Classification of Geosynchronous Objects

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Geosynchronous Objects esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) . 4 2.2 Keldysh Institute for Applied Mathematics (KIAM) . 4 3 List of Geosynchronous Objects 8 4 Objects with Ephemeris 39 4.1 Satellites under Longitude and Inclination Control (E-W and N-S Control) . 41 4.2 Satellites under Longitude Control (only E-W Control) . 64 4.3 Satellites in a Controlled Drift Orbit . 74 4.4 Objects in a Drift Orbit . 75 4.5 Objects in a Libration Orbit around the Eastern Stable Point . 125 4.6 Objects in a Libration Orbit around the Western Stable Point . 134 4.7 Objects in a Libration Orbit around both Stable Points . 138 4.8 Objects in Highly Inclined Orbits . 145 4.9 Objects of Indeterminate Status . 147 5 Objects without Ephemeris 152 5.1 Catalogued Objects . 152 5.2 Uncatalogued Objects . 152 6 Figures 154 7 Summary 160 8 Acknowledgements 162 Page 2 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 1 Introduction All objects that are catalogued in ESA’s DISCOS Database (Database and Information System Charac- terising Objects in Space) and residing at the reference epoch within either of the orbital classes GEO, EGO and IGO (see table 1 for the class definitions) are listed in this document. The main purpose is to classify all the objects residing in the former two orbital classes according to different categories (top level: controlled, drifting and librating). Table 1: Orbital classes defined by a combination of inclination i [deg], semi-major axis a [km], eccentric- ity e, perigee height hp [km] and apogee height ha [km]. As they are non-exclusive, orbits are assigned according to the order given here. Additionally, the IADC GEO protected region [1] defined by latitude f [deg] and altitude h [km] is given. Orbit Description Definition GEO Geostationary Orbit i 2 [0, 25] hp 2 [35586, 35986] ha 2 [35586, 35986] EGO Extended Geostationary Orbit i 2 [0, 25] a 2 [37948, 46380] e 2 [0, 0.25] IGO Inclined Geosynchronous Orbit i 2 [25, 180] a 2 [37948, 46380] e 2 [0, 0.25] GEOIADC IADC GEO Protected Region f 2 [−15, 15] h 2 [35586, 35986] The document is structured as follows. Section 2 describes the sources being used to compile this report and section 3 gives an overview of all the catalogued objects. Detailed information about the objects is given in section 4 and 5 for objects where orbital data is available and where no orbital data is avail- able respectively. Figures are presented in section 6 to visualize the data and section 7 summarises the findings. Page 3 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 2 Sources Subsequently, each source contributing to this report is presented. 2.1 USSTRATCOM Two-Line Elements (TLEs) The basic source of information are the USSTRATCOM Two-Line Elements (TLEs). The DISCOS Database [2] is updated at regular intervals by ESOC’s Space Debris Office. The accuracy of TLE is limited. At the geostationary altitude, TLE are provided on a regular basis, and are mainly for objects larger than about 1 meter in size. TLE for smaller objects are provided rather sporadically. It should be noted that also some of the derived parameters like libration period and libration amplitude may in some cases be subject to a limited accuracy. For further information about the method of classification please refer to Classification of Geostationary Objects [3]. Eight different classifications are distinguished: C1 objects under longitude and inclination control (E-W as well as N-S control) – the longitude is nearly constant and the inclination is smaller than 0.3 degrees, C2 objects under longitude control (only E-W control) – the longitude is nearly constant but the inclination is higher than 0.3 degrees, D objects in a drift orbit, L1 objects in a libration orbit around the Eastern stable point (longitude 75 degrees East), L2 objects in a libration orbit around the Western stable point (longitude 105 degreesWest), L3 objects in a libration orbit around both stable points, I objects in highly inclined orbits with inclination larger than 25.0 degrees, Ind objects of indeterminate status. The frame in which the mean orbital elements are expressed for objects from this source is the true equator, mean equinox (TEME) frame. The catalogue number is given as the source id (S-ID). 2.2 Keldysh Institute for Applied Mathematics (KIAM) This source provides orbital data derived from ground-based optical observations. Data are provided only for objects for which no USSTRATCOM TLEs are published. Orbits given in this report are pro- duced from measurements obtained in 2015 and prepared by Vladimir Agapov, Keldysh Institute for Applied Mathematics, Moscow (KIAM). They are a joint product of the wide cooperation of organiza- tions including: • Center on collection, processing and analysis of information on space debris at the Keldysh Insti- tute of Applied Mathematics of the Russian Academy of Sciences (KIAM RAS, Moscow, Russia), Page 4 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 • International scientific observation facilities network (ISON) coordinated by KIAM RAS and in- cluding the following observatories: – Ussuriysk Astrophysical Observatory of the Far East branch of the RAS (Gornotayozhnoye, Primorsky Krai, Russia), – Zvenigorod observatory of the Astronomy Institute of the RAS (INASAN) (Moscow oblast, Russia), – Crimean Astrophysical Observatory (Nauchny), – Ulugbek Astronomical Observatory (Kitab facilitiy, Qashqadaryo Province, Uzbekistan), – Observation facilities operated by the ”Astronomical Scientific Center”, JSC: ∗ Artem (Primorsky Krai, Russia), ∗ Blagoveshchensk (Amur region, Russia), ∗ Kislovodsk observatory (Karachaevo-Cherkesskaya Republic, Russia), ∗ Lesosibirsk (Krasnoyarsky Krai, Russia), ∗ Milkovo (Kamchatka Krai, Russia), – Byurakan Astrophysical Observatory of the Armenian Academy of Sciences (Byurakan, Ar- menia), – Andrushivka Observatory (Zhytomyrs’ka oblast, Ukraine), – National observatory of Bolivia (Tarija, Bolivia), – Sayan Solar Observatory of the Institute of Solar-Terrestrial Physics of the Siberian branch of the RAS (Mondy, Republic of Buryatia, Russia), – Observation facility of the PGU (Tiraspol), – Odessa State University Astronomical Observatory (Mayaki, Odes’ka oblast, Ukraine), – Derenovka observation facility of Laboratory of space researches, Uzhhorod National Uni- versity (Zakarpats’ka oblast, Ukraine), – Chuguyev observation facility of the Astronomy scientific and research institute of Kharkov national university (Kharkiv’ska oblast, Ukraine), – Cosala´ observation facility of the The Autonomous University of Sinaloa (Universidad Autonoma´ de Sinaloa, UAS, Mexico), – Khureltogoot observatory of the The Research Centre of Astronomy and Geophysics of the Mongolian Academy of Sciences, – Observatory ”Peak Terskol” of the International Center for Astronomical, Medical and Eco- logical Research (Kabardino-Balkaria Republic, Russia), – E.Kharadze Abastumani Astrophysical Observatory of Ilia State University (Abastumani, Adigeni District, Georgia), – Mul’ta observation facility (Altai Republic, Russia), – Observatory of Altai State Pedagogical University (Barnaul, Altaisky Krai). • Astronomical Institute of the University of Bern, partner of ISON, operating the Zimmerwald observatory (Switzerland) and, for space debris observation, the ESA 1m telescope at the optical ground station (OGS), Izana,˜ Tenerife, Spain, • Telescope Fabra ROA Montsec (TFRM) operated by the Reial Academia` de Ciencies` i Arts de Barcelona - Observatori Fabra, the Real Instituto y Observatorio de la Armada (ROA) and the Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Spain. Page 5 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table 2: Objects with information initially provided by KIAM with corresponging S-ID and later as- signed international designation by the USSTRATCOM. S-ID COSPAR Name Page UI089 1968-081R Titan IIIC stage 3 fragmentation debris p. 113 UI094 1997-040A PAS 6 p. 75 UI099 1977-092K Ekran 2 fragmentation debris p. 109 UI153 2008-006C Proton-M/Briz-M fourth stage (Briz-M) p. 76 UI163 2010-006B Proton-M/Briz-M fourth stage (Briz-M) p. 75 UU065 2002-040E Meteosat 8 (MSG 1) operational debris (SEVIRI Cooler Cover) p.
Recommended publications
  • The Annual Compendium of Commercial Space Transportation: 2013
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2013 February 2014 About FAA \ NOTICE ###i# £\£\ ###ii# Table of Contents TABLE OF CONTENTS INTRODUCTION. 1 YEAR AT A GLANCE ..............................................2 COMMERCIAL SPACE TRANSPORTATION 2013 YEAR IN REVIEW ........5 7 ORBITAL LAUNCH VEHICLES .....................................21 3 SUBORBITAL REUSABLE VEHICLES ...............................47 33 ON-ORBIT VEHICLES AND PLATFORMS ............................57 LAUNCH SITES .................................................65 COMMERCIAL VENTURES BEYOND EARTH ORBIT ...................79 44 REGULATION AND POLICY .......................................83 3 5 3 53 3 8599: : : ;55: 9 < 5; < 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS ..........89 4 3 4 : ACRONYMS AND ABBREVIATIONS ...............................186 2013 WORLDWIDE ORBITAL LAUNCH EVENTS .....................192 DEFINITIONS ..................................................196 ###iii# £\£\ LIST OF FIGURES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW = =999 =99 = =3> =:9;> LAUNCH SITES = :< 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS =944 =4 =?4;9 =99493 =3 =:5= =< =;=9 =95;@3 =A =;=9 A 3 =994?: =9999 ? =54 =359 =:5 3 =<999= ? =99=5 ?3 =;>>99: =99 ? 3 ==9 ? 3: =3 =>3 =?: =3?: =:? : ###iv# LIST OF TABLES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW 99 : 3< :9=99< <99 ORBITAL LAUNCH VEHICLES 99 99 59595 593 SUBORBITAL REUSABLE VEHICLES 3 :5933 ON-ORBIT VEHICLES
    [Show full text]
  • → Space for Europe European Space Agency
    number 153 | February 2013 bulletin → space for europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the ESTEC, Noordwijk, Netherlands. Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Canada is a Cooperating State. ESOC, Darmstadt, Germany. In the words of its Convention: the purpose of the Agency shall be to provide for ESRIN, Frascati, Italy. and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view ESAC, Madrid, Spain. to their being used for scientific purposes and for operational space applications systems: Chairman of the Council: D. Williams (to Dec 2012) → by elaborating and implementing a long-term European space policy, by recommending space objectives to the Member States, and by concerting the Director General: J.-J. Dordain policies of the Member States with respect to other national and international organisations and institutions; → by elaborating and implementing activities and programmes in the space field; → by coordinating the European space programme and national programmes, and by integrating the latter progressively and as completely as possible into the European space programme, in particular as regards the development of applications satellites; → by elaborating and implementing the industrial policy appropriate to its programme and by recommending a coherent industrial policy to the Member States.
    [Show full text]
  • Satellite Systems
    Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian.
    [Show full text]
  • From Strength to Strength Worldreginfo - 24C738cf-4419-4596-B904-D98a652df72b 2011 SES Astra and SES World Skies Become SES
    SES Annual report 2013 Annual Annual report 2013 From strength to strength WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2011 SES Astra and SES World Skies become SES 2010 2009 3rd orbital position Investment in O3b Networks over Europe 2008 2006 SES combines Americom & Coverage of 99% of New Skies into SES World Skies the world’s population 2005 2004 SES acquires New Skies Satellites Launch of HDTV 2001 Acquisition of GE Americom 1999 First Ka-Band payload in orbit 1998 Astra reaches 70m households in Europe Second orbital slot: 28.2° East 1996 SES lists on Luxembourg Stock Exchange First SES launch on Proton: ASTRA 1F Digital TV launch 1995 ASTRA 1E launch 1994 ASTRA 1D launch 1993 ASTRA 1C launch 1991 ASTRA 1B launch 1990 World’s first satellite co-location Astra reach: 16.6 million households in Europe 1989 Start of operations @ 19.2° East 1988 ASTRA 1A launches on board Ariane 4 1st satellite optimised for DTH 1987 Satellite control facility (SCF) operational 1985 SES establishes in Luxembourg Europe’s first private satellite operator WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2012 First emergency.lu deployment SES unveils Sat>IP 2013 SES reach: 291 million TV households worldwide SES maiden launch with SpaceX More than 6,200 TV channels 1,800 in HD 2010 First Ultra HD demo channel in HEVC 3rd orbital position over Europe 25 years in space With the very first SES satellite, ASTRA 1A, launched on December 11 1988, SES celebrated 25 years in space in 2013. Since then, the company has grown from a single satellite/one product/one-market business (direct-to-home satellite television in Europe) into a truly global operation.
    [Show full text]
  • Space in Central and Eastern Europe
    EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3.
    [Show full text]
  • Year in Review—2013
    MSM DEC 2013 cover SATCOM For Net-Centric Warfare December 2013 MilsatMagazine YEARYEAR ININ REVIEW—2013REVIEW—2013 MilsatMagazineDecember 2013 Publishing Operations Senior Contributors Silvano Payne, Publisher + Writer Mike Antonovich, ATEME Hartley G. Lesser, Editorial Director Bert Sadtler, Boxwood Executive Search Pattie Waldt, Executive Editor Richard Dutchik Jill Durfee, Sales Director, Editorial Assistant Tony Bardo, Hughes Simon Payne, Development Director Chris Forrester, Broadgate Publications Donald McGee, Production Manager Karl Fuchs, iDirect Government Services Dan Makinster, Technical Advisor Bob Gough, Carrick Communications Jos Heyman, TIROS Space Information David Leichner, Gilat Satellite Networks This Issue’s Authors Giles Peeters, Track24 Defence Mark A Baird, Colonel, USAF Ian Canning Hartley Lesser Jose Lujano, III, Corporal, USMC Michael Mantz Rafael Martie, Petty Officer, 1st Class, USN Susan Miller Elliot Holokauahi Pulham John Ratigan Scott Scheimreif Pattie Waldt Amy Walker Published 11 times a year by SatNews Publishers 800 Siesta Way Sonoma, CA 95476 USA Phone: (707) 939-9306 Fax: (707) 838-9235 © 2013 SatNews Publishers We reserve the right to edit all submitted materials to meet our content guidelines, as well as for grammar or to move articles to an alternative issue to accommodate publication space requirements, or Cover and Table of masthead Image... removed due to space restrictions. Submission of content does not Staff Sgt. Shelby Johnson, a squad leader with the 4th Brigade constitute acceptance of said material by SatNews Publishers. Edited Combat Team, 10th Mountain Division (Light Infantry), observes the materials may, or may not, be returned to author and/or company area around Forward Operating Base Torkham, Afghanistan, while for review prior to publication.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • 1 Before the Federal Communications Commission Washington, D.C
    Federal Communications Commission DA 06-4 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) AFRISPACE, INC. ) IB File No. SAT-LOA-20050311- ) 00061 Application for Authority to Launch and ) Operate a Replacement Satellite, AfriStar-2, ) Call Sign: S2666 at 21° E.L. and to Co-locate It with AfriStar-1 ) ) ORDER AND AUTHORIZATION Adopted: January 03, 2006 Released: January 03, 2006 By the Chief, International Bureau: I. INTRODUCTION 1. By this Order, we authorize AfriSpace, Inc. (AfriSpace)1 to launch and operate the AfriStar-2 satellite in the geostationary-satellite orbit (GSO) at the 21° East Longitude (E.L.) orbital location. AfriStar-2 is controlled from the United States and is capable of providing Broadcasting-Satellite Service (sound) (BSS (sound)) to Africa and Europe on a non-common carrier basis. We authorize AfriStar-2 to operate downlinks within 2.6 megahertz of spectrum in each polarization with a center frequency of 1479.5 MHz. We also authorize AfriSpace to utilize feeder links and telecommand links for the AfriStar-2 satellite in the 7025-7075 MHz frequency band, to operate its telemetry link for the AfriStar-2 satellite at a center frequency of 1491.7 MHz, and to co-locate the AfriStar-2 satellite at 21° E.L. with the AfriStar-1 satellite currently in orbit. In addition, we grant AfriSpace a waiver of the Commission’s rule regarding transponder saturation flux densities for the AfriStar-2 satellite.2 These authorizations give AfriSpace the capability to continue to provide service to existing customers despite unanticipated technical difficulties experienced by the AfriStar-1 satellite and to serve new customers, conditioned on AfriSpace complying with the applicable laws, regulations, rules, and licensing procedures of any countries it proposes to serve.
    [Show full text]
  • Magisterarbeit
    MAGISTERARBEIT Titel der Magisterarbeit „How does China’s space program fit their development goals?“ Verfasser Manfred Steinkellner, Bakk. phil. angestrebter akademischer Grad Magister der Philosophie (Mag.phil.) Innsbruck, Juni 2009 Studienkennzahl lt. Studienblatt: A 066 811 Studienrichtung lt. Studienblatt: Sinologie Betreuer: Prof. Dr. Rüdiger Frank, Prof. Dr. Susanne Weigelin-Schwiedrzik Zusammenfassung Diese Diplomarbeit befasst sich mit dem chinesischen Weltraumprogramm und seiner Rolle im Kontext der chinesischen Entwicklungspolitik. Die Bedeutung ist einerseits durch Chinas wirtschaftlichen Aufstieg gegeben und andererseits durch das erhöhte strategische und kommerzielle Interesse am Weltraum. Der erste Teil dieser Arbeit versucht kurz den Weg Chinas zu seiner aktuellen Lage zu skizzieren. Die wichtigsten Entwicklungsschritte in Wirtschaft, Militär und Umwelt werden aufgezeigt um ein besseres Verständnis der Realität zu ermöglichen. Nach einer kurzen Analyse der aktuellen Situation werden die chinesischen Entwicklungspläne untersucht. Das Hauptaugenmerk liegt auf dem elften chinesischen Fünf-Jahres Plan, dem elften chinesischen Entwicklungsplan für Weltraum sowie dem Langzeit Entwicklungsplan für Wissenschaft und Technik. Die Analyse dieser Daten führt zu einem konkreteren Verständnis der aktuellen Ziele Chinas und ermöglicht somit eine Einordnung des Weltraumprogramms in die aktuelle chinesische Entwicklung. Der zweite Teil untersucht sechs Kernbereiche des chinesischen Weltraumprogramms. Es handelt sich dabei um das bemannte
    [Show full text]
  • Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554
    Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Eutelsat S.A. ) ) File No.: Petition for Declaratory Ruling to ) Call Sign: S2596 Modify the U.S. Market Access Grant ) for EUTELSAT 12 West B ) PETITION FOR DECLARATORY RULING Eutelsat S.A. (“Eutelsat”) pursuant to Section 25.137(f) of the Commission’s Rules, 47 C.F.R. § 25.137(f), hereby seeks to modify the U.S. market access grant of the EUTELSAT 12 West B satellite1 to add the 11.2-11.45 GHz downlink band to its authorization. In this Petition, Eutelsat demonstrates that it is legally, technically, and otherwise qualified to hold the requested authority; that the proposed operations are compliant with applicable Commission rules, regulations, and policies; and that grant of the Petition would serve the public interest, convenience, and necessity. I. INTRODUCTION EUTELSAT 12 West B, a French-licensed satellite currently in orbit at 12.5˚W.L., operates in Ku-band frequencies, providing fixed-satellite service (“FSS”) connectivity to a range of users. The EUTELSAT 12 West B satellite was launched on 25 September 2001 to the 8°W.L. orbital location with an expected lifetime of more than 20 years. The satellite was 1 The satellite was originally included on the Permitted List at 8° W.L. See Petitions for Declaratory Ruling To Add EUTELSAT Satellites ATLANTIC BIRD™ 1 at 12.5° W.L and ATLANTIC BIRD™ 2 at 8° W.L to the Commission’s Permitted Space Station List, Order, File No. SAT-PDR-20010207-00012 (rel. Aug. 30, 2001) (the “Order”); see also FCC Space Station Approval List (available at https://www.fcc.gov/approved-space-station-list).
    [Show full text]