Aufstieg gegeben und andererseits durch das erhöhte strategische und kommerzielle Interesse am Weltraum. Der erste Teil dieser Arbeit versucht kurz den Weg Chinas zu seiner aktuellen Lage zu skizzieren. Die wichtigsten Entwicklungsschritte in Wirtschaft, Militär und Umwelt werden aufgezeigt um ein besseres Verständnis der Realität zu ermöglichen. Nach einer kurzen Analyse der aktuellen Situation werden die chinesischen Entwicklungspläne untersucht. Das Hauptaugenmerk liegt auf dem elften chinesischen Fünf-Jahres Plan, dem elften chinesischen Entwicklungsplan für Weltraum sowie dem Langzeit Entwicklungsplan für Wissenschaft und Technik. Die Analyse dieser Daten führt zu einem konkreteren Verständnis der aktuellen Ziele Chinas und ermöglicht somit eine Einordnung des Weltraumprogramms in die aktuelle chinesische Entwicklung. Der zweite Teil untersucht sechs Kernbereiche des chinesischen Weltraumprogramms. Es handelt sich dabei um das bemannte
    [Show full text]
  • Actes Du Colloque Du 2 Novembre 2005
    - 1 - ACTES DU COLLOQUE DU 2 NOVEMBRE 2005 « LA POLITIQUE SPATIALE EUROPÉENNE : QUELLES AMBITIONS POUR 2015 ? » ORGANISÉ PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ET M. CHRISTIAN CABAL, DÉPUTÉ, PRÉSIDENT DU GROUPE PARLEMENTAIRE SUR L’ESPACE - 2 - SOMMAIRE Pages I. INTERVENTIONS DE LA MATINÉE .................................................................................... 4 A. INTRODUCTION AU COLLOQUE PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ............................................................................. 4 B. INTERVENTION DE M. FRANÇOIS GOULARD, MINISTRE DÉLÉGUÉ À L’ENSEIGNEMENT SUPÉRIEUR ET À LA RECHERCHE. ................................................... 8 C. PREMIÈRE TABLE RONDE : L’AVENIR DE LA PROPULSION, LES LANCEURS DE DEMAIN ............................................................................................................................. 11 1. M. Viktor REMICHEVSKI, Directeur général adjoint de ROSKOSMOS ................................. 12 2. M. Kiyoshi HIGUCHI, Directeur exécutif de la JAXA (Japan Aerospace Exploration Agency .................................................................................................................................... 16 3. M. Jean-Yves LE GALL, Directeur général d’Arianespace ..................................................... 19 4. M. Michel EYMARD, Directeur des lanceurs du CNES..........................................................
    [Show full text]
  • Spotlight on Asia-Pacific
    Worldwide Satellite Magazine June 2008 SatMagazine Spotlight On Asia-Pacific * The Asia-Pacific Satellite Market Segment * Expert analysis: Tara Giunta, Chris Forrester, Futron, Euroconsult, NSR and more... * Satellite Imagery — The Second Look * Diving Into the Beijing Olympics * Executive Spotlight, Andrew Jordan * The Pros Speak — Mark Dankburg, Bob Potter, Adrian Ballintine... * Checking Out CommunicAsia + O&GC3 * Thuraya-3 In Focus SATMAGAZINE JUNE 2008 CONTENTS COVER FEATURE EXE C UTIVE SPOTLIGHT The Asia-Pacific Satellite Market Andrew Jordan by Hartley & Pattie Lesser President & CEO The opportunities, and challenges, SAT-GE facing the Asia-Pacific satellite market 12 are enormous 42 FEATURES INSIGHT Let The Games Begin... High Stakes Patent Litigation by Silvano Payne, Hartley & Pattie by Tara Giunta, Robert M. Masters, Lesser, and Kevin and Michael Fleck and Erin Sears The Beijing Olympic Games are ex- Like it or not, high stakes patent pected to find some 800,000 visitors wars are waging in the global satel- 47 arriving in town for the 17-day event. 04 lite sector, and it is safe to assume that they are here to stay. Transforming Satel- TBS: Looking At Further Diversification lite Broadband by Chris Forrester by Mark Dankberg Internationally, Turner Broadcasting The first time the “radical” concept has always walked hand-in-hand with 54 of a 100 Gbps satellite was intro- the growth of satellite and cable – duced was four years ago, 07 and now IPTV. Here’s Looking At Everything — Part II by Hartley & Pattie Lesser The Key To DTH Success In Asia by Jose del Rosario The Geostationary Operational Envi- Some are eyeing Asia as a haven for ronmental Satellites (GOES) continu- economic safety or even economic ously track evolution of weather over growth amidst the current global almost a hemisphere.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • The President's Commission on Implementation of US Space Exploration Policy
    The President’s Commission on Implementation of US Space Exploration Policy Testimony By Philippe Berterottière Senior Vice President Sales, Marketing & Customer Programs Arianespace SA Arianespace - May 3, 2004 Who We Are • Founded in 1980 • The world’s 1st commercial launch services provider • Signed over 250 contracts • Launched majority of commercial satellites in orbit • >50% of our business is with US manufacturers/operators • Privately held European company with 44 Shareholders from 13 European nations • Arianespace is the prime contractor to ESA for marketing, sales, integration and launch of Europe’s family of vehicles Arianespace - May 3, 2004 2 Family of Launch Vehicles • Serves European launch policy to optimize resources and address all market segments • A contract with ESA provides Arianespace with the rights to operate Europe’s family of launch vehicles • Arianespace operates 3 systems from French Guiana The heavy-lift Ariane 5 (operational) The medium-lift Soyuz ST (from 2006) The light-lift Vega (from 2006) • Arianespace is currently involved in Soyuz operations from Baikonur through our sister company Starsem Arianespace - May 3, 2004 3 Ariane 5 Current Configurations & Capabilities LEO GTO Moon (mt) (mt) (mt) Ariane 5 Generic 6.8 Ariane 5 ECA 10 7.5 Ariane 5 ES/V 21 ARIANE 5 Configuration Under Evaluation Ariane 5 ECB 23 12 9 With the two solid propellant boosters and the central core of Ariane 5, there is a tool kit to build a super-heavy vehicle, should the need arise Arianespace - May 3, 2004 Facilities • We launch
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Cronología De Lanzamientos Espaciales 1
    Cronología de lanzamientos espaciales 1 Cronología de Lanzamientos Espaciales Año 2008 Copyright © 2008 by Eladio Miranda Batlle. All rights reserved. Los textos, imágenes y tablas que se encuentran en esta cronología cuentan con la autorización de sus propietarios para ser publicadas o se hace referencia a la fuente de donde se obtuvieron los mismos. Eladio Miranda Batlle [email protected] Cronología de lanzamientos espaciales 2 Contenido 2008 Enero Thuraya 3 TecSAR 1 Express AM-33 Febrero Progress M-63 STS – 122 (ATLANTIS) COF (Columbus) Thor 2R Kizuna (WINDS) Marzo Jules Verne ATV-1 STS - 123 (Endeavour) JPL (JEM-ELM-PS) USA 200 AMC 14 Navstar – 2RM 6 DirecTV 11 SAR Lupe 4 Abril Soyuz TM-12 ICO G1 C/NOFS Star One C2-VINASAT 1 Tianlian 1 GIOVE-B AAUSAT 2 Amos 3 IMS 1-CanX 2- CanX 6 -Delfi-C3-Rubin 8 AIS-SEEDS 2 CartoSat 2A COMPASS 1 - CUTE-1.7 Mayo Progress M-64 TWINS 2 Galaxy 18 Cosmos 2437-2438-2439-Yubileiny Fengyun 3A STS-124 (Discovery) JPM-PM,Kibo Eladio Miranda Batlle [email protected] Cronología de lanzamientos espaciales 3 Junio Zhongxing 9 Fermi Gamma-ray Space Telescope- GLAST Skynet 5C- Turksat 3A Orbcomm FM- 37- 38 -39- 40- 41- CDS3 Jason 2 Cosmos 2440 (US-KMO-1) Julio Bard 6-Protostar 1 Echostar 11 SAR Lupe 5 Cosmos 2441(Persona -1) Agosto Traiblazer – PreSat – Nanosail D – Celestis 07 Superbird 7 Inmarsat 4-F3 RapidEye-A-B-C-D-E Septiembre Huan Jing 1A-1B GeoEye1 Progress M-65 Nimiq 4 Galaxy 19 Glonass 724-725-726(Kosmos 2442-2443-2444 Shenzhou 7 Demosat/Falcon 1 Octubre THEOS Soyuz TMA-13 IBEX Chandrayan 1 Shi Jian 6 (SJ 6A-6B) COSMO-Skymed (3 ) VENESAT 1 (Simón Bolivar 1) Noviembre SY 3 (TS 1, 2, 3) CX-1(2) (Chuang Xin 1) Astra 1M Kosmos 2445.
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • Launch Uncertainty
    GRANT R. CATES Grant R. Cates is a senior engineering specialist at The Aerospace Corporation in Chantilly, Virginia. He has more than 30 years of experience in space launch and simulation modeling. His recent work and publications have focused on the use of discrete event simulation to advise the Air Force on future launch rates and NASA on the space shuttle, the International Space Station, human exploration of the solar system, and launch probability. Cates received a bachelor’s degree in engineering science from Colorado State University and a master’s degree and Ph.D. in industrial engineering from the University of Central Florida. DANIEL X. HOUSTON Daniel X. Houston is a senior project leader at The Aerospace Corporation in El Segundo, California. He applies qualitative and quantitative analytical methods, including statistics and simulation, to industrial and software engineering processes. Houston received a B.S. in mechanical engineering from The University of Texas at Austin and a master’s degree and Ph.D. in industrial engineering at Arizona State University. His publications include statistical modeling and simulation of software development processes, software process improvement, and the management of software projects, with a focus on risk, product quality, and economics. DOUGLAS G. CONLEY Douglas G. Conley is chief engineer of Launch Program Operations at The Aerospace Corporation in El Segundo, California. He has been engaged in domestic and international space launch programs spacecraft systems engineering, and mission assurance for over 35 years, mostly in the commercial realm before joining Aerospace in 2016. Conley received a B.S. in engineering and applied science from Caltech and a master’s degree in dynamics and control from the University of California, Los Angeles.
    [Show full text]
  • Space 2030 – Tackling Society's Challenges
    _it E d e it Space 2030 s io w n TACKLING SOCIETY’S CHALLENGES Spaceo 2030 r In coming decades, governments will increasingly be confronted with enduring ly societal challenges, including threats to the physical environment and B n the management of natural resources and issues relating to major trends that will TACKLING SOCIETY’S shape society at large: growing mobility and its consequences, increasing security O e D concerns, and a gradual shift to the information society. CHALLENGES d l C u Tackling these challenges effectively will not be easy. It will require consistent, a sustained, co-ordinated efforts over long periods of time. Space can help E e e in this regard. Indeed, space technology offers inherent strengths, such as O R s non-intrusive, ubiquitous coverage, dissemination of information over broad areas, rapid deployment and global navigation capability. Space systems may be able n e A r to provide effective support to public action, if appropriate space applications that tu fully meet users’ needs can be developed in a timely manner. L e c SPACE 2030 SPACE This book explores what this contribution might be. It discusses the challenges for developing space applications. It assesses the strengths and weaknesses of the institutional, legal and regulatory frameworks that currently govern space activities in the OECD area and beyond. Finally, it formulates an overall policy framework that OECD governments might use in drafting policies designed to : ensure that the potential that space has to offer is actually realised. Challenges Society’s Tackling OECD’s books, periodicals and statistical databases are now available via www.SourceOECD.org, our online library.
    [Show full text]