<<

FENOC 76 South Main Street Fi/rstEn Akron. 44308

SamuelL. Belcher Senior Vice President and Chief Operating Officer

September11,2013 L-13-245 10cFR 50.54(f)

ATTN: DocumentControl Desk U.S.Nuclear Regulatory Commission 11555 Rockville Pike Rockville,MD 20852

SUBJECT. BeaverValley Power Station, Unit Nos. 1 and2 DocketNo. 50-334, License No. DPR-66 DocketNo. 50-412, License No. NPF-73 Davis-BesseNuclear Power Station DocketNo. 50-346, License No. NPF-3 PerryNuclear Power Plant DocketNo. 50-440, License No. NPF-58 FirstEnergyNuclear Operatinq Companv (FENOC) Response to NRCRequest for InformationPursuant to 10CFR 50.54(fl Reqarding_the Seismic Aspects of Recommendation2.1 of the Near-TermTask Force (NTTF) Review of Insiqhtsfrom the FukushimaDai-ichi Accident - 1.5Year Response for CEUS Sites

On March12,2012, the Nuclear Regulatory Commission (NRC) issued a fettertitled, "Requestfor InformationPursuant to Title10 of the Codeof FederalRegulations 50.54(f)Regarding Recommendations 2.1, 2.3, and 9.3 of the Near-TermTask Force Reviewof Insightsfrom the FukushimaDai-ichi Accident," to all powerreactor licensees andholders of constructionpermits in activeor deferredstatus. Enclosure 1 of the 10 CFR50.54(0 letter contains a requestfor each addressee in the Centraland Eastern UnitedStates (CEUS) to submita writtenresponse consistent with the requested seismichazard evatuation information (items 1 through7) within 1.5 years of thedate of the 10CFR 50.54(0 letter (by September 12,2013). By letterdated February 15,2013, the NRCendorsed the Electrical Power Research Institute (EPRI) Report 1025287, SersmicEvaluation Guidance: Screening, Prioritization and lmplementationDetails (SPID)for the Resolutionof FukushimaNear-Term Task Force Recommendation 2.1: Seismic,dated November 2012 (hereafter referred to asthe SPID report) Section 4 of theSPID report identifies the detailed information to be included in the seismic hazard evaluationsubmittals BeaverValley Power Station, Unit Nos. 1 and2 Davis-BesseNuclear Power Station PerryNuclear Power Plant L-13-245 Page2

By letterdated April 9, 2013,the NuclearEnergy Institute (NEl) submitted to theNRC a proposedpath fonruard for NTTFRecommendation 2.1: SeismicReevaluations that requestedNRC agreement to delaysubmittal of someof the CEUSseismic hazard evaluationinformation so thatan updateto the EPRI(2004, 2006) ground motion attenuationmodel could be completedand used to developthat information. NEI proposedthat descriptions of subsurfacematerials and properties and base case velocityprofiles (items 3a and3b in Section4 of the SPIDreport) be submittedto the NRCby September12, 2013, with the remainingseismic hazard and screening informationsubmitted to the NRCby March31 ,2014. By letterdated May 7 ,2013, the NRCagreed with this recommendation.

Theenclosures to thisletter contain the requesteddescriptions of subsurfacematerials andproperties and base case velocity profiles for BeaverValley Power Station (BVPS) UnitNo. 1, BVPSUnit No. 2, Davis-BesseNuclear Power Station (DBNPS), and Perry NuclearPower Plant (PNPP) as EnclosuresA, B, C, andD, respectively.

Thereare no regulatorycommitments contained in thisletter. lf thereare any questions or if additionalinformation is required,please contact Mr. Thomas A. Lentz,Manager - FleetLicensing, at 330-315-6810.

I declareundel penalty of perjurythat the foregoing is trueand correct. Executed on SeptemOerll ,2013.

Respectfully,

SamuelL. Belcher

Enclosures A SiteDescription for BeaverValley Power Station Unit 1 Near-TermTask Force Recommendation2.1 PartialSubmittal Beaver Valley Power Station Unit 1 SiteDescription for BeaverValley Power Station Unit 2 Near-TermTask Force Recommendation2.1 Partial Submital Beaver Valley Power Station Unit 2 SiteDescription for Davis-BesseNuclear Power Station Near-Term Task Force Recommendation2.1 Partial Submittal Davis-Besse Nuclear Power Station SiteDescription for PerryNuclear Power Plant Near-Term Task Force Recommendation2.lPartial Submittal Perry Nuclear Power Plant BeaverValley Power Station, Unit Nos. 1 and2 Davis-BesseNuclear Power Station PerryNuclear Power Plant L-13-245 Page3

Director,Office of NuclearReactor Regulation (NRR) NRCRegion I Administrator NRCRegion lll Administrator NRCResident Inspector (BVPS) NRCResident Inspector (DBNPS) NRCResident Inspector (PNPP) NRRProject Manager (BVPS) NRRProject Manager (DBNPS) NRRProject Manager (PNPP) DirectorBRP/DEP SiteBRP/DEP Representative UtilityRadiological Safety Board EnclosureA L-13-245

SiteDescription for BeaverValley Power Station Unit 1 Near-TermTask Force Recommendation 2.1 PartialSubmittal BeaverValley Power Station Unit 1 (28pages follow) ABSConsulting 2734294-R-015 Revision2

SiteDescri ption for BeaverValley Power Station Unit 1 Near-TermTask Force Recommendation2.1 Partial SubmittalBeaver Valley Power StationUnit 1

September9,2013

Preparedfor: FirstEnergyNuclear Operating Gompany

ABSGConsulting lnc. . 300Commerce Drive, Suite 200 . lrvine,California 92602 2734294-R-015 Reuision2 September9,201.3 Page2 of 28

SITE DESCRIPTION FORBEAVERVALLEY POWERSTATION UNIT 1

NTTF RECOMMENDATION 2.1PARTIAL SUBMITTAL BEAVERVALLEY POWBRSTATION UNIT 1

ABSG CONSULTING INC. REPoRTNO. 2734294-R-015 R'IZZO Rnponr No. R9 12-4735 RnvrsroN2 SnprnnnBnR9,2013

ABSG CottsuLTINc INC. P^q.uLC.Rrzzo AssocIATES,INC.

AESGonsulting S:U-ocal\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R29?34294-R-015, Rev 2 2013 09 09 BVI Site Description docx rCR 2734294-R-01.5 Reaision2 September9,201.3 Page3 of 28

APPROVALS

Report Name: SiteDescription for BeaverValley PowerStation Unit 1 NTTF 2.1 PartialSubmittal BeaverValley PowerStation Unit I

Date: September9, 2013

Revision No.: 2

Approval by the responsiblemanager signifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 9t0912013 Nish Vaidya,Ph.D., P. Date

Independent Technical Reviewer: 9t09t20r3 HatipogluPh.D. Date ical Supervisor

Project Manager: NtB{^ Va; 910912013 Nish Vaidya,Ph.D., P. Date

Approver: 9109120t3 ThomasR. Roche,P.E. Date Vice President

AEsGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR 2734294-R-015 Reaision2 September9,2013 Page4 of 28

CHANGE MANAGEMENT RECORI)

Report Name: SiteDescription for BeaverValley PowerStation Unit I NTTF 2.1 PartialSubmittal BeaverVallev PowerStation Unit I

Pnnson Rnvrsrou DnscnrprroNsoF D,q,rn AUTTTORIZING AppRov,q.Ll No. Cu,lxcns/AnnpcrEDP,q.cns CH,l,Ncn 0 Ausust12,2013 OrieinalIssue N/A N/A AddressedLicensing Comments I September6,2013 NRV NRV Primarilv Editorial 2 September9. 2013 Additional Licensins Comments NRV NRV

Note: t Personauthorizing changeshall sign here for the latestrevision.

rBsConsultlng S:\Local\Pubs\2734294FENOCBeaverValley\3,lQReportFile\R-015\R2\2734294-R-0l5,Rev2201309098V1 SiteDescription,docx rCR 2734294-R-015 Reaision2 September9,201.3 Page5 of 28

TABLE OF CONTENTS

PAGE LISTOF TABLES ...... 6 LrsToF FTGURES ...... 7

LISTOF ACRONYMS .....8 1.0 TNTRODUCTION ...... 9 l.l SouncESoF INFoRMATToN ...... 9 2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES (ITEM3.A) ...... 11 2.1 SnBSrneucRAPHY ....1I 2.2 SuesunpAcEMATERIALS AND PnoppnrtEs ...... 15 3.0 SITESHEAR WAVE VELOCITYPROFILE AND NONLINEAR MATERIALPROPERTIES (ITBM 3.8) ...... 17 3.1 BnsrsFoR BASE CASE Vpt-octrv PnonllEs ...... 17 3.2 V, PRopTLESusED rN BVPS-I SPRA ...... 21 3.3 NoN-Ltuean MerpRtel CunnncrERlsTtcsUspn n''l BVPS-l SPRA...... 22 4.0 REFERENCES .....27

AESGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 I Q Report File\R-0| 5\R29734294-R-015, Rev 2 2013 09 09 BVI Site Description,docx rCR 2734294-R-01s Reaision2 September9,201.3 Page6 of28

LIST OF TABLES

TABLE NO. TITLE PAGE

TABLE I SUBSURFACESTRATIGRAPHY AND UNITTHICKNESSES ...... 13 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES...... 16 TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES...... I 6 TABLE 4 GEOTECHNICALPROFILE, BVPS-I SITE...... I9 TABLE 5 STRAIN.DEPENDENTPROPERTIES FOR SOII.OVERBURDEN ...... 23

fESGonsultlng S:\Local\Fubs\2734294FENOC Beaver Valley\3,|Q Report File\R-O|5\R2\2734294-R-015, Rev 2 201309 09 BVI SiteDescription docx f{]R 2734294-R-0L5 Reaision2 September9,20L3 Page7 of 28

LIST OF FIGURES

FIGURE NO. TITLE PAGB

FIGURE I STRATIGRAPHICCOLUMN UNDERLYING THEBVPS SITE ...... 12 FIGURE2 WELLSUSED TO OBTAIN DEEPROCK STRATIGRAPHY..IS FIGURE3 VS PROFILES,BVPS1 SITE...... 22 FIGURE4 SHEARMODULUS AND DAMPING. STRUCTURAL BACKFILL...... 24 FIGURE5 SHEARMODULUS AND DAMPING,TERRACE (20-s0FT DEPTH) ...... 2s FIGURE6 SHEARMODULUS AND DAMPING,TERRACE (s1-r20FT DEPTH) ....26

AESConsulting S:\Local\Pubsg7342g4FENOCBeaverValley\3lQRepoftFile\R-O|5\R29734294-R-0l5,Rev 220ll0gOgBVlSiteDescriptiondocx f{3R 2734294-R-01b Reaision2 September9,201.3 Page8 of 28

LIST OF ACRONYMS

ACRONYM TITLE COV Coefficient of Variation BVPS.I BeaverValley Power StationUnit I BVPS.2 BeaverValley Power StationUnit 2 DGB Diesel GeneratorBuilding EL Elevation in Feet EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra FSAR Final SafetyAnalysis Report ft Foot or Feet ft/s Feetper Second GMRS Ground Motion ResponseSpectra ksf Kips per SquareFoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force Pcf Poundsper cubic foot RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilistic Risk Analysis SPT StandardPenetration Test tsf Tons per SquareFoot vp Pressure-WaveVelocity v, Shear-WaveVelocity w.T. Water table

Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 I Q Report File\R-0 | 5\R29734294-R-0 | 5, Rev 2 2013 09 09 BV I Site Description,docx rCR 2734294-R-0Ls Reaision2 September9,201.3 Page9 of 28

SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 1

NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL BBAVER VALLEY POWER STATION UNIT 1

1.0 INTRODUCTION

With referenceto United StatesNuclear RegulatoryCommission (NRC) Letter datedMay 7, 2013,(NRC, 2013)this Document summarizesthe site geologic and geotechnicalinformation, and presentsthe basecase velocity profiles for the BeaverValley Power StationUnit I (BVPS-1) site. This informationaddresses Items 3.a."Description of SubsurfaceMaterials and Properties,"and 3.b.,"Development of BaseCase Profiles andNonlinear Material Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismichazard development efforts. The completeand final seismichazard reports for BVPS-I will be provided to the NRC in our seismichazardsubmittals by March 31,2014 in accordancewith (NRC,2013).

The basecase velocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazard at outcroppinghard rock at depth through the overlying site specific soilirock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vr) equal to or greaterthan 9,200 ftls. The site responseanalysis obtains the amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motion responsespectrum (GMRS) at the control point elevationwhere the safe shutdownearthquake (SSE) ground motion is applied.

1.1 Souncns oF INnonnaATroN

l. BeaverValley Power StationUnit I UpdatedFinal SafetyAnalysis Report,Revision 27; DocketNo. 50-334,Section2.4 Geology,2.5 Seismology; Section, 2.6 Soil Mechanics, 2.7 SiteDesign Data, and Appendix 28, AppendixZD, AppendixZE, Appendix2F, Appendix2G and 2H.

Gonsulting S:\IocalWubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 20ll 09 09 BVI Site Description docx rCR 2734294-R-015 Reaision2 September9,20L3 PageL0 of28

2. BeaverValley PowerStation Unit 2 UpdatedFinal SafetyAnalysis Report, Revision 20; DocketNo. 50-412,Section2.S, Geology, Seismology, and Geotechnical Engineering, andAppendix 2.58 through2.58.

3. BeaverValley PowerStation Unit 2 UpdatedFinal SafetyAnalysis Report, Revision 20; DocketNo.50-412, Section 3.7 - SeismicDesign and Section 3.8 - Designof Seismic CategoryI Structures.

4. PennsylvaniaGeological Survey - Well Logs.

rESGonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2V734294-R-015,Rcv 2 2013 09 09 BVI Site Description docx rCR 2734294-R-01.5 Reaision2 September9,201.3 Page1,1 of 28

2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES(Item 3.a)

The BVPS-I is locatedin ShippingportBorough on the southbank of the Ohio River in Beaver County. The Ohio River Valley is an erosional,flat-bottomed, steep-walled valley. The bedrock of Pennsylvanianage is a sequenceof flat-lying shaleand sandstoneoccasionally inter-bedded with coal seams. It is overlain by about 100 feet (ft) thick alluvial granularterraces formed during the Pleistoceneperiod. Plantgrade is elevation(EL) 735 ft andthe top of bedrockis at approximateEL 625 ft.

2.1 Strn Srnr.rIcRAPHY

The terracedeposits in the site areaare characterizedby three levels: high, intermediate,and low. The low terraceis the most recent,where the upper alluvial depositis composedof brown silty clay approximately20 to 30 ft thick. The intermediateterrace consists of medium clays extendingto about EL 660 ft. The oldest,high terraceis the most abundantdeposit at the plant location.

The site stratigraphypresented here is basedin part on site-specificgeotechnical investigations reportedin the Updated SafetyAnalysis Report (USAR) (Section2.6.2 and Appendix 2E). Thirty-five dry sampleborings at the ShippingportPower Stationwere supplementedby 30 additional borings at the Beaver Valley Power Station. Theseincluded l0 dry sampleborings on the high terrace,and the remainingborings locatedin the intermediateand low terrace materials. All borings penetratedapproximately 20 ft into bedrock. The geologic profile below the reportedsubsurface investigation depth is basedon the analysisof formation tops and bottoms from availabledeep well logs in the vicinity of the site (within about 7 miles), obtained from the PennsylvaniaGeological Survey. This is supplementedby information from West and Ohio GeologicalSurveys, as well asthe USAR.

Figure 1 presentsthe stratigraphicsoil/rock column underlying the site, andTable I presentsthe stratigraphyextending to the ,identifying unit thicknessas estimatedfrom the subsurfaceinvestigations reported in the USAR and availablewell logs in the site vicinity. Due

fBSConsulting

S:U-ocal\PubsV734294FENOC Beaver ValleyU I Q Report File\R-O| 5W\2734294-R-0 | 5, Rev 2 2013 09 09 BV I Site Description docx 2734294-R-01.5 Reaision2 September9,2013 Page12 of 28 to the relative proximity of the deepwells to the site, the unit and thicknessescan be reliably assumedto be very similar to thosebelow the site.

kgend Perird

(l) Pleistocene:Pleistocene: upper tenace:unconsolidated sand and I la, c.l o gravelwith varyingamountsof clay and silt. Lower terrace:30-40'of silt I a9 @ andclay with sandand gravel overlying gravels (2) Allegheny:M iddlePennsylvanian Allegheny Group: gray shalewith ).tr oGt interbeddedsandstones, coal seams, underclays and a limestonebed (3) q.) Postville: Lower Pottsville Group: and conqlomerate (4) M auchchunk: Upper M ississippianM auchChunk Formation:red shalewith sandstone 2(E (5).Pocono: Lower Pocono Croup: sandstone and fr conqlomeratew/

FrA (6) :Upper Devonianundivided: interbeddedShale, q.) sandstoneand siltstone.(Equivalent to the Ohio Shale)

(7) Tulty: MiddleDevonian Tully ilt (8) Mahantango: Middle Mahantango shale z; (9) Marcellus:Middle DevonianMarcellus Shale C) o (10). Onondaga: M iddle Devonian Onondaga Group (Eqv to Needmore I shale/ Selinsgrove Limestone ): and dolomites

(l I). Ridgeley:Lower DevonianRidgeley (Oriskany) sandstone

q.) ( l 2). Helderberg:Lower DevonianHelderberg Formation: ffia o J imestone/qhele (13).Bass lsland: Upper SilurianBass lsland Group: and limestone rT.| (14). Salina:Upper SilurianSalina Croup/: ;+: dolomiteand limestone v) (15). Wellscreek: Upper SilurianWells Creek Formation: shale with SS and LS (16). Lockport: Middle ( | 7). Rochester:M iddleSilurian ++\

(2 l). Reedsville:Upper OrdovicianReedsville Shale

22). Urica,:M iddleOrdovician () :t 23). Middle OrdovicianTrenton Group (BlackRiver Fm.): Limestone EB (2a).M iddleOrdovician Gull Riverand Clenwood Formations: i Limestoneand dolomite 25).Lower : Dolomite

(26). Upper Gatesburg Formation: Dolomite and dolomitic sandstone .o 27). M iddle Cambrian : Dolomite I U 28). Lower CambrianMt SimonFormation: Sandstone Q H q,) 29) Precambrian Granite

FIGURE 1 STRATIGRAPHICCOLUMN UNDBRLYING THE BVPSSITE

tBs Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15W9714294-R-015, Rev 2 20ll 09 09 BVI Site Description docx rCR 2734294-R-01,5 Reuision2 September9,2013 Page13 of 28

The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regional and Local Geology discussedin Section2.4 andAppendix 28 of the USAR.

TABLE 1 SUBSURFACESTRATIGRAPHY AND UNIT THICKNESSBS AT THE BVPSSITE

Top Borrorvr Top Borronn EL EL LrrHolocv Dnprn DnprH (ft) (fr) (fr) (fo Pleistocene:upper terrace: Unconsolidatedsand and gravel with varying amountsof clay and 735 625 0 ll0 silt. Lower terrace: 30 to 40 ft of silt and clay with sandand gravel overlvins sravels Middle PennsylvanianAllegheny Group: gray shalewith interbedded 625 550 ll0 185 ,coal seams,underclays, and a limestonebed Lower PennsylvanianPottsville 5s0 350 Group: sandstoneand 185 385 conglomerate UpperMississippian Mauch Chunk 3s0 300 Formation: red shalewith 385 435 sandstone Lower MississippianPocono 300 -120 Group: sandstoneand 435 855 conslomeratew/ shale UpperDevonian undivided: -r20 -3,700 interbeddedshale. sandstone and 855 4,435 siltstone. -3,700 -3,820 Middle DevonianTullv Limestone 4,435 4,555 Middle DevonianMahantango -3,820 -3,900 4,555 4,635 Shale -3.900 -3.935 Middle DevonianMarcellus Shale 4,635 4,670 Middle DevonianOnondaga Group -3,935 -4,150 4,610 4,885 Shale/SelinssroveLimestone Lower DevonianRidgeley -4,150 -4,250 4,885 4,985 (Oriskanv)Sandstone Lower DevonianHelderberg -4,250 -4,450 4,995 5,185 Formation: limestone/shale

Gonsulting S;\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR 2734294-R-015 Reaision2 September9,2013 Page1.4 of 28

TABLE T SUBSURFACBSTRATIGRAPHY AND UNIT THICKNESSES AT THE BVPSSITE (coNTTNUED)

Top Borrou Top Borrona EL EL LrrHolocv Dnpru Dnprn (fo (fo (ft) (fo UpperSilurian Bass Island Group: -4,450 -4,540 5,185 5,275 dolomiteand limestone UpperSilurian Salina -4,540 -5,330 Group/Tono loway Formation : 5,215 6,065 dolomiteand limestone UpperSilurian Wells Creek -5,330 -5,550 Formation:shale with sandstone 6,065 6,285 andlimestone -5.550 -5.900 MiddleSilur an Lockport Dolomite 6,285 6.635 -5,900 ,5,980 MiddleSilur an RochesterShale 6,635 6,715 Middle SilurianRose Hill -5,980 -6,170 6,715 6,905 Formation: shalewith sandstone Lower SilurianTuscarora -6,170 -6,390 Formation: sandstonewith 6,905 7,125 conslomerate UpperOrdovician Queenston -6,390 -7,455 Formation: shale.siltstone. and 7,125 8,190 sandstone -7"455 -8.265 UnnerOrdovician Reedsville Shale 8.190 9.000 -8,265 -8,565 M ddleOrdovician Utica Shale 9,000 9.300 Middle OrdovicianTrenton Group -8,565 -9,305 9,300 10,040 (Black River Fm.):limestone Middle OrdovicianGull River and -9,305 -9,455 GlenwoodFormations: limestone 10,040 10,190 anddolomite Lower OrdovicianBeekmantown -9,455 -9,645 10,190 10,380 Groun: dolomite Upper CambrianGatesburg -9,645 -9,995 Formation:dolomite and dolomitic 10,380 10,730 sandstone Middle CambrianRome Formation: -9,995 -10,695 10,730 11,430 dolomite Lower CambrianMt. Simon -10,695 -10,865 I1,430 I I,600 Formation: sandstone -10"865 PrecambrianGranite I1,600

ABSConsulting S:\LocalWubsVT342g4FENOCBeaverValley\3lQReportFile\R-015\R2\2734294-R-0l5,Rev 220l30g0gBVlSiteDescription,docx 2734294-R-01.5 Reuision2 September9,201.3 Page15 of 28

2.2 SunsunFACEMnrnRrALS AND PRopnRrrBs

The terracematerials in the plant area(high terracedeposits) consist of unconsolidatedand stratified sandand gravel outwashderived from the melting of glacial ice at the end of Pleistocenetime. The surfacesand and gravel layer is underlainby relatively denseand incompressiblesand and gravel extendingdown to bedrock at approximatelyEL 625. Major structuresof the plant are founded in the high terracesands and gravel either directly or on compactedbackfill. Thin depositsof mud, silt, and sanddeposited by flood water on the Ohio River and tributary streamsoverlay the terracesands and gravel.

Bedrock directly beneaththe site is composedof shaleof the Middle PennsylvanianAllegheny Group. This unit is characterizedbycyclic sequencesof sandstonesand shalesinterbedded with severalcoal seamsand occasionalthin limestonebeds. The thicknessof this unit underlying the site is approximately75 ftbelow the Allegheny Group is the Lower PennsylvanianPottsville Group sandstoneand conglomeratewith minor shalebeds, and minable coal beds. This formation is between 120 and 230 ft thick in the site area.

The subsurfacematerials properties summarized here are basedon the geotechnical investigationsdescribed in the USAR. The borings in the intermediateand low terracematerials retrievedundisturbed samples of surfaceclays and silts for physical testing. However, no sampleswere obtainedin the high terracematerials. The propertiesfor this material are basedon StandardPenetration Test (SPT) blow countsand in-situ geophysicalmeasurements. Properties of the bedrock material are basedon both laboratorytests and in-situ geophysicalmeasurements.

The remaining subsurfacestratigraphic materials underlying the bedrock are characterizedby various sedimentarysequences of the Mississippian,Devonian, Silurian, Ordovician and Precambrianages, consisting of ,interbedded sandstones, siltstones and dolomites and limestone,overlying the Precambrianbasement at a depth of approximately I 1,000ft. Their propertiesare estimatedfrom the sonic data obtainedfrom deep wells.

Tables2 and 3 summarizethe physical and mechanicalproperties of the overburdensoils and the bedrockmaterial.

fESGonsulting S:V-ocalWubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15\R2\2734294-R-015,Rev 22013 09 09 BVI Site Description,docx 2734294-R-015 Reaision2 September9,20L3 PageL6 of 28

TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES

Tgrcxnnss DnxsrrY SPT Rncovnnv(%) MarnRr.Lr, Rnncn (ft) (pcf) (blow/ft) R.lNcn AVERAGE Upper TerraceMaterial Silw CoarseSand 0 to l0 t20-125 l0-16 CoarseSand & Gravel 16to 20 t20-125 r6-20 Medium Sand& Gravel (aboveW.T.) 20 to 50 120-125 20-s0 Sand& Gravel (below W.T.) 25to 50 I 30-140 20-50 ShaleBedrock 60.0to 80.0 155-165 50-100 98

Ref. USAR Section2.6.1 andTable 2.6-2 SPT: StandardPenetration Test pcf: poundper cubic foot W.T. : Water Table

TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES

MnasuREDVELocrrY (ftls) trl (t) Mouur,us (ksq Dnupnc Potssotrt's MarnRt,u, (z) f,,a11g COupnnSSIoN Ssnnn ConapnnssroNSunan (%l Upper TerraceMaterial (4) SilW CoarseSand r000- r s00 550- 850 1440 2.0- 3.0 0.4 CoarseSand & Gravel 2000 600- 900 2448 2.0- 3.0 0.4 Medium Sand& Gravel 2000 950- 1200 4752 2.0-3.0 0.28 (aboveW.T.) Sand& Gravel (below W.T.) 6000 1050- 1250 6192 2.0-3.0 0.48 ShaleBedrock 12000 5000 125x 103 1.0- 2.0 0.39 l. Basedon BVPS-l USAR Appendix2D and2G (Refraction,cross-hole and down-hole) 2. Poisson'sratio and Gmax are calculatedby following formula: v : [(vp/vs)2- 2] I lz(vptvs)2- 2l Gmax : pVs2 ). Recommendedvariability in soil is basedon SPT-Vscorrelations (COV :25 percent).An averageCOV of 20 percent is assumedfor soil and bedrock.A COV of 0.1 I is assumedfor deeperrock units basedon the information from deep wells. 4. Compressionmodulus not reported.

ABSConsulting S.tJ-ocal\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 20ll 09 09 BVI Site Description docx rCR 2734294-R-01.b Reaision2 September9,2073 PageL7 of 28

3.0 SITE SHEAR WAVE VBLOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribes the basisfor the velocity profiles usedin the site responseanalysis to obtain the site ground motion responsespectra (GMRS) and foundation input responsespectra (FIRS). The developmentof the velocity profiles is describedin F.IZZO Report "Probabilistic Seismic HazardAnalysis and Ground Motion ResponseSpectra, Beaver Valley NPP, Seismic PRA Project," (P.IZZO, 2013). The GMRS/FIRS are subsequentlyused in the building seismic analysisin supportof the ongoing seismicprobabilistic risk assessment(SPRA).

3.1 B,r,sIsFoR Bmn Clsn Vnlocrry PRoFTLES

The shearand compressionwave velocitiesof the overburdensoils and the shalebedrock are basedon the subsurfaceinvestigations reported in the USAR, particularly Appendix 2G. Appendix 2G summarizesthe geophysicalinvestigations consisting of cross-hole,up-hole, and down-hole measurementsin five drill holes locatedin the reactorarea. P and S wave velocities were measuredfrom direct arrival times. A limited amount of seismicrefraction survey investigationwas also performedto verify the elevationof bedrock,and to determinevelocity layering.

Variabilities in the shearwave velocities of the bedrock material and the overburdensoil are estimatedrespectively, from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestrata relies on sonic logs recordedin the wells in the site vicinity (within 7 miles). Figure 2 presentsthe location of wells utilized here to obtain the stratigraphyas well as the sonic data.

The sonicdata were convertedto P-wavevelocities (Vp) and S-wavevelocities (V') basedon publishedliterature (Pickett, 1963;Rafavich, 1984; Miller, 1990;and Castagna,l993)reflecting the materialtype (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent, the lithology. Additionally, basedon publishedliterature, Vpff, ratiosof 1.7

AESConsulting S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-O15\R2V734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR 273429+R-015 Reaision2 September9,2073 PageL8 of 28

and2.1 were usedto obtain a coefficient of variation (COV) of about 0. I I representingthe variabilities for the S-wavevelocities.

FIGURE 2 WELLS USED TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVE VELOCITIES

Varying unit thicknesses,incomplete well logs, and non-standardlithologic descriptionspresent somechallenges to reliably estimatingcontact locations. However, the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relativelv similar and consistentfrom well to well for similar depths.

Most major structuresof the BVPS-I are founded in the upper terracesand and gravel layers. The ReactorBuilding is supportedon in-situ soils at EL 681. Other structuresare supportedon

fESConsulting S:U-ocal\PubsVTS4294FENOCBeaverValley\3IQReportFile\R-015\R2U734294-R-0l5,Rev 2201309098V1 SiteDescriptiondocx 2734294-R-015 Reaision2 September9,2013 Page19 of 28 compactedbackfill placedon the terracesand and gravel at foundation elevationsvarying betweenEL 703 for the Control Building to about EL 735 for the Diesel GeneratorBuilding. Basedon the FSAR descriptionof the seismicanalysis, the controlpoint elevationfor SSEis takento be the RB foundationlevel (EL 681).

Table y' presentsthe geotechnicalprofile extendingfrom the Precambrianbasement to the plant grade. It identifies the layer thicknesses,shear and compressionwave velocities,and the uncertaintiesin theseparameters.

TABLE 4 GEOTECHNICAL PROFILE, BVPS.I SITE

Elnvarronr Topon Vs" MarnRrA|, Ttotal v Dnposrr (pcf) (ftls) (ft) Plant Grade (Surface EL 73s) 0 73s StructuralFily Naturaland DensifiedSoil 136 730+183" 0.35 0 720 StructuralFill/ Naturaland DensifiedSoil 136 1015+254b 0.35 o 680.9 PleistoceneUpper and Lower Terrace( I d) 125 I 100+275" 0.29 680.9 GMRS EL - SSE Control Pt. Nuclear Island Foundation Level 66s Ground Wa er Level 665 PleistoceneUpper and Lower Terrace( 1e) t36 I 200+300" 0.48" 0 625 M. PennsvlvanianAlleehenv Shale (2) 160 5000+1000 0.39" L. PennsylvanianPoffsville SS, 550" r60 6,026 0.30 conglomerate(3) 350 U. MississippianMauch Chunk Shale (4) 155 6,744 0.30 L. MississippianPocono Sandstone 300 155 6,744 0.30 conglomerate(5) -120 U. DevonianInterbedded Shale, 155 l,l12 0.30 -2,994 Sandstone,Siltstone (6) 155 6,416 0.30 -3,700 M. Devonan Tully Limestone(7) r68 9,856 0.30 -3,920 M. Devonan MahantansoShale (8) t57 9,856 0.30 -3,900 M. Devonan MarcellusShale (9) 151 9.856 0.30 -3,935 M. DevonianOnondaga Limestone, r70 9,856 0.30 Dolomite(10) -4.150 L. DevonianRidselev Sandstone ( I I 160 9.856 0.30 Shale -4,250 L. DevonianHelderberg Limestone, 9,856 0.30 (12\ t70 U. SilurianBass Island Dolomite, -4,450 t70 8,352 0.30 Limestone(13) -4.540 U. SilurianSalina Dolomite, Limestone 170 8,352 0.30 -5,034 (14) t70 9,547 0.30

AESConsulting S:\Local\Pubs9T34294FENOCBeaverValley\3lQReportFile\R-015\R2\2714294-R-0l5,Rev 220l30909BVlSiteDescriptiondocx rCR 2734294-R-075 Reaision2 September9,2073 Page20 of 28

Elnvnuon Topon Vs" MnreRr,u, Ttotut v Dnposrr (pcf) (ftls) (fo -5.330 U. SilurianWells Creek Shale (15) 163 r1.534 0.30 -5,550 M. SilurianLockport Dolomite ( l6) 170 9,015 0.30 -5.900 M. SilurianRochester Shale (17) 163 9.015 0.30 -5,980 M. SilurianRose Hill Shale( l8) 163 9.015 0.30 -6,170 L. SilurianTuscarora Sandstone ( l9) r63 8,588 0.30 -6,390 U. OrdovicianQueenston Shale, Siltstone, 163 8,588 0.30 -7.123 Sandstone(20) 163 7.835 0.30 -7.455 U. OrdovicianReedsville Shale (Zla & 163 7835 0.30 -7,699 2lb) 163 6834 0.30 -8.265 M. OrdovicianUtica Shale(22) 163 6834 0.30 -8,565 M. OrdovicianTrenton Limestone (23) t75 10.520 0.30 M. OrdovicianGull RiverLimestone. -9,305 175 10,520 0.30 Dolomite (24) -9,455 L. OrdovicianBeekmantown Dolomite (2s) ll5 10,520 0.30 U. CambrianGatesburg Dolomite -9,645 170 10,520 0.30 Sandstone(26') -9,995 M. CambrianRome Dolomite Q7) r75 10.520 0.30 -10.695 L. Cambran Mt. SimonSandstone (28) t70 10,520 0.30 -10.865 Precambran Granite(29\ t75 10.520 0.30

Notes: u Variability in Vs of soil is basedon SPT-V, correlations(COV:25 percent). COV is assumed20 percentas averageof soil and rock for the rock at the top and for deeperrock units COV : I I percentis assumedbased on the information from deepwells. Appendix2D,2G and2H of the BVPS-I USAR From this elevationdown, soil parametersare estimates from sonicvelocities of deepwells exceptunit weight. Unit weights are typical valuesfrom the literature. Poisson'sratio is calculatedby following formula:

v: [ (Vp/Vs)2- 2 ! / l2(vplvs)2 - z ]

fB$Gonsulting S:\Local\Pubs\2734294FENOCBeaverValley\3lQReportFile\R-O15\R2\2734294-R-0l5,Rev 220l30909BVlSiteDescriptiondocx 273429+R-01,5 Reuision2 September9,20L3 Page2L of 28

3.2 V, PnonrLESusED rN BVPS-I SPRA

In supportof the SPRA project, severalfoundation input responsespectra (FIRS) are developed at foundationelevations varying from the intake structuresat EL 637 to the DGB at EL 729. Theseare basedon truncatedsoil profiles at respectivefoundation levels obtainedfrom the full soil column site responseanalysis.

The site responseanalysis performed as part of the BVPS- I SPRA usesone BaseCase profile, basedon the best estimateinformation in Table 4. However, the analysisrepresents possible aleatoryvariability in the shearwave velocity profile by using 60 randomizedV5 profiles based on the parameterspresented in Table 4. The random profile realizationsare obtained using the stochasticmodel developedby Toro (1996), and assumefull correlationbetween the shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceouslimestone (M. Devonian Tully Limestone).

The use of one BaseCase profile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well characterizedby a number of in-situ velocity measurements,and dynamic laboratorytests, and the reportedboring logs do not indicate significant variability in layer thicknessesand depths. Figure 3 presentsthe best estimaterepresenting the BaseCase velocity profile, and the upper and lower boundsrepresented by 60 randomizedprofiles utilized in the SPRA site response analvsis.

ABSGonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O|5\R2V734294-R-015, Rev 2 2013 09 09 BVI Site Description docx rCR 2734294-R-015 Reaision2 September9,20L3 Page22 of 28

Vs (fUsec) 4000 6000

500

1000

1500

2000

Ea- 2soo o o 3000

Upper-Bound Lower-Bound -Best Estimate 5000

FIGURE 3 Vs PROFILES'BVPS-I SITB

3.3 NoN-LInn,rn M.trnnrAL CHARACTERIsTICS Uspu IN BVPS-I SPRA

The site responseanalysis performed as part of the BVPS-l SPRA representsnon-linear material propertiesby utilizingshear modulus degradationand material damping as functions of the seismicshear strain. Strain dependentdynamic parameterfor the overburdensoils are reported in Appendix 2D, Figure 2D-3 of BVPS-I USAR, and Figure2.5.4-71 of the BVPS-2 USAR.

AESGonsultlng S:\Iocal\,Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15W\2734294-R-015, Rev 2 20t3 09 09 BVI Site Description docx 2734294-R-015 Reuision2 September9, 2073 Page23 of 28

Table 5 and Figures 4 through 6 presentthe strain dependentstiffness and damping properties of the backfill material and the in-situ overburdensoils. The material-dampingratio is limitedto a maximum of l5 percentin the calculationsfollowing guidancein NRC Regulatory Guide 1.208. The underlying bedrock material is assumedto behavelinearly and the damping ratio for the hard rock half spaceis assumedto be 1.0 percent.

The variability in the dynamic propertiesis propagatedin the site responseanalysis by selecting from 60 setsof randomizedproperty curves shown on Figure 4 through 6. Each of the 60 randomizedVs prof,rles,representing the aleatoryuncertainties, is paired with one combinationof the randomizednonlinear dynamic property curvesfor input to the site response analvsis.

TABLE 5 STRAIN-DEPENDENTPROPERTIES FOR SOIL OVERBURDEN

PLBTSTOCENEUPPNN AND PInTSTOCENEUPPNR AND SrnucruRAI, Bncrnlll Srn,q,tN LowBn TnRn-q,cn(1n) Lownn Tnnnacp (1n) (%) D,q,N,lplNc D,q,MptNc D,q,Mptxc (r) G/Gn'"* G/G,"* ("4) G/Grr* ehl (%l 0.0001 1.0000 t.490700 1.0000 1.256800 1.0000 t.017200 0.0003r 6 0.9968 r.57133 I 0.9977 1.267272 0.9982 1.048590 0.00100 0.9707 1.84200 0.9845 1.501200 0.9925 1.261900 0.0020 0.94r5 2.30495 0.9632 1.797676 0.9812 1.484852 0.00300 0.9123 2.767900 0.94t9 2.094t52 0.9699 r.707805 0.0050 0.8663 3.410786 0.9070 2.547755 0.9412 2.033219 0.0070 0.8216 4.05367r 0.8731 2.994024 0.91l9 2.352291 0.0100 0.7545 5.018000 0.8221 3.663427 0.8680 2.830900 0.0200 0.6419 7.00r r 36 0.7224 5.221978 0.7805 4.079881 0.0300 0.5292 8.984273 0.6227 6.793721 0.6929 s.328863 0.0500 0.4486 10.89077 0.5466 8.445937 0.6170 6.778340 0.0700 0.3772 t2.56841 0.4783 9.968471 0.5475 8.136644 0.1 0.2102 15.08487 0.3760 12.25229 0.4431 10.17410 0.2 0.1961 I 8.I 0599 0.2774 t5.29141 0.3399 12.95305 0.3 0.1228 2l .05091 0.I 789 18.33196 0.2353 15.73201 I 0.0392 26.s9868 0.0587 24.68220 0.0895 22.67120

(l) G/G,"* : shearmodulus (G) normalizedby the low-strainshear modulus (G.u*).

AESConsulting S:\Local\PubsgT342g4FENOCBeaverValley\3lQReportFile\R-015\R2\2734294-R-0l5,Rev 220ll0g0gBVlSiteDescriptiondocx rCR 2734294-R-01.5 Reaision2 September9,201.3 Page24 of 28

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.0001 0.001 0.01 Shearstrain (%)

20 18 16 14 s 12 Et C o. 10 E (! o I 6 4 2 0 0.0001 0.01

Shearstrain (%) FIGURB 4 SHEARMODULUS AND DAMPING, STRUCTURALBACKFILL G/G,nu*: shearmodulus (G) normalized by the low-strain shearmodulus (G.*).

Gonsulting S:\Local\PubsV734294FENOC Beaver Valley\3,IQ Report File\R-015W\2734294-R-015, Rev 2 2013 09 09 BVI Site Description,docx rCR 2734294-R-0L5 Reaision2 September9,20L3 Page25 of 28

1 0.9 0.8 0.7 0.6 x 6 ou Et (, 0.4 0.3 0.2 0.1 0 0. 0.01 Shearstrain (%)

20 18 16 s^14 :-12 tr 'a 10 E 88 6 4 2 0 0.0001 0.001 0.01

Shearstrain (%)

FIGURE 5 SHBARMODULUS AND DAMPING, TERRACE(20-50 FT DEPTH)

AE$Gonsulting S.\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2V734294-R-015, Rev 2 2013 09 09 BVI Site Description docx rc" 2734294-R-015 Reaision2 September9,20L3 Page26 of 28

1 0.9 0.8 0.7 0.6 x d E=ou (9 0.4 0.3 0.2 0.1 0 0. 0.01 Shearstrain (%)

20 18 16 14 E ED 12 tr CL 10 E o o I 6 4 2 0 0.0001 0.01

Shearstrain (%)

FIGURE 6 SHEAR MODULUS AND DAMPING, TERRACE(51-120 FT DEPTH)

AEgGottsulting S:\Local\Fubs\2734294FENOC Beaver Valley\3 I Q Repon File\R-0 | 5\R29734294-R-01 5, Rev 2 2013 09 09 BV I Site Description docx rCR 2734294-R-015 Reaision2 September9,201.3 Page27 of 28

4.0 REFERENCES

Castagna,J.P., and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity- Theory and Practiceof AVO Analysis, Castagna,J.P., Batzle, M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, pp.135-171.

EPRI, 1993,"Guidelines for Determining Design Basis Ground Motions," Electric Power ResearchInstitute, Palo Alto, CA, Rept.TR-102293, Vol. 1-5.

EPRI, 2013, "Seismic Evaluation Guidance,Screening, Prioritization and Implementation Details (SPID) for the Resolutionof FukushimaNear-Term Task Force Recommendation2.1 : Seismic,"February 2013.

FirstEnergyNuclear OperatingCompany (2012). "Final Report Geology and Geotechnical Information for Site Amplification CalculationsSeismic Probabilistic Risk AssessmentBeaver Valley PowerStation," Rev. 0, July 2,2012.

Goldthwait,R., G. White, and J. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey.

Hough,J.L., 1958,"Geology of the GreatLakes," University of Illinois Press,Urbana, IL.

Miller, S.L.M., and R.R. Steward,1990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocities from SonicLogs," CanadianJournal of ExplorationGeophysics, Volume26, Nos.| &,2, pp.94-103.

Norris, S.E., 1975,Geologic Structure of Near-SurfaceRocks in WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007, RegulatoryGuide 1.208,"A Perforrnance-BasedApproach to Define the Site- Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission, March 2007.

NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, 'Seismic Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation2.1: Seismic,'as an acceptableAlternative to the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatioil,"Journal of PetroleumTechnology, Volume 15,No. 6, pp. 659-667.

ABSConsulting S.\Local\Pubs9734294FENOC Beaver Valley\3 lQ ReportFile\R-Ol5\R2\2714294-R-015, Rev 2 201309 09 BVI SiteDescription docx fCR 2734294-R-01.b Reuision2 September9,20'l-3 Page28 of 28

Rafavich,F., C. St. C.H. Kendall,and T.P. Todd, 1984,"The Relationshipbetween Acoustic Propertiesand the PetrographicCharacter of CarbonateRocks," Geophysics, Volume 49,No. 10, pp. I 622-1636.

RIZZO,2013, "ProbabilisticSeismic Hazard Analysis and GroundMotion ResponseSpectra, BeaverValley NPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, May 23.2013.

Silva, W.J.,N.A. Abrahamson,G.R. Toro, and C. Costantino(1996), "Description and Validation of the StochasticGround Motion Model," Rept.submitted to BrookhavenNatl.Lab., Assoc.Universities Inc., Upton NY I 1973,Contract No. 770573.

FENOC, "Beaver Valley Power StationUnit I UpdatedFinal SafetyAnalysis Report," Revision27,Docket No. 50-334.

Toro, G. R. 1996"Probabilistic Models of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,Associated Universities, Inc. Upton, 11973,Contract No. 770573,Published as AppendixD in W.J. Silva, N. Abrahamson,G. Toro, and Costantino,1996.

Walling, M.A., W.J. Silva,and N.A. Abrahamson(2008). "Nonlinear SiteAmplification Factors for Constrainingthe NGA Models," EarthquakeSpectra, 24 (l) 243-255.

AB$Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 | Q Report File\R-015\R2\27-14294-R-01 5, Rev 2 2013 09 09 BV I Site Description docx r{oR EnclosureB L-13-245

SiteDescription for BeaverValley Power Station Unit 2 Near-TermTask Force Recommendation 2.1 PartialSubmittal BeaverValley Power Station Unit 2 (28 pagesfollow) ABSGonsulting 2734294-R-016 Revision2

Site Description for BeaverValley Power Station Unit 2 Near-TermTask Force Recommendation2.1 Partial SubmittalBeaver Valley Power StationUnit 2

September9,2013

Preparedfor: FirstEnergyNuclear Operating Gompany

ABSGConsulting lnc . 300Commerce Drive, Suite 200 . lrvine,California 92602 2734294-R-0L6 Reaision2 September9,20'1.3 Pase2 of 28

SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 2

NTTF RECOMMENDATION 2.I P ARTIAL SUBMITTAL BEAVERVALLEY POWERSTATION UNIT 2

ABSG CONSULTINGINC. REPoRTNo. 2734294-R-016 R'IZ,,ZORnponr No. R9 12-4736 REvrsroN2 SrprnuBER912013

ABSG CoUSULTINGINC. P,q,uLC.Rtzzo AssocIATEs, INC.

AFConsultlng S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-01.6 Reoision2 September9,20L3 Page3 of28

APPROVALS

Report Name: SiteDescription for BeaverValley PowerStation Unit 2 NTTF 2.1 PartialSubmittal BeaverValley PowerStation UnitZ

Date: September9,2013

RevisionNo.: 2

Approval by the responsiblemanager signifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 910912013 Nish Vai Date Principal

Independent Technical Reviewer: 910912013 BulpntFhtipoglu Ph.D. Date Technical Supervisor

Project Manager: 910912013 Nish Vaidya,Ph.D., P. Date Principal

Approver: 9/0912013 ThomasR. Roche,P.E. Date Vice President

fESGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-Ol6\R2V?34294-R-016, Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-01.6 Reaision2 September9,201.3 Pase4 of 28

CHANGE MANAGEMENT RECORI)

Report Name: SiteDescription for BeaverValley Power Station Unit 2 NTTF 2.1 PartialSubmittal BeaverVallev PowerStation Unit 2

PnnsoN RBvtstoll DnscnrprloNsoF l D,q,rn AuruonIzING AppRov,rt No. CHnrucns/ArrncrEDP,Lcns CH.q,Ncn 0 August12.2013 OrieinalSubmittal N/A N/A AddressedLicensing Comments I September6,2013 NRV NRV Primarilv Editorial 2 September"9 2013 Additional Licensins Comments NRV NRV

Note: I Personauthorizing change shall sign here for the latestrevision.

lBtGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-01b Reaision2 September9,20'13 Page5 of 28

TABLE OF CONTENTS

PAGE LISTOF TABLES ...... 6 LISTOF FIGURES ...... 7

LISTOF ACRONYMS ...... 8 1.0 INTRODUCTION .....9 1.1 SouncnsoF INFoRMAnoN .....9 2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES (ITEM 3.A) ...... 1I 2.1 Strp,SrnnrrcRApHy ...... 11 2.2 SuesuRrACEMATERIALS AND PnopEnuES ...... 15 3.0 SITESHEAR WAVE VELOCITYPROFILE AND NONLINEAR MATERIALPROPERTIES (ITEM 3.8) ...... 17 3.1 BasrsFoR BASB Cnse Veloctry PRoFILES...... 17 3.2 V, PnonLESusED rN BVPS-2 SPRA ...... 21 3.3 NoN-Lrupnn MnrentRl CHnnncrERlsrtcs Usen IN BVPS-2 SPRA...... 22 4.0 REFERENCES ....27

AESGonsufring S:\Local\PubsU734294FENOC Beaver Valley\3 lQ Report File\R-016\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-01-6 Reaision2 September9,20'1.3 Pg, a ofz!_

LIST OF TABLES

TABLB NO. TITLE PAGE

TABLE I SUBSURFACESTRATIGRAPHY AND UNITTHICKNESSES ...... I3 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES...... 16 TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES ...... 16 TABLE 4 GEOTECHNICALPROFILE, BVPS-2 SITE...... I9 TABLE 5 STRATN-DEPENDENTPROPERTIES FOR soII, OVERBURDEN ...... 23

AESGonsulting S:\Local\,Pubs9734294FENOC Beaver Valley\3 lQ ReportFile\R-016\R2V734294-R-016, Rev 2 201309 09 BV2 SiteDescription docx fCR 2734294-R-0L6 Reaision2 September9,20'13 Page7 of 28

LIST OF FIGURES

FIGURE NO. TITLB PAGE

FIGURE I STRATIGRAPHICCOLUMN UNDERLYINGTHE BVPSSrTE ...... 12 FIGURE2 WELLSUSED TO OBTAIN DEEPROCK STRATIGRAPHY...... 18 FIGURE3 vs PROFILES,BVPS-2 SITE...... 22 FIGURE4 SHEARMODULUS AND DAMPTNG.STRUCTURAL BACKFILL...... 24 FIGURE5 SHEARMODULUS AND DAMPING,TERRACE (20-50 FTDEPTH)...... 25 FIGURE6 SHEARMODULUS AND DAMPING,TERRACE (51- 120FT DEPTH)...... 26

fE$Gonsulting S:\Local\Pubs\2734294FENOCBeaverValley\3,lQReportFile\R-O16\R2\2734294-R-0l6,Rev220l3090gBV2SiteDescriptiondocx rCR 2734294-R-01.6 Reaision2 September9,201.3 PageI of 28

LIST OF ACRONYMS

ACRONYM TITLE COV Coefficient of Variation BVPS-I BeaverValley Power StationUnit 1 BVPS.2 BeaverValley Power StationUnit 2 DGB Diesel GeneratorBuilding EL Elevation in Feet EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra FSAR Final SafetyAnalysis Report ft Foot or Feet ft/s Feetper Second GMRS Ground Motion ResponseSpectra ksf Kips per SquareFoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force Pcf Poundsper cubic foot RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilistic Risk Analvsis SPT StandardPenetration Test USAR UpdatedSafety Analysis Report vp Pressure-WaveVelocity V, Shear-WaveVelocitv w.T. Water table

AE$ Consultlng S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-O16\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description,docx rCR 2734294-R-0L6 Reuision2 September9, 201.3 Pase9 of 28

SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 2

NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL BEAVER VALLEY POWER STATION UNIT 2

1.0 INTRODUCTION

With referenceto NRC Letterdated May 7,2013 (NRC,2013) this Documentsummarizes the site geologic and geotechnicalinformation, and presentsthe basecase velocity profiles for the BeaverValley Power StationUnit 2 (BVPS-2)site. This informationaddresses ltems 3.a. "Descriptionof SubsurfaceMaterials and Properties,"and 3.b.," Developmentof BaseCase Profiles and Nonlinear Material Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismichazard development efforts. The completeand final seismichazard reports for BVPS-2 will be provided to the NRC in our seismichazard submittals by March 31,2014 in accordancewith (NRC,2013).

The basecase velocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazard at outcroppinghard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vr) equal to or greaterthan 9,200 feet per second (ft/s). The site responseanalysis obtains the amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motion responsespectrum (GMRS) at the control point elevationwhere the safe shutdownearthquake (SSE) ground motion is applied.

1.1 Souncns oF INnoRvlATroN l. BeaverValley PowerStation Unit I UpdatedFinal SafetyAnalysis Report, Revision 27; DocketNo. 50-334,Section2.4 Geology,2.5 Seismology; Section, 2.6 Soil Mechanics, 2.7 Site DesignData, and Appendix 28, Appendix2D, Appendix2E, Appendix2F, Appendix2G and2H.

AESGonsulting S:[ocal\Pubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-O16\R2\27]4294-R-016,Rev 2 201-109 09 BV2 Site Description docx rCR 2734294-R-076 Reaision2 September9,2013 Page1,0 of 28

2. BeaverValley PowerStation Unit 2 UpdatedFinal SafetyAnalysis Report, Revision 20; DocketNo. 50-412,Section 2.5, Geology, Seismology, and Geotechnical Engineering, andAppendix 2.58 through2.58.

3. BeaverValley PowerStation Unit 2 UpdatedFinal SafetyAnalysis Report, Revision 20; DocketNo. 50-412,Section 3.7 - SeismicDesign and Section 3.8 - Designof Seismic CategoryI Structures.

4. PennsylvaniaGeological Survey - Well Logs.

AItCancul$ne S:V,ocal\Pubs\2734294FENOC Bcaver Valley\3 lQ ReportFile\R-016\R2\2734294-R416, Rev. 2 201309 09 BV2 SiteDescription.docx lry 2734294-R-016 Reaision2 September9,20L3 PageLL of 28

2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES(Item 3.a)

The BVPS-2 is locatedin ShippingportBorough on the south bank of the Ohio River in Beaver County. The Ohio River Valley is an erosional,flat-bottomed, steep-walled valley. The bedrock of Pennsylvanianage is a sequenceof flat-lying shaleand sandstoneoccasionally inter-bedded with coal seams. It is overlain by about 100 feet (ft) thick alluvial granularterraces formed during the Pleistoceneperiod. Plant gradeis elevation(EL) 735 ftand the top of bedrock is at approximate EL 625 ft.

2.1 Srrn SrnarrcRAPHY

The terracedeposits in the site areaarecharacterized by three levels: high, intermediate,and low. The low terraceis the most recent,where the upper alluvial depositis composedof brown silty clay approximately20to 30 ft thick. The intermediateterrace consists of medium clays extendingto about EL 660 ft. The oldest,high terraceis the most abundantdeposit at the plant location.

The site stratigraphypresented here is basedin part on site-specificgeotechnical investigations reportedin the USAR (Section2.5.4.2 and Appendix 2.58 to 2.5D). Thirty-five dry sample borings at the ShippingportPower Stationwere supplementedby 30 additional borings at the BeaverValley Power Station.These included l0 dry sampleborings on the high terrace,and the remaining borings locatedin the intermediateand low terracematerials. All boringspenetrated approximately20 ft into bedrock. The geologicprofile below the reportedsubsurface investigationdepth is basedon the analysisof formation tops and bottoms from availabledeep well logs in the vicinity of the site (within about 7 miles), obtainedfrom the Pennsylvania Geological Survey. This is supplementedby information from and Ohio Geological Surveys,as well as the UpdatedSafety Analysis Report (USAR).

Figure / presentsthe stratigraphicsoil/rock column underlying the site, andTahle I presentsthe stratigraphyextending to the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigations reported in the USAR and availablewell logs in the site vicinity. Due

ABSGonsulting S:\Local\Pubs\2714294FENOC Beaver Valley\3 lQ ReportFile\R-016\R2\2734294-R-016, Rev 2 201309 09 BV2 SiteDescription docx fCR 2734294-R-016 Reaision2 September9,2013 PaseL2 of28 to the relative proximity of the deepwells to the site, the unit lithologies and thicknessescan be reliablv assumedto be very similar to thosebelow the site.

kgend Perird Litltology

(l ). Pleistocene:Pleistocene: upper terrace:unconsolidated sand and I ,.. (.) !4A gravelwith varyingamounts of clay and silt. Lower terrace:30-40' of silt tl Hi= q andclay with sandand gravel overlyinggravels (2). Allegheny:M iddlePennsy lvanian Allegheny Croup: gray shalewith >rtr 0cq interbeddedsandstones, coal seams, underclays and a limestonebed {.)E (3) Postville:Lower PennsylvanianPottsville Group: sandstoneand conglomerate .9" (4).Mauch chunk: Upper MississippianMauch Chunk Formation: red q shalewith sandstone 3,(! (5). Pocono:Lower MississippianPocono Group: sandstoneand /, = conslomeratew/ shale

tr (6). Ohio shale:Upper Devonianundivided: interbeddedShale,

q') sandstoneand siltstone,(Equivalent to the Ohio Shale)

(7). Tully: M iddleDevonian Tully Limestone tt (8) Mahantango:Middle DevonianMahantango shale Shale z; () (9) Marcellus:Middle DevonianMarcellus '10). Onondaga:M iddleDevonian Onondag Group (Eqv. to Needmore I ;hale/Selinsgrove Limestone ): limestonesand dolomites

| | ). Ridgeley:Lower DevonianRidgeley (Oriskany) sandstone

q) il2). Helderberg:Lower DevonianHelderberg Formation: : Limestone/shale (13).Bass Island: Upper SilurianBass Island Group:dolomite and limestone I ( l4). Salina:Upper SilurianSalina Group/Tonoloway Formation: I J= dolomiteand limestone V) (15) Wellscreek: Upper SilurianWells CreekFormation: shale with SS and LS (16) Lockport:Middle SilurianLockport dolomite H (17). Rochester:Middle SilurianRochester Shale _<-= (18). Rosehill: Middle SilurianRose Hill formation:Shale with sandstone (19). Tuscarora:Lower SilurianTuscarora Formation: SS with I cnnolomercte

tlt (20) Queenston:Upper OrdovicianQueenston Formation: shale, O siltstoneand SS

E 2l). Reedsville:Upper OrdovicianReedsville Shale

22) Utica: M iddleOrdovician Utica Shale o .s (23). M iddleOrdovician Trenton Group (BlackRiver Fm.): Limestone (2a) M iddleOrdovician Gull River andGlenwood Formations: il Limestoneand dolomite (25).Lower OrdovicianBeekmantown Group: Dolomite i26) Upper CambrianGatesburg Formation: Dolomiteand dolomitic

-o ;andstone 2?). M iddleCambrian Rome Formation: Dolomite I U 28). Lower CambrianMt SimonFormation: Sandstone ? ]t (u 29). PrecambrianCranite

FIGURE T STRATIGRAPHICCOLUMN UNDERLYING THE BVPSSITE

rFs Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O|6\R2V734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-01.6 Reaision2 September9,20L3 Page1,3 of 28

The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regional and Local Geology discussedin Section2.4 andAppendix2B of the USAR.

TABLE 1 SUBSURFACESTRATIGRAPHY AND UNIT THICKNESSES AT THE BVPSSITE

Borrou Top Borrona TOp EL EL Lrruolocv Dnprn Dnprn (f0 (ft) (ft) (fr) Pleistocene:upper terrace: Unconsolidatedsand and gravel with varying amountsof clay and 735 625 0 il0 silt. Lower terrace: 30 to 40 ft of silt and clay with sandand gravel overlying gravels Middle PennsylvanianAllegheny Group: gray shalewith interbedded 625 550 110 185 sandstones,coal seams,underclays, and a limestonebed Lower PennsylvanianPottsville 550 350 185 385 Group: sandstoneand conglomerate Upper MississippianMauch Chunk 350 300 385 435 Formation: red shalewith sandstone Lower MississippianPocono Group: 300 -120 sandstoneand conglomeratew/ 435 855 shale Upper Devonian undivided: -120 -3,700 interbeddedshale. sandstone and 855 4,435 siltstone. -3,700 -3,820 Middle DevonianTullv Limestone 4,435 4,555 -3,820 -3,900 Middle DevonianMahantango Shale 4,555 4,635 -3.900 -3.935 Middle DevonianMarcellus Shale 4.635 4,670 Group -3,935 -4,150 Middle Devonian Onondaga 4,670 4,885 Shale/Selinsgrove Limestone Lower DevonianRidgeley -4,150 -4,250 4,885 4,985 (Oriskany) Sandstone -4,250 -4,450 Lower Devonian Helderberg 4,985 5,185 Formation: limestone/shale

rEsCottsulting S:\LocalWubs\2734294FENOC Beaver Valley\3,1Q Report File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-016 Retsision2 September9,20L3 Page14 of 28

TABLB 1 SUBSURFACESTRATIGRAPHY AND UNIT THICKNBSSES AT THE BVPSSITB (coNTTNUED)

Borrovr Top Borrou TOp EL EL Lrruolocv DnprH Dnprn (f0 (fr) (ft) (ft) Upper SilurianBass Island Group: -4,450 -4,540 5,185 5,275 dolomite and limestone Upper Silurian Salina -4,540 -5,330 Group/TonolowayFormation : 5,275 6,065 dolomite and limestone Upper Silurian Wells Creek -5,330 -5,550 Formation: shalewith sandstone 6,065 6,285 and limestone -5,550 -5,900 Middle Silurian Lockport Dolomite 6,285 6,635 -5,900 -5,980 Middle SilurianRochester Shale 6,635 6,715 Middle SilurianRose Hill -5,980 -6,170 6,715 6,905 Formation: shalewith sandstone Lower Silurian Tuscarora -6,170 -6,390 Formation: sandstonewith 6,905 7,125 conglomerate Upper OrdovicianQueenston -6,390 -7,455 Formation: shale.siltstone. and 7,125 8,190 sandstone -7,455 -8,265 Upper OrdovicianReedsville Shale 8,190 9.000 -8,265 -8,565 Middle OrdovicianUtica Shale 9,000 9.300 Middle Ordovician Trenton Group -8,565 -9,305 9,300 10,040 (Black River Fm.): limestone Middle Ordovician Gull River and -9,305 -9,455 GlenwoodFormations: limestone 10.040 10,1 90 and dolomite Lower Ordovician Beekmantown -9,455 -9,645 10,1 90 10.380 Group: dolomite Upper CambrianGatesburg -9,645 -g,gg5 Formation: dolomiteand dolomitic 10,380 10,730 sandstone Middle CambrianRome Formation: -g,gg5 -10,695 10,730 11,430 dolomite Lower CambrianMt. Simon -10,695 -10,865 11,430 I 1,600 Formation: sandstone -10.865 Precambriangranite 1I,600

lESGottsulting S.\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-016 Reuision2 September9,2013 Page1.5 of 28

2.2 SunsunFAcEM,+,rnnrALS AND PRopnnrtps

The terracematerials in the Plant area(high terracedeposits) consist of unconsolidatedand stratified sandand gravel outwashderived from the melting of glacial ice at the end of Pleistocenetime. The surfacesand and gravellayer is underlainby relatively denseand incompressiblesand and gravel extendingdown to bedrock at approximatelyEL 625. Major structuresof the plant are founded in the high terracesands and gravel either directly or on compactedbackfill. Thin depositsof mud, silt, and sanddeposited by flood water on the Ohio River and tributary streamsoverlay the terracesands and gravel.

Bedrock directly beneaththe site is composedof shaleof the Middle PennsylvanianAllegheny Group. This unit is characterizedbycyclic sequencesof sandstonesand shalesinterbedded with severalcoal seamsand occasionalthin limestonebeds. The thicknessof this unit underlying the site is approximately 7 5 ft. Below the Allegheny Group is the Lower PennsylvanianPottsville Group sandstoneand conglomeratewith minor shalebeds, and minable coal beds. This formation is between 120 and 230 ft thick in the site area.

The subsurfacematerials properties summarized here are basedon the geotechnical investigationsdescribed in the USAR. The borings in the intermediateand low terracematerials retrievedundisturbed samples of surfaceclays and silts for physical testing. However, no sampleswere obtainedin the high terracematerials. The propertiesfor this material are basedon StandardPenetration Test (SPT) blow countsand in-situ geophysicalmeasurements. Properties of the bedrock material are basedon both laboratorytests and in-situ geophysicalmeasurements.

The remaining subsurfacestratigraphic materials underlying the bedrock are characterizedby various sedimentarysequences of the Mississippian,Devonian, Silurian, Ordovician and Precambrianages, consisting of shales,interbedded sandstones, siltstones and dolomites and limestone,overlying the Precambrianbasement at a depth of approximately I 1,000ft. Their propertiesare estimatedfrom the sonic data obtainedfrom deepwells.

Tables2 and 3 summarizethephysical and mechanicalproperties of the overburdensoils and the bedrock material.

fBtConsulting

S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R29734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-0L6 Reuision2 September9,20L3 Page1.6 of 28

TABLE 2 SUBSURFACEMATBRIALS PHYSICAL PROPBRTIES

Tnrcrcxnss Dnnsrrv SPT RBcovnnv (%) M.trnnnl Rnxcn (fo (pcf) ftlow/ft) Range Average Upper TerraceMaterial Siltv CoarseSand 0 tol0 t20-125 l0-16 CoarseSand & Gravel 16to 20 t20-125 t6-20 Medium Sand& Gravel (aboveW.T.) 20to 50 120-125 20,50 Sand& Gravelftelow W.T.) 25to 50 I 30-140 20-50 ShaleBedrock 60.0to 80.0 155-165 s0-100 98

Ref.USAR Section 2.5.4.2 and Appendices 2.5B to 2.5D pcf: poundper cubic foot

TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES

(t) MnlsunED vnlocrrY (ftls) Mouul,us (ksg {rl DluprNc Polssottt's M,lrnRIAL (z) ConnpRnssroN Sunnn CoUpRNSSION SHn^r,n (o/ol ft411g Upper TerraceMaterial (4) Silty CoarseSand I 000-I 500 550- 850 t440 2.0- 3.0 0.4 CoarseSand & Gravel 2000 600- 900 2448 2.0- 3.0 0.4 Medium Sand& Gravel 2000 950- 1200 4752 2.0- 3.0 0.28 (aboveW.T.) (below Sand& Gravel - 6192 2.0- 3.0 0.48 w. T.) 6000 1050 1250 ShaleBedrock 12000 5000 125x 103 1.0- 2.0 0.39

l. BVPS-2 USAR Section2.5.4.4 and BVPS-I USAR Appendix2D and2G 2. Poisson'sratio and Gmax are calculatedby following formula: v: [(VpA/s)2-2] lfz(vplvs)2 - 2l Gmax: pVs2 :25 J. Recommendedvariability in soil is basedon SPT-Vs correlations(COV percent). An averageCOV of 20 percentis assumedfor soil and bedrock.A COV of 0.1 I is assumedfor deeperrock units basedon the information from deepwells. 4. Compressionmodulus not reported.

AE$Consultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BVz Site Description docx FCR 2734294-R-01b Reaision2 September9,201.3 Page17 of28

3.0 SITE SHEAR WAVB VELOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribes the basisfor the velocity profiles usedin the site responseanalysis to obtain the site ground motion responsespectra (GMRS) and foundationinput responsespectra (FIRS). The developmentof the velocity profiles is describedin F.IZZO Report "Probabilistic SeismicHazard Analysis and Ground Motion ResponseSpectra, Beaver Valley NPP, Seismic probabilistic risk analysis(SPRA) Project," (RIZZO,20L3). The GMRS/FIRS are subsequently usedin the building seismicanalysis in supportof the ongoing seismicPRA.

3.1 Blsrs FoRB.lsn C.LsnVnlocrry PRoFTLES

The shearand compressionwave velocities of the overburdensoils and the shalebedrock are basedon the subsurfaceinvestigations reported in the USAR Section2.5.4.4, as well as informationtaken from BVPS-I USAR Appendix 2G. Appendix}G of BVPS-I USAR summarizesthe 1968geophysical investigations consisting of cross-hole,up-hole, and down- hole measurementsin five drill holes locatedin the reactor atea.P and S wave velocitieswere measuredfrom direct arrival times. A limited amount of seismicrefraction survey investigation was also performedto verify the elevationof bedrock,and to determinevelocity layering.

Variabilities in the shearwave velocities of the bedrock material and the overburdensoil are estimatedrespectively, from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestrata relies on sonic logs recordedin the wells inthe site vicinity (within 7 miles). Figure 2 presentsthe location of wells utilized hereto obtain the stratigraphyas well as the sonic data.

The sonicdata were convertedto P-wavevelocities (Vo) and S-wavevelocities (V') basedon publishedliterature (Pickett, 1963;Rafavich, 1984; Miller, 1990;and Castagna,1993) reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent, the lithology. Additionally, basedon publishedliterature, Vpff, ratiosof 1.7

AFSGonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-0L6 Reaision2 September9,201.3 Page1.8 of 28 and2.1 were usedto obtain a coefficient of variation (COV) of about 0.l l representingthe variabilities for the S-wavevelocities.

Go earth m 20 FIGURE 2 WELLS USBD TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVB VELOCITIES

Varying unit thicknesses,incomplete well logs, and non-standardlithologic descriptionspresent somechallenges to reliably estimatingcontact locations. However,the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relativelv similar and consistentfrom well to well for similar depths.

Most major structuresof the BVPS-2 are founded in the upper terracesand and gravel layers or densifiedsoil. The ReactorBuilding is supportedon in-situ soils and densifiedsoil at EL 681. Other structuresare supportedon compactedbackfill placed on the terrace sand and gravel at

AE$ Gonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ ReportFile\R-016\R2\2734294-R-016, Rev 2 201309 09 BV2 SiteDescription docx rCR 2734294-R-076 Reuision2 September9,2073 Page19 of 28 foundationelevations varying betweenEL 703 for the Auxiliary Building to about EL 723 for the Fuel Building. Basedon the Final SafetyAnalysis Report (FSAR) descriptionof the seismic analysis(Section 3.7), the control point elevationfor SSE is taken to be the RB foundationlevel (EL 681).

Table 4 presentsthe geotechnicalprofile extendingfrom the Precambrianbasement to the plant grade. It identifies the layer thicknesses,shear and compressionwave velocities,and the uncertaintiesin theseparameters.

TABLE 4 GEOTECHNICAL PROFILE, BVPS.2SITE

Elnvnrron Topor Vs" Ttotal v Dnposrr MarBRlnl (pc0 (ftls) (fo Plant Grade (Surface EL 735) 0 735 StructuralFill/ Natural and DensifiedSoil r36 730+I 83b 0.35 720 StructuralFill/ Natural and DensifiedSoil 136 I 0l 5+254" 0.35" 680.9 PleistoceneUpper and Lower Terrace( I d) 125 I I 00+275" 0.29" 680.9 GMRS EL - SSE Control Pt. Nuclear Island Foundation Level 66s Ground Wa er Level b 66s PleistoceneUpper and Lower Terracs1le) 136 1200+300" 0.49 625 M. PennsylvanianAlleehenv Shale (2) 160 5000+1000" 0.39" L. PennsylvanianPottsville SS, 550' 160 6,026 0.30 conslomerate(3) 350 U. MississippianMauch Shunk Shale (4) 155 6.144 0.30 L. MississippianPocono Sandstone 300 155 6,744 0.30 conglomerate(5) -120 U. DevonianInterbedded Shale. 155 7,172 0.30 -2,994 Sandstone,siltstone (6) 155 6.416 0.30 -3,700 M. Devonan Tullv Limestone(7\ 168 9,856 0.30 -3.820 M. Devonan MahantansoShale (8) t57 9,856 0.30 -3,900 M. DevonianMarcellus Shale (9) r57 9,856 0.30 M. DevonianOnondaga Limestone, -3,935 170 9,856 0.30 Dolomite( 10) -4,150 L. DevonianRideelev Sandstone ( I I ) 160 9,856 0.30 L. DevonianHelderberg Shale -4,250 Limestone, 170 9,856 0.30 (12'l BassIsland Dolomite. -4,450 U. Silurian 170 8,352 0.30 Limestone(13) -4,540 U. SilurianSalina Dolomite, Limestone 170 8,352 0.30 -5,034 (14) 110 9,547 0.30

Gonsulting S.\Iocal\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 20ll 09 09 BV2 Site Description docx rC? 2734294-R-01.6 Reaision2 September9,201.3 Page20 of28

Elnvlrron Top or Vsu MnrnRrlr, Ttot"t v Dnposrr (pcr) (ftls) (ft) -5,330 U. SilurianWells Creek Shale (15) t63 11,534 0.30 -5.550 M. SilurianLockport Dolomite (16) t70 9,015 0.30 -5,900 M. Siluran RochesterShale ( l 7) t63 9.015 0.30 -5,980 M. Siluran RoseHill Shale(18) r63 9,015 0.30 -6,170 L. SilurianTuscarora Sandstone ( l9) t63 8,588 0.30 -6.390 U. OrdovicianQueenston Shale, Siltstone, t63 8.588 0.30 -7,123 Sandstone(20) 163 7.835 0.30 -7,455 U. OrdovicianReedsville Shale (2la & 163 7835 0.30 -1,698 2lb) 163 6834 0.30 -8,265 M. OrdovicianUtica Shale(22) 163 6834 0.30 -9,565 M. OrdovicianTrenton Limestone Q3l 175 10.520 0.30 M. OrdovicianGull River Limestone, -9,305 175 10,520 0.30 dolomite(24) -9,455 L. OrdovicianBeekmantown Dolomite Qs) 175 10,520 0.30 U. CambrianGatesburg Dolomite -9,645 170 10,520 0.30 SandstoneQ6) -g,gg5 M. CambrianRome Dolomite Q7\ t75 10,520 0.30 -10.695 L. CambrianMt. Simon Sandstone(28) 170 10,520 0.30 -10,865 PrecambrianGranite Q9\ 175 10.520 0.30

Notes: u Variability in Vs of soil is basedon SPT-V, correlations(COV:25 percent). COV is assumed20 percentas averageof soil and rock for the rock at the top and for deeperrock units COV : I I percentis assumedbased on the information from deepwells. BVPS-2USAR Section2.5.4.4 and Appendix2D,2G and2H of the BVPS-I USAR U From this elevationdown, soil parametersare estimatesfrom sonic velocities of deepwells exceptunit weight. Unit weights are typical values from the literature. Poisson'sratio is calculatedby following formula: v: [ (Vp/Vs)2-z] tlz(vptvs)2- z l

lBSGonsulting S:\Local\PubsUT34294FENOCBeaverValleyUIQReponFile\R-O16\R2\2734294-R-OI6,Rev 220l30g0gBV2SiteDescriptiondocx 2734294-R-016 Reaision2 September9,2013 Page2L of28

3.2 V, PnorrLESusED rN BVPS-2 SPRA

In supportof the SPRA project, severalFIRS are developedat foundation elevationsvarying from the intake structuresat EL 637 to the DGB at EL 729. Theseare basedon truncatedsoil profiles at respectivefoundation levels obtainedfrom the full soil column site responseanalysis.

The site responseanalysis performed as part of the BVPS-2 SPRA usesone BaseCase profile, basedon the best estimateinformation in Table 4. However, the analysisrepresents possible aleatoryvariability in the shearwave velocity profile by using 60 randomizedV5 profiles based on the parameterspresented in Table 4. The random profile realizationsare obtained using the stochasticmodel developedby Toro ( 1996),and assumefull correlationbetween the shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceouslimestone (M. Devonian Tully Limestone).

The use of one BaseCase profile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well charactefized by a number of in-situ velocity measurements,and dynamic laboratorytests, and the reportedboring logs do not indicate significant variability in layer thicknessesand depths. Figure 3 presentsthe best estimaterepresenting the BaseCase velocity profile and the upper and lower boundsrepresented by 60 randomizedprofiles utilized in the SPRA site responseanalysis.

AESGonsultlng

S.\LocalVubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-0L6 Reaision2 September9,201.3 Page22 of 28

-lI I I I I I -.1 I I I I I I I I I I I I I I I I I I I I Ea- zsoo I I o I o I I I I I I I I I I I I t-- I I I I I I Upper-Bound I t----- Lower-Bound - BestEstimate

FIGURE3 Vs PROFILES'BVPS-2 SITE

3.3 Non- Lrxnnn MnrBruALCHARAcrERrsrrcs Usno rN BVPS-2 SPRA

The site responseanalysis performed as part of the BVPS-2 SPRA representsnon-linear material propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshear strain. Strain dependentdynamic parameterfor the overburdensoils are reported in Appendix2D, Figure2D-3 of BVPS-I USAR, andFigure 2.5.4-71 of the BVPS-2USAR.

AFSGonsulting S \Local\Pubs\2734294FENOC Beaver Valley\3 lQ Repon File\R-016\R2V714294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-016 Reaision2 September9,2013 Page23 of 28

Table 5 and Figures 4 through 6 presentsthe strain dependentstiffness and dampingproperties of the backfill material and the in-situ overburdensoils. The material-dampingratio is limited to a maximum of 15 percentin the calculationsfollowing guidancein NRC Regulatory Guide 1.208. The underlying bedrockmaterial is assumedto behavelinearly and the damping ratio for the hard rock half spaceis assumedto be 1.0 percent.

The variability in the dynamic propertiesis propagatedin the site responseanalysisby selecting from 60 setsof randomizedpropertycurves shown on Figure 4 through 6. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties, is pairedwith one combinationof the randomizednonlinear dynamic property curvesfor input to the site response analysis.

TABLE 5 STRAIN-DEPENDENTPROPERTIES FOR SOIL OVERBURDBN

AND PInTSTOCENEUPPNN AND SrnucruRAl Bncxnrll PIoTSToCENEUPPNN Srnnlll LownnTnnnrcn (1o) LownnTnnnacn (1n) (%) DnmprNc D,l,uptNc D,q,MplNc (l) G/G,"* G/Gn,"* ("hl G/Grr* (%) (%l 0.000r 1.0000 1.4907 1.0000 1.2568 r.0000 1.0172 0.000316 0.9968 I.57133 I 0.9977 r.267272 0.9982 1.04859 0.00100 0.9707 1.842 0.9845 1.5012 0.9925 t.26190 0.0020 0.9415 2.30495 0.9632 r.797616 0.9812 r.484852 0.00300 0.9123 2.7679 0.9419 2.094152 0.9699 1.707805 0.0050 0.8663 3.410786 0.9070 2.541755 0.9412 2.033219 0.0070 0.8216 4.053611 0.8731 2.994024 0.9119 2.35229r 0.0r00 0.7545 5.0rI 0.8221 3.663427 0.8680 2.8309 0.0200 0.6419 7.001136 0.1224 5.221978 0.7805 4.079881 0.0300 0.5292 8.984273 0.6227 6.793721 0.6929 5.328863 0.0500 0.4486 10.89077 0.s466 8.445937 0.6170 6.77834 0.0700 0.3772 12.56841 0.4783 9.968477 0.5475 8.t36644 0.1 0.2702 15.08487 0.3760 t2.25229 0.4431 r0.l74l 0.2 0.I 961 I 8.I 0599 0.2774 15.2974r 0.3399 12.9530s 0.3 0.1228 2l .05091 0.r 789 18.33796 0.2353 15.7320r I 0.0392 26.s9868 0.0587 24.6822 0.089s 22.67t2

(l) G/G."* : shearmodulus (G) normalizedby the low-strainshear modulus (G.u*).

lBSConsulting

S.\LocaltPubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-O16,Rev 2 2013 09 09 BV2 Site Description docx 2734294-R-016 Reaision2 September9,201,3 Pase24 of28

1 0.9 0.8 0.7 0,6 x c E o 0.5 o 0.4 0.3 0.2 0.1 0 0.0001 0.001

20 18 16 14 t ED 12 c CL 10 E oG I 6 4 2 0 0.0001 0.001 0.01

Shear strain (%) FIGURE 4 SHEAR MODULUS AND DAMPING, STRUCTURAL BACKFILL G/G,,'u*= shearmodulus (G) normalized by the low-strain shearmodulus (G,no*).

lEgGonsultlng S:\Local\Pubs\2734294FENOCBeavervalley\3.lQReporrFile\R-016\R2\2734294-R-0l6,Rev220l30g0gBV2SiteDescriptiondocx rCR 2734294-R-01.6 Reaision2 September9,201,3 Page25 of 28

1 0.9 0.8 0.7 0.6 x c oE 0.5 o 0.4 0.3 0.2 0.1 0 0.0001

20 18 16 14 E CD 12 c CL 10 E (E o I 6 4 2 0 0.0001 0.01

Shearstrain (%)

FIGURE 5 SHEARMODULUS AND DAMPING, TERRACE(20-50 FT DEPTH)

AESGonsulting S:\Local\Pubs\2734294FENOCBeaverValley\3.lQReportFile\R-O16\R2\2734294-R-OI6,Rev220l30909BV2SiteDescriptiondocx rCR 2734294-R-01,6 Reaision2 September9,20L3 Page26 of28

0.000 0.01 Shearstrain (%)

20 18 16 14 :e CD 12 c CL 10 E ot! I 6 4 2 0 0.0001 0.001 0.01

Shearstrain (%)

FIGURE 6 SHEAR MODULUS AND DAMPING, TERRACE(51-120 FT DEPTH)

Goneiiltlng S:\Local\PubsU734294FENOC Beaver Valley\3.IQ Report File\R416\R2\2734294-R-016, Rev 2 201309 09 BV2 SiteDescriptlon docx rG 2734294-R-016 Reuision2 September9,201.3 Page27 of28

4.0 REFERENCES

Castagna,J.P., and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P., Batzle, M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, pp. 135-171.

EPRI, 1993,"Guidelines for Determining Design Basis Ground Motions," Electric Power ResearchInstitute, Palo Alto, CA, Rept.TR-102293, Vol. 1-5, 1993.

EPRI, 2013, "Seismic EvaluationGuidance, Screening, Prioritization and Implementation Details (SPID) for the Resolutionof FukushimaNear-Term Task ForceRecommendation 2.1: Seismic,"February 2013 .

FirstEnergyNuclear OperatingCompany (2012). "Final Report Geology and Geotechnical Information for Site Amplification CalculationsSeismic ProbabilisticRisk AssessmentBeaver Valley PowerStation," Rev. 0, July 2,2012.

Goldthwait,R., G. White, andJ. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof NaturalResources, Div. of Geol Survey.

Hough,J.L., 1958,"Geology of the GreatLakes," University of Illinois Press,Urbana, IL.

Miller, S.L.M., and R.R. Steward,l990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocities from SonicLogs," CanadianJournal of ExplorationGeophysics, Volume26, Nos. 1 &2, pp. 94-103.

Norris, S.E., 1975,Geologic Structure of Near-surfaceRocks in WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007,Regulatory Guide 1.208,"A Perforrnance-BasedApproach to Define the Site- Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission, March 2007.

'seismic NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-TermTask Force Recommendation2.1: Seismic,'as an acceptableAlternative to the March 12,2012Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatiofl,"Journal of PetroleumTechnology, Volume 15,No. 6, pp. 659-667.

Consulting S.\Local\Pubs9734294 FENOC Beaver Valley\3 lQ RepoA File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR 2734294-R-01.6 Reaision2 September9,201.3 Page28 of28

Rafavich,F., C. St. C.H. Kendall,and T.P. Todd, 1984,"The Relationshipbetween Acoustic Propertiesand the PetrographicCharacter of CarbonateRocks," Geophysics,Volume 49,No. 10, pp. I 622-1636.

RLZZO,2013, "Probabilistic SeismicHazard Analysis and Ground Motion ResponseSpectra, BeaverValley NPP, SeismicPRA Project," Paul C. Rizzo Associates,Pittsburgh, PA, May 23, 2013.

Silva, W.J.,N.A. Abrahamson,G.R. Toro, and C. Costantino(1996), "Description and Validation of the StochasticGround Motion Model," Rept. submittedto BrookhavenNatl. Lab., Assoc.Universities Inc., Upton NY I 1973,Contract No. 770573.

FENOC, "Beaver Valley Power StationUnit 2 UpdatedFinal SafetyAnalysis Report," Rev 20, DocketNo. 50-412.

Toro, G.R., 1996,"Probabilistic Models of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,Associated Universities, Inc. Upton,New York 11973,ContractNo. 770573,Published as Appendix D in W.J. Silva, N. Abrahamson,G. Toro, and Costantino,1996.

Walling, M.A., W.J. Silva, andN.A. Abrahamson(2008). "Nonlinear SiteAmplification Factors for Constrainingthe NGA Models," EarthquakeSpectra, 24 (l) 243-255.

ABSGonsulting S.\Local\PubsU734294FENOC Beaver Valley\3 lQ Reporr File\R-016\R2V?34294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR EnclosureC L-13-245

SiteDescription for Davis-BesseNuclear Power Station Near-TermTask Force Recommendation 2.1 PartialSubmittal Davis-BesseNuclear Power Station (25 pagesfollow) ABSGonsulting 2734296-R-008 Revision2

SiteDescri ption for Davis'Besse NuclearPower Station Near-TermTask Force Recommendation2.1 Partial SubmittalDavis-Besse Nuclear PowerStation

September9, 2013

Preparedfor: FirstEnergyNuclear Operating Gompany

ABSG Consultinglnc. . 300 CommerceDrive, Suite 200 ' lrvine,California 92602 2734296-R-008 Reaision2 September9,201,3 Page2 of25

REPORT

SITE DESCRIPTIONFOR DAVIS-BESSENUCLEAR POWER STATION

NTTF RECOMMENDATION 2.1PARTIAL SUBMITTAL DAVIS-BESSENUCLEAR POWBR STATION

ABSG CONSULTING INC. RnpOnTNo. 2734296.R-OO8 RIZZO Rrponr No. Rg 12-4737 RnvrsroN2 SrprnnnnER9, 2013

ABSG CoxsuLTrNGINC. Pnur C.Rrzzo AssocIATES,INC.

AESGonsulting S:\Local\Pubs\27U2%FENOC Davis-Besse\3 1Q ReportFile\R408\R2\2734296-R-008, Rev, 2 2013 09 09 DB Site Descriptiondocx ft,}R 2734296-R-008 Reaision2 September9,201.3 Page3 of25

APPROVALS

Report Name: SiteDescription for Davis-BesseNuclear Power Station Site NTTF Recommendation2.1 PartialSubmittal Davis-BesseNuclear Power Station

Date: September9, 2013

Revision No.: 2

Approval by the responsiblemanager signifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 910912013 Nish Vaidya, Ph.D., Date

Independent Technical Reviewer: 9109120t3 letf HatipogluPh.D. Date ecluiical Supervisor Project Va; Manager: N'g,L 910912013 Nish Vaidya, Ph.D., Date Principal

Approver: 910912013 . Roche,P.E. Date Vice President

rEsGonsultlng S:\Local\Pubs\27%296FENOC Davis-Besse\31Q Report File\R408\R2\2734296-R{08, Rev 2 2013 09 09 DB Site Description.docx rCR 2734296-R-008 Reaision2 September9,201.3 Page4 of25

CHANGE MANAGEMENT RECORI)

Report Name: SiteDescription for Davis-BesseNuclear Power StationSite NTTF Recommendation2.1 Partial Submittal Davis-BesseNuclear Power Station

Pnnsox Rnvtstotrr DnscnlprroNs oF D,lrn AurHonIzING AppRovall No. CHnucBs/AnpncrED PAGES CHlncn 0 August12.2013 OrieinalIssue N/A NiA AddressedLicensing Comments I September6, 2013 NRV NRV Primarilv Editorial 2 September9. 20t3 Additional Licensing Comments NRV NRV

Note: l Personauthorizing change shall sign here for the latestrevision.

fBtGonsulting S:\Local\Pubs\27g296FENOC Davis-Besse\3 1Q ReportFile\R-008\R2\2734296-ROO8, Rev 2 2013 Og09 DB Site Description.docx 2734296-R-008 Reaision2 September9,20'1.3 Page5 of 25

TABLE OF CONTENTS

PAGE LISTOF TABLES ...... 6 LISTOF FIGURES ...... ,...... 7 LISTOF ACRONYMS ...... 8 1.0 TNTRODUCTTON ...... 9 1.1 SouncesoF INFoRMATToN ...... 9 2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES (ITEM3.a) ...... 11 2.1 SrreSrnancRAPHY .....1I 2.2 SussunpAcEMATERTALS AND PnopEnrrEs ...... 14 3.0 SITESHEAR WAVE VELOCITY PROFILEAND NONLINEAR MATERTALPROPERTTES (rTEM 3.b)...... 16 3. I Bnsrsron BnsECnse Velocrry Pnoplr.Es...... 16 3.2 V, PRoTTLESusED rN Dnvrs-Bessp Nuclpnn PowEnSrauox SPRA...... 20 3.3 NoN-LtNeanMnTERTAL CHanncrERrsrrcs Ussn m DBNPSSPRA ...... 21 4.0 REFERENCES ...... 24

fESConsulting S:\Local\Pubs\27342%FENOC Davis-Besse\31Q Report File\R€08\R2\2734296-R-008,Rev 2 2013 OgOg DB Site Descriptiondocx fCR 2734296-R-008 Reaision2 September9,201.3 Page6 of 25

LIST OF TABLES

TABLE NO. TITLE PAGE

TABLE I SUBSURFACESTRATIGRAPHY AND UNIT THICKNESSES ...... 13 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES...... I 5 TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES...... I 5 TABLE 4 SUMMARY SITEGEOTECHNICAL PROFILE FOR DBNPSSITE ...... 19 TABLE 5 STRAIN-DEPENDENTPROPERTIES FOR BED ROCK...... 22

llSCffiuftlrtg S:\Local\Pubs\:27A2$FENOC Davis-BesseB.lQ Report File\R{D8\R2t27342SRfl8, Rev. 2 201309 @ DBSite Description.docx ffr 2734296-R-008 Reaision2 September9,201.3 Page7 of25

LIST OF FIGURES

FIGURE NO. TITLE PAGE

FIGUREI STRATIGRAPHICCOLUMN UNDERLYINGTHE DBNPSSITE ...12 FIGURE2 WELLSUSED TO OBTATNDEEP ROCK STRATIGRAPHY...... ,17 FIGURE3 BASECASE SHEAR WAVE VELOCITYPROFILE DBNPSSITE ...... 21 FIGURE4 BEST-ESTIMATEAND RANDOMIZEDSTRAIN. DEPENDENTSHEAR MODULUS AND DAMPING...... ,23

lSGonsultlng S:\Local\Pubs\27%2%FENOC Davis-Besse\3 1Q Repori File\R-008\M\27342S-R-m8, Rev 2 201309 09 DBSite Desoiption.docx rc\fe 2734296-R-008 Reaision2 September9,2013 PageI of25

LIST OF ACRONYMS

ACRONYM TITLB COV Coefficient of Variation DBNPS Davis-BesseNuclear Power Station EL Elevationin Feet EPRI Electric Power ResearchInstitute FIRS FoundationInput ResponseSpectra ft Foot or Feet ft/s Feetper second FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra GMRS Ground Motion ResponseSpectra NRC NuclearRegulatory Commission NTTF Near-Term Task Force SB ShieldBuilding SPID Screeni n g, Priori tization, and ImplementationDetails SSE Safe ShutdownEarthquake SPRA SeismicProbabilistic Risk Analysis SPT StandardPenetration Test su Undrained ShearStrength tsf Tons per squarefoot USAR UpdatedSafety Analysis Report vp PressureWave Velocity V, ShearWave Velocitv

ABSGottsulting S:\Local\Pubs\2734296FENOC Davis-Besse\3.1Q Report File\R{08\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Description.docx f{]f? 2734296-R-008 Reaision2 September9,201.3 Page9 of25

SITE DESCRIPTIONFOR DAVIS-BESSENUCLEAR POWER STATION SITE

NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL DAVIS-BESSENUCLEAR POWER STATION

1.0 INTRODUCTION

With referenceto the United StatesNuclear RegulatoryCommission (NRC) Letter datedMay 7, 2013 (NRC,20l3) this Document summarizesthe site geologic and geotechnicalinformation, and presentsthe basecase velocity profiles Items 3.a. "Description of SubsurfaceMaterials and Properties,"and 3.b., "Developmentof BaseCase Profiles andNonlinear Material Properties"in Section4.0 of Electrical Power ResearchInstitute (EPRI) Report 1025287(EPzu 2013) for the Davis-BesseNuclear Power Station(DBNPS) site.

The information provided here is consideredan interim product of seismichazard development efforts. The completeand final seismichazard reports for DBNPS will be provided to the NRC in our seismichazard submittals by March 31,2014 in accordancewith (NRC, 2013).

The basecase velocity profiles presentedhere are utilized as the basisin the site response analysis which propagatesthe seismic hazard at outcropping hard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depthwith a shearwave velocity (Vr) equal to or greaterthan 9,200 ftls. The site responseanalysis obtains the amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and develops the ground motion hazad at the building foundation levels.

1.1 SouncBSoF InnonnnATroN

l. Davis-BesseNuclear Power StationNo. I UpdatedSafety Analysis Report, Rev. 29 Section2.5: Geologyand Seismology;Appendix2C - Geology,Seismology, Subsurface Conditions,and GeotechnicalDesign Criteria, Docket No. 50-346(Toledo-Edison20l2). December2012.

Gonsultlng S:\Local\Pubs\27A2%FENOC Davis-Besse\3.1Q Report File\R{08\R2U734296-R408, Rev 2 2013 09 09 DB Site Desqiption.docx rCR 2734296-R-008 Reuision2 September9,201.3 Pase1.0 of 25

2. Davis-BesseNuclear Power StationNo. I UpdatedSafety Analysis Report, Section3.7 - SeismicDesign, Rev. 29 Section3.8 - Designof SeismicClass I and ClassII Structures, DocketNo. 50-346(Toledo-Edison2012). December 2012.

3. Ohio GeologicalSurvey - Well Logs.

AE$Consulting S:\Local\Pubs\27%296FENOC Davis-Besse\3 1Q ReportFile\R{08\R2\2734296-R{08, Rev 2 2013 Og09 DB Site Desoiption,docx 2734296-R-008 Reaision2 September9, 2013 Page1.1. of 25

2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES(item 3.a)

The DBNPS site, locatedon the southwesternshore of in County, Ohio, lies in the Lake Plains sub-provinceof the Central Low Land Physiographicprovince. The site bedrock consistsof horizontally stratified, sedimentary,argillaceous dolomite containinginterbedded ,anhydrite, and shaleof the TymochteeFormation. Approximately 15 feet (ft) of glacial till and glaciolacustrinedeposits overlay the site bedrock. The plant gradeis at elevation(EL) 584 ft, andthe top of rock is at a nominal EL 555.0ft.

2.1 Strn Srru,rrcRAPHY

The site stratigraphypresented here is basedin part on site-specificgeotechnical investigations reportedin the UpdatedSafety Analysis Report (USAR) (Section2.5.4 and Appendix 2C). Of the 5l rock core borings, four borings penetratedto a depth of about 195 ft from the surfaceand were terminatedin the Upper Silurian Greenfieldformation underlying the dolomite bedrock of the TymochteeFormation. The remainingrock coreswere terminatedat a depth of about I 15 ft, a few feet below the Tvmochtee. J

The geologicprofile below the reportedsubsurface investigation depth is basedon the analysis of formation tops and bottoms from availabledeep well logs in the vicinity of the site, obtained from the Ohio Geological Survey. The units and thicknessdown to the Middle Ordovician were obtainedfrom deepwells locatedabout 2-3 miles west of the site in Ottawa County, while the units and thicknessesbelow the Middle Ordovician are interpretedfrom deeperwells located about 15-20miles to the south of the site in SanduskyCounty, along with somewells about 35 miles southwestof the site in Wood County. Due to the relative proximity of thesedeep wells to the site,the unit lithologies and thicknessescan be reliably assumedto be very similar to those below the site.

The USAR doesnot make referenceto the well data. However,the site stratigraphyconstructed here on the basisof the well data is consistentwith the Regionaland Local Geology discussedin Appendix2C of the USAR. Figure 1 presentsthe stratigraphicsoil/rock column underlying the

AFSGottsulting S:\Local\Pubs\2734296FENOC Davis-Besse\31Q Report File\R{08\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx 2734296-R-008 Reuision2 September9,2013 Page1.2 of 25

site,and Table,l presentsthe stratigraphyextending to the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigations reported in the USAR and available well logs in the site vicinity (approximately2 to 3 miles).

FTY b

tc

rd

FIGURE T STRATIGRAPHICCOLUMN UNDERLYING THE DBNPSSITE

Gonsulting S:\Local\Pubs\27342%FENOC Davis-BesseB 1 Q ReportFile\R{08\R29734296-R-008, Rev 2 2013 Og09 DB Site Description.docx rce 2734296-R-008 Reaision2 September9,2013 Page1.3 of 25

TABLE 1 SUBSURFACESTRATIGRAPHY AND UNIT THICKNESSES AT THE DBNPSSITE

Top Borrovr Top Borronn ELBv,q,rtoN ELnv,q,rIoN LrrnolocY DnprH DnprH (ft) (ft) (fo (ft) Pleistocene:glaciolacustrine; stiff, fissured, 575 565 0.0 l0 desiccated,gray and brown silty clay Pleistocene:glacial till; hard,fissured, 565 555 l0 20 desiccated,gray to brown sandyclay Upper Silurian Tymochteeformation: 55s 460 20 ll5 arsillaceousdolomite 460 370 Upper Silurian Greenfieldformation: dolomite ll5 205 370 30 Middle Silurian Lockport Dolomite 20s 545 30 -20 Middle Silurian RochesterCNiagrian) Shale 545 595 Middle Silurian Clintor/CataractGroup : -20 -l0s 595 680 interbeddeddolomite, limestoneand shale formation: shale, -105 -685 Upper Ordovician Queenston 680 t260 siltstone.and sandstone -685 -850 Upper Ordovician Eden formation: shalesand r260 1425 limestones -850 -l 630 M. Ordovician : limestone r425 2205 Middle Ordovician Black River (Gull River) -l 630 -1680 2205 22s5 formation: limestoneand dolomite (Willis Creek) -r680 -1690 Middle OrdovicianGlenwood 22s5 2265 formation: sandstones.carbonates and shales Middle OrdovicianSt. Peter(Willis Creek) -1690 -1750 2265 2325 formation: sandstone Lower Ordovician to Upper CambrianKnox -t750 -183s 2325 2410 formation: dolomite Middle CambrianConasauga Group/Kerbel -1835 -1975 24t0 2550 formation: sandstone -t975 -2175 Middle CambrianRome formation: dolomite 2550 2750 Lower to Middle CambrianMt. Simon -2175 -2285 2750 2860 formation: sandstone -2285 PrecambrianGranite 2860

rBsGonsulting S:\Local\Pubs\2734296FENOC Davis-Besse\3 1Q ReportFile\R408\R2\2734296-R-008. Rev 2 2013 09 09 DB Site Descriptiondocx rCR 2734296-R-008 Reuision2 September9,201.3 Pase'14of 25

2.2 SunsunFACEM.LrnruALS AND PnopnnrtEs

Surfacesoils consisting of marshorganic and beachsediments overlay the glacial deposits. The upper glaciolacustrinedeposit in this stratigraphyis composedof stiff, fissured,desiccated, gray, and brown silty clay. The lower till depositis composedof hard, fissured,desiccated, and gray to brown sandyclay. The thicknessof glacial depositsin Ottawa County averages25 ft.

Below the glacial deposits,the Upper Silurian Tymochteeformation is reportedto be about 80 to 100 ft thick. The Tymochteeformation is a soft to hard, thinly beddedto massive,laminated, argillaceousdolomite. The lithology of the Greenfieldformation underlying the Tymochteeis similar to the Tymochteeformation. Consequently,the contactbetween the Tymochteeand Greenfieldformations is difficult to detect,but basedon resultsof the borings, it is locatedat an approximateEL 460 ft at the site.

The stratigraphybelow the Tymochteeand the Greenfieldformations consists of an approximately2,250 ft thick sequenceof various sedimentaryrocks, predominantlylimestones, and dolomites,with interbeddedshales and sandstonesof various thicknesses.These formations overlay the Precambriangranite basement.The top of the Precambrianbasement exists at approximateEL -2200 ft.

Tables2 and J summarizethe physical and the mechanicalproperties of the overburdensoils and the bedrockmaterial.

tBSGonsulting S:\Local\Pubsu7342%FENOC Davis-Besse\3.1Q Report File\R408\R2\27342S-R-008, Rev. 2 201309 09 DB Site Descriptiondocx 2734296-R-008 Reaision2 September9,201.3 PageL5 of25

TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES

THrcxxnss DBnsrrv SPT RncovnRY(%) MnrnnI.u, RAxcn Qc (ft) (ucf) (tsfl ftloilft) R.Lncn Avnn^q.cn LacustrineDeposits 6.0 to 10.0 r25 3.5 t2 GlacialTill 6.0 to 10.0 132- t36 8.0 40 Approx. BeddedDolomite 10.00 150- 152 750 95- 100 98 MassiveDolomite 8.0to 10.0 ls0- 152 I 500 95- 100 98 BeddedDolomite 60.0to 80.0 150- 152 750 95- 100 98

Notes: Q, : Unconfined CompressiveStrength pcf: pound per cubic foot SPT: StandardPenetration Test tsf : ton per squarefoot Ref.USAR Section2.5.1.8

TABLB 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES (" Mn.lsunEDVELocrrY (ftls) (t) Ellsrrc Moour,us(ksO Dnuprnc Polssox's MnrnRtal, CorrlpnnsstoN Sun,lR COUpNNSSION SHr,q.n V"l Rq.rIo Lacustrine (2) (2) (2) (2) (2) (2) Deposits GlacialTill 5100-6100 (2) 64 x 103 23 x 103 0.04-0.05 0.4 BeddedDolomite 12700 6700 550x 103 212 x 103 0.01-0.02 0.3 (a) MassiveDolomite 1r400-14600 5700-7500 1.3-1.8xl06(a) 0.6-0.7x106 0.01-0.02 0.3 BeddedDolomite l r400-r4600 5700-7500 550x 103 212 x 103 0.01-0.02 0.3

Notes: (l) USAR Sec2.5.1.7 (Seismic Refraction) (2) Not Reportedbecause no major sffucturesfounded on the deposits (3) USAR Sec.2C.4.5 (Based on in-situwave velocities),ksFkip per squarefoot (4) USAR Sec.2.5.1.8and Table 2C.4-2 (Based on Lab Tests)

fESGonsultlng S:\Local\Pubs\27U2%FENOC Davis-BesseB.1 Q ReportFile\R4O8\R2\27342SR-008. Rev, 2 2013 09 09 DB Site Descriptiondocx 2734296-R-008 Reuision2 September9,2073 Page16 of 25

3.0 SITE SHEAR WAVE VELOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribes the basisfor the velocity profiles usedin the site responseanalysis to obtain the site ground motion responsespectra (GMRS) and foundationinput responsespectra (FIRS). The developmentof the velocity profiles is describedin Paul C. Rizzo Associates,Inc. (RIZZO) Report "Probabilistic SeismicHazard Analysis and Ground Motion ResponseSpectra, Davis-BesseNPP, SeismicProbabilistic Risk Assessment(SPRA) Project,"(RIZZO,2013). The GMRS/FIRS are subsequentlyused in the building seismicanalysis in supportof the ongoing SPRA.

3.1 BnsrsFoR B,lsn Clsn Vnloclry PRoFTLEs

The shearand compressionwave velocities of the overburdensoils and the dolomite bedrock are basedon the subsurfaceinvestigations reported in the USAR. Twenty-six seismicrefraction shot points and 140 seismicrecordings were obtainedto determinethe in-situ S-waveand P-wave velocities of the site bedrockmaterial and the soil overburden. Thesemeasurements were substantiatedby dynamic testing of soil and rock samples. Variabilities in the shearwave velocitiesof the bedrock material and the overburdensoil are estimatedrespectively, from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

Although the deeprock stratigraphyis derived from well logs within about 2-3 miles of the Site, the seismicvelocities of thesestrata rely on sonic logs recordedin the wells in SanduskyCounty (15-24 miles from the Site) and Wood County (35 miles from the Site). Figure 2 presentsthe location of wells utilized hereto obtain the stratigraphyas well as the sonic data. The wells identified with yellow pins were only usedfor stratigraphiccorrelation, while the wells identified with red markerswere also usedfor seismicvelocitv data. J

The sonicdata were convertedto pressure(P)-wave velocities (Vo) and shear(S)-wave velocities (V,) basedon publishedliterature (Pickett, 1963; Rafavich, 1984; Miller, 1990;and Castagna, 1993)reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent, the lithology. Additionally,based on publishedliterature, VpN.

lESConsulting S:\Local\PubsV734296FENOC Davis-Besse\3 1Q ReportFile\R-008\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx f{OR 2734296-R-008 Reaision2 September9,201.3 PaseL7 of25

ratios of I .7 and2.1 were usedto obtain a coefficient of variation (COV) of about 0.1 representingthe variabilities for the S-wavevelocities.

Go [eearth o FIGURE 2 WELLS USED TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVE VELOCITIES

Varyingunit thicknesses,incomplete well logs,and non-standard lithologic descriptions present somechallenges to reliablyestimating contact locations. However, the lithologicunits in the regionare flat lying andfor the mostpart, laterally consistent. Consequently, the velocity

AE$Gonsultlng S:\Local\Pubs\27A2% FENOC Davis-Besse\3.1QReport File\R408\R2\27342S-RS8, Rev. 2 2013 Og 09 DB Site Description.docx 2734296-R-008 Reaision2 September9, 201.3 Page18 of 25

structurein the wells examinedis relatively similar and consistentfrom well to well for similar depths.

Most major structuresof the DBNPS are foundedin the dolomite bedrockat foundation elevationsvarying between540 for the Shield Building (SB) to about 550 for the Auxiliary Building Area 8. Accordingly, the SB foundation level (EL 540) is defined as the control point elevationwhere the FIRS are developed.

The velocity profile presentedhere is basedon resultsof site investigationsreported in the USAR to the investigateddepths. Twenty-six seismicrefraction shot points were usedto determinethe in-situ shearwave and compressionwave velocities of the bedrock and till material. Additionally, 9l cross-holemeasurements obtained seismic compression wave velocitiesat various depths. The in-situ measurementswere supplementedby dynamic laboratorytests to obtain the dynamic compressionand shearmodulus, damping, and Poisson's ratios. Below the investigationdepth, the deeprock stratigraphiesas well as the velocity profiles are estimatedfrom availabledeep well information in the site vicinity (RIZZO,2012).

Table 4 presentsthe summarygeotechnical profile identifying the layer thicknesses,shear and compressionwave velocities,and uncertaintiesin theseparameters.

AFSConsulting S:\Local\Pubs\2734296FENOC Davis-Besse\3.1Q Report File\R€08\R2V734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx 2734296-R-008 Reaision2 September9, 20L3 -lQ Pnop nf ?1

TABLE 4 SUMMARY SITE GEOTECHNICAL PROFILB FOR DBNPSSITE

Et Bv.lrton LnYnn Ttot"t V.t'l SOIURoCK DESCRIPTIoN (ft) No. (ncfl (ftls) tr 585 Plant Grade 585to 565t' I Glaciolacustrine Deposits 125 5ll+92tot 0.4(o/ 565to 555 2 GlacialTill 132-136 643+ll6(*, 0.4(ol 555to 548 BeddedDolomite 3960+695('l J l5l 0.31(6) 548to 540 MassiveDolomite 4948+891( 540 RX FIRS - SSE Control Point elevation 540-528 )a MassiveDolomite l5l 4948+891( 528to 518 39701715\') a (6) 518to 508 J BeddedDolomite l5l 5790+1042\') 0.3I 508to 460(') 4071 460to 370\') 4 GreenfieldDolomite (Upper Silurian) 176 5.672 0.31 370to 30 5 LockportDolomite (Middle Silurian) t76 8.782 0.3r 30to -20 6 Shale 138 8,682 0.27 lnterbeddedDolomite, Limestone, and -20to - 105 7 t76 8,615 0.27 Shale -105to -685 I Shale,Siltstone and Sandstone r42 6.514 0.30 -685to -850 9 Shaleand Limestone 176 5,996 0.29 -850to -1530 l0 Limestone 176 10,894 0.29 -l 530to -l 580 ll Limestoneand Dolomite 176 10.712 0.31 -l 580to -1590 t2 Sandstones.Carbonates. and Shales r42 r0,212 0.30 - I 590to - 1650 r3 Sandstone t45 10,212 0.30 -1650to -1750 t4 Dolomite 176 9,049 0.34 -1750to -1875 l5 Sandstoneand Dolomite Sandstone t45 7.616 0.30 - l 875 to -2075 I6 Shale,Siltstone, Sandstone, and Dolomite 176 9,483 0.34 -2075 to -2185 T7 Sandstone t45 7,337 0.30 Notes: (l) Velocity databetween EL 503 ft and EL 482.5ft is unavailable.Available parameters for stratum3 are assumed applicablethroughout the entirelayer. Above EL 482.5 ft, a COV - 0.18 is usedfor the velocity variability estimates.Below EL 482.5ft. a COV-0.1 is used. (2) Beginning from EL 482.5ft and below, the Poisson'sratio and dry unit weight valuesare basedon literaturedata and engineeringjudgment. A 5 percentwater content is assumedfor the materialsin the soil column. (3) Exceptotherwise noted, V. presentedhere is the bestestimate weighted average values based on the Well Log P- wave velocity. (4) Basedon SPT-N valuesfrom 32 boreholesin Units 2 and 3. (s) Obtainedfrom cross-holemeasurements in Units 2 and3. (6) Assumptionbased on Unit I data. Watertable EL is approximately575. (7) l0' of CompactedBackfill, consistingof lacustrinesoils and till is assumedto havethe samevelocities as

ABSConsulting S:\Local\Pubs\27342%FENOC Davis-Besse\3 1Q ReportFile\R{08\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx f{\R 2734296-R-008 Reuision2 September9,20L3 Page20 of25

3.2 V, PnonrLESusED rN DAvrs-BEssENucLn.q,R PownR SrATroN SPRA

The site responseanalysis performed as part of the DBNPS SPRA usesone Base Caseprof,rle basedon the information in Table 4. However, the analysisrepresents possible aleatory variability in the V, profile by using 60 randomizedV* profiles basedon the parameters presentedinTahle 4. The random profilerealizations are obtainedusing the stochasticmodel developedby Toro (1996), and assumefull correlationbetween the shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceous dolomite.

The use of one BaseCase profile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrock are well characterizedby a number of in-situ velocity measurements,and dynamic laboratorytests, and the reportedboring logs do not indicate significant variability in layer thicknessesand depths. Figure 3 presentsthe best estimaterepresenting the BaseCase velocity profile and the upper and lower boundsrepresented by 60 randomizedprofiles utilized in the SPRA site responseanalysis. Note that upper bound V, is limited to the velocity of the hard rock of 9,200 fl/s.

Gonsulting S:\Local\Pubs12734296FENOC Davis-Besse\3.1Q Report File\R408\R29734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx rCR 2734296-R-008 Reaision2 September9,201.3 Pase21 of25

BestEstimate Upper-Bound

I Lower-Bound CL o o

FIGURE 3 BASE CASE SHEARWAVE VELOCITY PROFILE DBNPSSITE

3.3 Non-LTNEARM,lrnnrAl, CHARAcrERrsrrcsUsnn rN DBNPS SPRA

The site responseanalysis performed as part of the DBNPS SPRA representsnon-linear material propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshear strain. The Davis-BesseUSAR doesnot report non-linearproperties of the

AESGonsultlng S:\Local\Pubs\27A2% FENOC Davis-Besse\3.1Q Report File\R408\R2\127342S-R-008,Rev 2 2013 09 09 DB Site Desoiption docx rCR 2734296-R-008 Reuision2 September9,201.3 Pase22 of 25

subsurfacematerials. Therefore,the modulus degradationand material damping curvesused hereare based onNUREG/CR 6728. Non-linearityof shearmodulusand dampingis expressed in terms of the shearmodulus degradationand material damping as functions of the seismic shearstrain.

Tuble 5 and Figure y' presentthe strain dependentshear modulus and damping for the dolomite bed rock units underlying the site. The material-dampingratio is limited to a maximum of 15 percentin the calculationsfollowing guidancein USNRC RegulatoryGuide 1.208. The dampingratio for the hard rock half spaceis assumedto be 1.0 percent.

TABLE 5 STRAIN-DEPBNDENTPROPERTIES FOR BED ROCK

Srn.ArN(" 1 G/G Dnuprllc (o l 1.00E-04 0.997 3.247 3.16E-04 0.997 3.247 r.00E-03 0.997 3.247 3.40E-03 0.997 3.247 6.80E-03 0.974 3.871 8.80E-03 0.966 4.105 1.31E-02 0.932 4.596 2.528-02 0.8s0 5.566 3.048-02 0.824 6.025 4.98E-02 0.726 7.577 8.05E-02 0.624 9.168 1.32E-01 0.513 I 1.099 2.ttE-01 0.4t6 13.3I I 3.25E-01 0.329 15.650 5.70E-01 0.242 18.843 9.43E-01 0.161 21.73r

Note: G/Gmax : shearmodulus (G) normalizedby the low-strain shearmodulus (Gmax)

AB$Gonsulting S:\Local\Pubs\27H296FENOC Davis-Besse\3 1Q ReportFile\R-008\R2P734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx 2734296-R-008 Reaision2 September9,20L3 Page23 of 25

Rock Layers I 0.9 0.8 0.7 0.6 x Eo.s o 0 04 0.3 0.2 0.1 0 0. 0.01 0.1 Shearstrain (%)

Rock Layers

20 18 16

^14 Erz ctl .= 10 CL E8 8o 4 2 0 0.0001

FIGURE 4 BBST.ESTIMATE AND RANDOMIZED STRAIN.DBPENDENT SHEAR MODULUS AND DAMPING

The variability in the dynamic propertiesis propagatedin the site responseanalysis by selecting from 60 setsof randomizedproperty curvesshown onFigure 4. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties, is paired with one combinationof the randomizednonlinear dynamic property curvesfor input to the site responseanalysis.

lBs Gonsulting S:\Local\Pubs\27342%FENOC Davis-Besse\3.1Q Report File\R{08\R2\2734296-R408 Rev. 2 2013 09 09 DB Site Description.docx rCR 2734296-R-008 Reaision2 September9,201.3 Pow4 tfE

4.0 REFERENCES

Castagna,J.P., and M.M. Backus, 1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P., Batzle, M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, p. 135- 17l, 1993.

EPRI, 2013 "Seismic Evaluation Guidance,Screening, Prioritization and ImplementationDetails (SPID) for the Resolutionof FukushimaNear-Term Task ForceRecommendation 2.1: Seismic," February2013.

FirstEnergyNuclear OperatingCo (2012) "Final Report Geology and GeotechnicalInformation for SiteAmplification CalculationsSeismic Probabilistic Risk AssessmentDavis BesseNuclear PowerStation," Rev. 0, July 2,2012.

Gotdthwait,R., G. White, and J. Forsyth,1961, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey,1961.

Hough,J.L., 1958,"Geology of the GreatLakes," University of Illinois Press,Urbana, IL, 1958.

McQuire,R.K.,W.J. Silva,and C.J.Costantino,200l, NUREG/CR-6728 Technical Basis for Revision of RegulatoryGuidance on Design Ground Motions: Hazard-and-Risk-consistent GroundMotion SpectraGuidelines, Risk Engineering,Inc., Boulder,Colorado, October 2001.

Miller, S.L.M., and R.R. Steward,l990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocities from Sonic Logs," CanadianJournal of Exploration Geophysics,Volume 26, Nos. | &,2, p. 94-103,1990.

Norris, S.8., lg7s,Geologic Structureof Near-surfaceRocks in WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007,Regulatory Guide 1.208,"A Perforrnance-BasedApproach to Define the Site- Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission, March 2007. 'Seismic NRC, 2013"Electric PowerResearch Institute Final Draft Report, Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation2.1: Seismic,'as an acceptableAlternative to the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatiof,,"Journal of PetroleumTechnology, Volume 15,No. 6, p. 659-667,1963.

ABSConsulting S:\Local\Pubs\27A2%FENOC Davis-Besse\3.1QReport File\R{08\R2\27342S-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx f{]e 2734296-R-008 Reaision2 September9, 201.3 PqK t! lf@

Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The Relationshipbetween Acoustic Propertiesand the PetrographicCharacter of CarbonateRocks," Geophysics, Volume 49,No. 10, p. 1622-1636,1984.

RIZZO 2012 "Geology and GeotechnicalInformation for Site Amplification Calculation, SeismicProbabilistic Risk Analysis,Davis BesseNuclear Power Station," Report R2 l2-4734 DB Site Info to EPRI," Revision0, PaulC. Rizzo Associates,Inc., Pittsburgh,PA, June29, 2012.

R:IZZO,2013, "Probabilistic SeismicHazard Analysis and Ground Motion ResponseSpectra, Davis-BesseNPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, April 19, 2013.

Toledo Edison, 2012 "Updated SafetyAnalysis Report, Davis-BesseNuclear Power StationNo. 1, DocketNo: 50-346,License No: npf-3, Revision29,December 2012."

Toro, G. R. 1996"Probabilistic Models of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,Associated Universities, Inc. Upton,New York 11973,Contract No. 770573,Published as Appendix D in W.J. Silva,N. Abrahamson.G. Toro and Costantino,1996.

ABSGonsulting S:\Local\Pubs\2734296FENOC Davis-Besse\31Q ReportFile\R408\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Description.docx rc\r? EnclosureD L-13-245

SiteDescription for PerryNuclear Power Plant Near-TermTask Force Recommendation 2.1 PartialSubmittal PerryNuclear Power Plant (27 pagesfollow) ABSGonsulting 2734298-R-008 Revision2

Site Description for PerryNuclear Power Plant Near-TermTask Force Recommendation2.1 Partial SubmittalPerry Nuclear Power Plant

September9, 2013

Prepared for: FirstEnergyNuclear Operating Gompany

ABSGConsultinq Inc. . 300Commerce Drive, Suite 200 . lrvine,California 92602 2734298-R-008 Reaision2 September9,201-3 PaRe2 of 27

REPORT

SITE DESCRIPTIONFOR PERRY NUCLEAR POWER PLANT

NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL PERRYNUCLEAR POWER PLANT

ABSG CONSULTINGINC. Rrponr No. 2734298-R-008, RIZZO Rnponr No. R9 12-4734, RnvrsroN2 SnprrnnBER912013

ABSG CoNSULTTNGINC. Paul C.Rtzzo AssocrATES, INC.

AESGonsultlng S:\Local\Pubs\2734298FENOC Perry\3 1Q Report File\R-008\R2\2734298-R-008,Rev 2 2013 Og 09 PY Site Description.docx rCR 2734298-R-008 Reuision2 September9,20L3 Pnop 1 nf)7

APPROVALS

Report Name: Site Description for Perry Nuclear Power Plant NTTF Recommendation2.1 Partial Submittal Perry Nuclear Power Plant

Date: September 9, 2013

Revision No.: 2

Approval by the responsiblemanager signifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 9109t20r3 Nish Vaidya,Ph.D., Date Princinhl

Independent Technical Reviewer: 910912013 len[Hatipoglu Ph.D. Date echnicalSupervisor Project Va; Manager: NtEd^ 910912013 Date

Approver: 910912013 Thomal6R. Roche.P.E. Date Vice President

ABSGonsulting S:\Local\Pubs\27H298FENOC Perry\3.1Q Report File\R-008\R2t2734298-R-008, Rev 22O13Og Og PY Site Descriptiondocx 2734298-R-008 Reaision2 September9,20L3 Page4 of27

CHANGE MANAGEMENT RECORI)

Report Name: SiteDescription for PerryNuclear Power Plant NTTF Recommendation2.1 PartialSubmittal PerryNuclear Power Plant

Pnnson Rnvrstotrl DnscruprroNsoF D,lrn AurnonrzlNG AppRovnll No. CHnucns/AnnBcrEDPAGES CH,lNcn 0 August12.2013 OrieinalIssue N/A N/A AddressedLicensing Comments I September6, 2013 NRV NRV Primarilv Editorial 2 September.9 2013 Additional Licensing Comments NRV NRV

Note: t Personauthorizing change shall sign here for the latestrevision.

ABtConsultlng S;\Local\Pubs\:2734298FENOC Perry\3 1Q Report File\R408\R2\2734298-R{08, Rev. 2 2013 09 09 PY Site Descriptiondocx 2734298-R-008 Reaision2 September9,201.3 Pase5 of27

TABLE OF CONTENTS

1.1 SouncesoF INFoRMATToN ...... 9 2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES (ITEM3.a) ...... 1I 2.1 SrreSrnnrrcRApHy ...... 1I 2.2 SuesunpAcEMATERTALS AND PnoppnrrEs ...... I 4 3.0 SITESHEAR WAVE VELOCITYPROFILE AND NON-LINEAR MATERTALPROPERTTES (rTEM 3.b)...... 16 3.1 BnsrsFoR BASE CASE Vplocrry PnorrlEs...... 16 3.2 V, PnonLESusED rN PNPP SPRA .....19 3.3 NoN-Ltt'leeRMaTERIALS CHnRacrERrsrrcs UsEo rN PNPP SPRA ...... 21 4.0 REFERENCES ...26

fESGonsufrlng S:\Local\Pubs\27%298FENOC Perry\3.1QReport Fi|e\R-OO8\R2\273429E-R-008, Rev. 2 2013 Og09 PY Site Description.docx rCR 2734298-R-008 Reaision2 September9,201.3 Page6 of 27

LIST OF TABLES

TABLE NO. TITLE PAGE TABLE I SUBSURFACESTRATIGRAPHY AT THEPNPP SITE...... I3 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES. PNPPSITE...... rS TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES. PNPPSITE...... rS TABLE 4 GEOTECHNICALPROFILE, PNPP SITE ...... I8 TABLE 5 STRAIN-DEPENDENTPROPERTIES FOR PNPP SUBSURFACESOILS ...... 21

AE$Gonsultlng S:\Local\Pubs\2734298FENOC Perry\3 1Q Report File\R408\R2U734298-R408, Rev, 2 2013 09 09 PY Site Descriptiondocx rCR 2734298-R-008 Reaision2 September9,201.3 Page7 of27

LIST OF FIGURES

FIGURE NO. TITLE PAGE

FIGUREI STRATIGRAPHICCOLUMN UNDERLYINGTHE PNPPSITE...... 12 FIGURE2 DEEPWELL STRATIGRAPHY/SHEARWAVE VELOCITIES,PNPP SITE ...17 FIGURE3 SPRAVs PROFILE,PNPP SITE...... 20 FIGURE4 SHEARMODULUS AND DAMPING,LACUSTRINE SOIII,S,PNPP SITE ...... 22 FIGURE5 SHEARMODULUS AND DAMPING.UPPER TILL" pNppsrrE..... :...... :...... 23 FIGURE6 SHEARMODULUS AND DAMPING,LOWER TILL, PNPPSITE...... 24

AESConsuftlng S:\Local\Pubs\27%298FENOC Perry\3 1Q Report File\R408\R2\2734298-R408, Rev 2 2013 09 09 PY Site Descriptiondocx rCR 2734298-R-008 Reuision2 September9,201,3 PageI of27

LIST OF ACRONYMS

ACRONYM TITLE COV Coefficient of Variation DGB Diesel GeneratorBuilding EL Elevation EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra ft Foot or Feet ft/s Feetper second GMRS Ground Motion ResponseSpectra Ksf Kips per squarefoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force pcf Poundsper cubic foot PNPP Perry Nuclear Power Plant RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilistic Risk Analvsis su Undrained shearstrength SPT StandardPenetration Test Tsf Tons per squarefoot USAR UpdatedSafety Analysis Report vp Pressure-wavevelocities V, Shear-wavevelocities

AESGonsultlng S:\Local\Pubs\27%298FENOC Perry\3.1QReport File\R{08\R2u734298-R408, Rev 22013Og 09 PY Site Description.docx 2734298-R-008 Reaision2 September9,20L3 Page9 of 27

REPORT SITE DESCRIPTIONFOR PERRY NUCLEAR POWER PLANT

NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL PERRY NUCLEAR POWER PLANT

1.0 INTRODUCTTON

With referenceto United StatesNuclear RegulatoryCommission (NRC) Leffer dated May 7, 2013 (NRC, 2013) this documentsummarizes the site geologic and geotechnicalinformation, and presentsthe basecase velocity profiles for the Perry Nuclear Power Plant (PNPP) site. This information addressesItems 3.a. "Description of SubsurfaceMaterials and Properties,"and 3.b., "Developmentof BaseCase Profiles andNon-linear Material Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismic hazarddevelopment efforts. The completeand final seismic hazardreportsfor PNPP will be provided to the NRC in our seismichazard submittals by March 31,2014 in accordancewith (NRC,2013).

The basecase velocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazardat outcroppinghard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vs) equal to or greaterthan 9,200 feet per second (ft/s). The site responseanalysis obtains the amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motio nhazard and the groundmotion responsespectra (GMRS) at the building foundationlevels. l.l Souncn SoF InnoRnaATIoN t. PerryNuclear Power Plant No.l UpdatedSafety Analysis Report, Rev 17, DocketNo. 50-440,Section 2.5: Geology,Seismology and GeotechnicalEngineering; Appendix2c - Geology,Seismology, Subsurface Conditions and GeotechnicalDesign Criteria, October 20t1.

AB$Gonsulting S:\Local\Pubs\2734298FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-ooB, Rev 2 2013 09 09 py Site Descriptiondocx rCR 2734298-R-008 Reaision2 September9,20L3 Page1,0 of 27

2. PerryNuclear Power Plant No.l UpdatedSafety Analysis Report, Rev 17,Docket No. 50-440,Section 3.7 - SeismicDesign, Section 3.8 - Designof CategoryI Structures, October201 l.

3. Ohio GeologicalSurvey - Well Logs.

Canrrlltlm S:\Local\Pubs\27g291tFENOC Peny\3.1Q Report File\R408\R2\273429&R{08, Rev. 2 2013 09 09 PY Site Description.docx FCR 2734298-R-008 Reaision2 September9,20L3 Pagel1gf 2!

2.0 DESCRIPTIONOF SUBSURFACEMATERIALS AND PROPERTIES(ITEM 3.a)

The Perry Nuclear Power Plant (PNPP) site, locatedon the shoreof Lake Erie in Lake County, Ohio lies onthe northwesternflank of the Appalachiangeosyncline. Bedrock directly beneath the site belongsto the Ohio ShaleFormation (Upper Devonian). To the south,these Devonian strataare overlain by successivelyyounger Paleozoic sediments and Pleistoceneglacial deposits respectively. Approximately 30 feet (ft) of very densetill overliesthe bedrock. In turn, the till is overlain by about 25 ftof poorly compactedlacustrine deposits. Both the till and the lacustrine depositsare of Pleistoceneage. The plant gradeis at elevation(EL) 620 and the top of bed rock is at approximateEL 565.

2.1 Strn SrRq.rrcRAPHY

The site stratigraphypresented here is basedin part on site-specificgeotechnical investigations reportedinthe UpdatedSafety Analysis Report (USAR) (Section2.5.4.2 and Appendix 2E). Of the borings advancedas part of the site investigation,two deepborings penetratedto depthsof 395 ftand73A ft and were terminatedin the Huron Shaleformation. Other borings terminatedin the overlying Chagrin Shalebedrock.

The geologic profile below the reportedsubsurface investigation depth is basedon the analysis of formation tops and bottoms from availabledeep well logs in the vicinity of the site (within 4 miles), obtainedfrom the Ohio GeologicalSurvey. Due to the relative proximity of thesedeep wells to the site, and the flat lying natureof the deposits,the unit lithologies and thicknessescan be reliably assumedto be very similar to thosebelow the site.

Figure / presentsthe stratigraphicsoil/rock column underlying the site, andTable I presentsthe stratigraphyextending to the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigations reported in the USAR and availablewell logs in the site vicinity.

AESConsultlng S:\Local\Pubs97H298FENOC Perry\31Q ReportFile\R-OO8\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Description.docx f{]t 2734298-R-008 Reuision2 September9,2073 Page12 of 27

kgend Period Lithology

l. Lacustrine:Pleistocene Lacustrine Deposits: Very frnesandy, clayey sih and silfyclay a-l 2. Glacial Drift Pleistocene:Glacial drift 3. :Devonian Ohio Shale.Chagrin Shale:Gray silty to clayey shale with sand shale laminae. 4. Heron Shale:Devonian Ohio Shale.Heron Shale:Black to brown shalewith sifty n H and sandv laminae. 5. Delew&Col.: DevonianDelaware and ColumbusFormations:Hard, dense, r; (,) chertv limestone.or a dolomiticlimestone

6. Oriskany: DevonianOriskany Sandstone:Fine to medium-grainedsandstone

LA 7. Helderberg:L. Devonianto U. SilurianHelderberg Limestone.

Cd 8. Bass Island:U. SilurianBass Island Group:argillaceous, dolomitic limestone and fi Lr calcareousdolomite q I p 9. Salina:U. SilurianSalina Group: interbeddedevaporite and carbonaterocks IT 10.Lockport: M. SilurianLockport Group: Dolomite 11.Rochester Shale: M. SilurianRochester "Packer" Shale ffi a 12. Clinton:M. SilurianClinton Croup: Dolomite, limestoneand shale 13.Medina: M. SilurianMedina Formation:Sandstone 14. Queenstown:Upper Ordivician QueenstownFormation: Shale, sihstone and {l+ sandstone r 15.Reedsville:Middle to Upper OrdovicianReedsville Formation: Fine-grained o I shale.limestones and lolomites 16. Trenton: M. Ordivician Trenton Limestoneand Dolomite 17.Chary: Middle Ordivician Chary Formation (Black River/Gull River/ 1[ Glenwood):Limestone 18. Copper Ridge:L. Ordivician Copper Ridee Formation:Dolomite T g sandstone TI 19.Conasauga: U. CambrianConasauga Formation: Limestone and 20. Rome: M. CambrianRome Formation:Dolomite O E 21. Shady:M. Cambrian Shadyformation: Dolomite

I O. -l 22.Mt Simon:M. CambrianMt. SimonFormation: Sandstone

Q 23. Precambrianregionalty-metamorphosed schists, gneisses, marbles, and calc- C) +rt|.i silicategranulites

FIGURE I STRATIGRAPHIC COLUMN UNDBRLYING THE PNPP SITE

Consulting S \Local\Pubs12734298FENOC Perry\31Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Descriptiondocx rCR 2734298-R-008 Reuision2 September9,2073 Page13 of 27

TABLE 1 SUBSURFACESTRATIGRAPHY AT THE PNPPSITE

Top Borrom Top Borrom EL EL Lrruolocv Dnprn DrprH (ft) (f0 (f0 (f0 PleistoceneLacustrine deposits: very fine sandy,clayey silt and silty 625 594 0 31 clav 594 565 Pleistocene:glacial drift 3l 60 DevonianOhio Shale. ChagrinShale: gray silty to clayeyshale with 565 - 135 60 760 sandshale laminae DevonianOhio Shale. Huron Shale: black to brown shalewith siltv -l 35 -660 760 1285 and sandvlaminae -660 -970 DevonianDelaware and Columbusformations: hard. dense. chefi t285 I 595 limestone.or a dolomiticlimestone -970 -980 DevonianOriskany Sandstone: fine- to medium-grainedsandstone I 595 I 605 -980 -r 030 L. Devonianto U. SilurianHelderberg Limestone 1605 l 655 U. SilurianBass Island Group: argillaceous,dolomitic limestone, and -r030 -l 130 I 655 1755 calcareousdolomite -r 130 -r 830 U. SilurianSalina Group: interbeddedevaporite and carbonaterocks 1755 2455

-l 830 -2080 M. SilurianLockport Group: dolomite 2455 2705 -2080 -2110 M. SilurianRochester "Packer" Shale 2705 2735 -2t10 -2290 M. SilurianClinton Group: dolomite,limestone, and shale 2735 2915 -2290 -2305 M. SilurianMedina Formation: sandstone 2915 2930 siltstone,and -2305 -2505 UpperOrdivician Queenstown Formation: shale, 2930 3130 sandstone fine-grained -2505 -3945 Middle to UpperOrdovician : 3130 4570 shale,limestones, and dolomites -3945 -4435 M. OrdivicianTrenton Limestone and Dolomite 4570 5060 (Black -4435 -4615 Middle Ordivician ChazyFormation River/Gull River/ s060 5240 Glenwood): limestone -4615 -47t5 L. OrdivicianCopper Ridge Formation: dolomite 5240 5340

-47t5 -4930 U. CambrianConasauga Formation: limestoneand sandstone 5340 5555

-4930 -4910 M. CambrianRome Formation: dolomite 5555 559s -4910 -5160 M. CambrianShady formation: dolomite 5595 5785 -5 160 -5300 M. CambrianMt. SimonFormation: sandstone 5785 5925 -5300 Precambrianregional ly-metamorphosed schists, gneisses, marbles, s925 and calc-silicatesranulites

lBSGonsulting S:\Local\PubsV734298FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013Og 09 PY Site Desuiptiondocx 2734298-R-008 Reuision2 September9,2013 PaseL4 of 27

The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regionaland Local Geology discussedin theUSAR (Section2.5.1.2).

SunsunFACEMarnruALS ANDPnopnRTrES

The lacustrinedeposits below surfacesoils averagein thicknessof 25 ft and are composedof a very fine sandy, clayeysilt, and silty clay. The underlying soil layer is a very densePleistocene glacial drift till composedof native material with someice-transported granitic erratic. Composition of the till varies from placeto place,but in generalis heterogeneous,dense, boulder clay with interspersedrock fragmentsranging from large boulders,cobbles, and pebblesdown to sandsize. This unit is an averageof 30 ft thick and overliesthe uppermostbedrock.

The bedrock immediatelybeneath the site belongsto the Upper Devonian Ohio ShaleFormation extendingto a depth of about 1250 ft. Becausethe site sits on the northwesternflank of the Appalachiangeosyncline, the rocks dip gently to the south at an angle of about 5 degrees.The membersof the Ohio Shaleare, from oldestto youngest,the Plum Brook, Huron, Chagrin, Cleveland,and Bedford shalemembers. In the PNPP site area,the upper membershave been erodedaway to exposethe Chagrin Shale. The Chagrin Shalemember is about 700 ft thick and is composedof dark-grayto medium-graysilty or clayey shaleoccasionally containing light gray sandyshale laminae. The underlying Huron Shaleis a black to dark brown shalewith lesser amountsof thinly beddedlight gray silty and sandylaminae than the Chagrin Shaleand is estimatedto be about 525 ft thick below the site.

The stratigraphybelowthe Huron Shaleconsists of an approximately2,250 ft thick sequenceof various sedimentaryrocks predominantlylimestones and dolomites with interbeddedshales and sandstonesof various thicknesses.These formations overlay the Precambriangranite basement. The top of the Precambrianbasement exists at approximateEL -5300 ft.

The subsurfacematerials properties summarized here are basedon the geotechnical investigationsdescribed in the USAR. Samplesof the overburdensoils and bedrockretrieved from the borings were subjectedto static and dynamic laboratorytests. Propertiesof the subsurfacematerials and bedrockmaterial presentedhere are generallybased on both laboratory testsresults and in-situ geophysicalmeasurements.

AESConsulting S:\Local\Pubs\27%298FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Description,docx rC? 2734298-R-008 Reaision2 September9, 201.3 '1,5 Pase of 27

Tables2 and 3 summanzethe physical and mechanicalproperties of the overburdensoils and the bedrock material.

TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIBS,PNPP SITE

AvrcRncn Dn'nsrrY Su SPT RncovnRY(%) MlrnRrlr, Tnrcrnnss (f0 (pcf) (tsf) (blow/ft) Range Average LacustrineDeposits 28 t22 - 129 0.75 5 to 15 GlacialTill 29 t32 - l4l l.0 to 5.5 15to 100 Chaerin Shale 1000+ 150- 152 130 >95 Huron Shale 150- 152 130 >95 Su: Undrained shearstrength SPT: StandardPenetration Test Ref. USAR Table 2.5-57 and2.5-61 Ref.USAR Sections2.5.1.2 and 2.5.4.2

TABLE 3 SUBSURFACBMATERIALS DYNAMIC PROPERTIES,PNPP SITE

MnlsuRED VELocrrY (ftls) (l) Mooulus (ksf) (3) Dnupmc PoISSon'S Mlrnnral CoupRnssroN Sun.ln CoupnnssroN Sur.ln ("hl Rauo LacustrineDeposits r 200-s000 600-1200 36.0- 170.0 13.0- 57.6 3.7-7.1 0.33-0.49 GlacialTill 5900-7800 1900-2600 427.8-823.7 148.3-296.6 3.0- 4.5 0.44 Chagrin Shale 10400 4900 3079 I135 t.0-2.0 0.36 ChaerinShale (2) 9000 4000 2082 756 r.0- 2.0 0.38 Huron Shale (l) USAR Table2.5-21 (Cross Hole) (2) Basedon Down hole measurements (3) USAR Table2.5-21 (Based on in-situwave velocities)and Table2.5-60

AE$Gonsulting S:\Local\Pubs\27g298 FENOC Perry\3 1Q Report File\R-008\R2\2734298-R-008,Rev 2 2013 09 09 PY Site Descriptiondocx fl,^\R 2734298-R-008 Reaision2 September9,2013 Page16 of 27

3.0 SITE SHEAR WAVE VELOCITY PROFILE AND NON-LINBAR MATERIAL PROPERTIES(ITEM 3.b)

This sectionpresents the shearwave velocity profiles usedin the site responseanalysis to developthe GMRS in supportof NTTF Recommendation2.l:Seismic, and the on-goingPerry NPP seismicprobabilistic risk assessment(SPRA). Thesevelocity profiles arebased on the site information as reported inRlZZO Report "Probabilistic SeismicHazardAnalysis and Ground Motion ResponseSpectra, Perry NPP, SeismicPRA Project,"(F{IZZO, 2013).

3.1 Bnsts FoRB,tsn, C.q,sB Vnloclry PROFILES

The shearand compressionwave velocities of the overburdensoils and the shalebedrock are basedon the subsurfaceinvestigations reported in the USAR. The geophysicalmeasurements includedseven seismic refraction lines, in situ cross-holevelocity measurementsin seven borings,and one down-holemeasurement in Boring l-33. Measuredvalues of the compressional and shearwave velocities (Vr) and unit weight valueswere then usedto calculatethe elastic moduli values. Thesemeasurements were substantiatedand supplementedby dynamic testing of soil and rock samplesto obtain the dynamic compressionand shearmodulus, damping, and Poisson'sratios.

Variabilities in the shearwave velocitiesof the bedrockmaterial and the overburdensoil are estimatedrespectively, from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestrata relies on sonic logs recordedin the wells in the site vicinity (within 4 miles). Figure 2 presentsthe location of wells utilized here to obtain the stratigraphyas well as the sonic data.

The sonicdata were convertedto P-wavevelocities (Vp) and S-wavevelocities (Vr) basedon publishedliterature (Pickett, 1963;Rafavich, 1984; Miller, 1990;and Castagna,1993) reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent, the lithology. Additionally, basedon publishedliterature, Vp/V, ratiosof 1.7 and 2.1 were usedto obtaina coefficientof variation(COV) of about0.1 representingthe variabilitiesfor the S-wavevelocities.

ABSGonsulting S:\Local\Pubs\2734298FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 Py Site Descriptiondocx rCR 2734298-R-008 Reuision2 September9,201.3 Page1.7 of 27

FIGURE 2 DEEP WELL STRATIGRAPHY/SHEAR WAVE VELOCITIES, PNPP SITE

Varying unit thicknesses,incomplete well logs, and non-standardlithologic descriptionspresent somechallenges to reliably estimatingcontact locations. However, the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relatively similar and consistentfrom well to well for similar depths.

AESGomultlng S:\Local\Pubs\27U29EFENOC Perry\3.1QReport File\R40€l\R2\273429&R-008,Rev. 2 2013 09 09 PY Site Description.docx r]CR 2734298-R-008 Reuision2 Septenfuer9,2013 PageL8 of 27

Most major structuresof the PNPP are foundedin the shalebedrock at foundation elevations varying betweenEL 561 for the ReactorBuilding to about EL 564 for the Control Complex. Accordingly,the RB foundationlevel (EL 561) is definedas the controlpoint elevationwhere the foundationinput responsespectra (FIRS) are developed.

Table 4 presentsthe summarygeotechnical profile identifying the layer thicknesses,shear and compressionwave velocities,and uncertaintiesin theseparameters. This model representsthe natural material. The soil/rock column at the Diesel GeneratorBuilding (DGB) replacesthe lacustrinedeposits and the upper till by engineeredbackfill.

TABLE 4 GBOTECHNICAL PROFILE, PNPPSITE

Elnvarron L,q,ynn SotilRocx DnscRrPTroN Vs (ftls) (ft) No. Ttotatlpcr; tr 620 Plant Grade (Ground Surface EL 620) ^ 625to 612' la LacustrineDeposits 122' 827+207" 0.33 613to 624 Ground Water EL ts ^ 6l 5 to 605 lb LacustrineDeposits 122' 927+207 0.49 ^ 605 to 594 1c LacustrineDenosits l2g' 827+207" 0.47 ^ 594to 586 2a GlacialDrift - UpperTill 132' 890+225" 0.44 ^ 589to 565 2b GlacialDrift - Lower Till l4lc ll85+4468 0.44 A 565to 510 3a DevonianChagrin Shale 152 4772+477 0.36 561 GMRS EL - SSE Control Point Nuclear Island Foundation Level A 565to 510 3a DevonianChasrin Shale 152 4772L4778 0.36 510to 3928 3b DevonianChagrin Shale r52 s213 0.32 5l0 to 392 3c DevonianChagrin Shale 152 5203 0.30 392to-135 4a DevonianHuron Shale 152 5203 0.30 -135to -470 4b DevonianHuron Shale r52 6187 0.28 -660 5a DevonianD&C Limestone r68 6187 0.28 -709 5b D&C Limestone 168 10540 0.30 -970 6 DevonianOriskanv Sandstone 151 r0540 0.30 -980 l Dev-SilHelderberg Limestone 168 l 0540 0.30 -l 030 8 SilurianLimestone Dolomite 168 10540 0.30 -1 r30 9a SilurianSalina Carbonate Rocks 150 10s40 0.30 -l r93 9b SilurianSalina Carbonate Rocks r50 8577 0.26 -1455 9c SilurianSalina Carbonate Rocks r50 7152 0.30

fBSConsulting S:\Local\Pubs\2734298FENOC Perry\3 1Q ReportFile\R-008\R2U734298-R-008, Rev 2 2013 09 OgPY Site Descriptiondocx rce 2734298-R-008 Reaision2 September9, 20L3 Pase1.9 of 27

Elnvlrron LA,ynR Sort lRocK DESCRTprtoN Vs (ftls) (ft) No. Ttotat1pct1 tl -l 830 l0a SilurianLockport Group t70 t1784 0.30 -2015 r0b SilurianLockport Group t70 7979 0.30 SilurianDolomite, Limestone, -2110 l2 170 7979 0.30 Shale -2290 l3 SilurianMedina Sandstone r57 7979 0.30 -2305 I4 Ordivician QueenstownShale- 157 7979 0.30

Notes for Table 4: A. Crosshole test B. Back-calculationfrom stiffnessparameters adopted in USAR C. In-situtest results D. Table2.5-61 of the USAR E. From this elevationdown, soil parametersare estimatesfrom sonicvelocities of deepwells exceptunit weight. Unit weightsare typical valuesfrom literature.Coefficient of variation(COV) : l0 percentfor seismicwave velocities. Poisson'sratio and Gn'u*are calculated by following formula: v: ([Vp/V,]t-z) I (ztvptv,f -2) : G*u* P V.2

3.2 V, PnontlEs usEDrN PNPP SPRA

In supportof the SPRA project, foundation input responsespectra (FIRS) are developedat the RB foundationelevation (EL 561) as well asthe DGB supportedon backfill at EL 615. The FIRS at the RB foundation level is basedon truncatedsoil profiles obtainedfrom the full soil column siteresponse analysis.

The site responseanalysis performed as part of the PNPP SPRA usesonly one BaseCase profile, also basedon the information in Tsble 4. However, the analysisrepresents possible aleatory variability in the shearwave velocity profile by using60 randomizedV, profilesbased on the parameterspresented in Table 4. The random profile realizationsare obtainedusing the stochasticmodel developedby Toro ( I 996), and assumefull correlationbetween the shearwave velocities in adjacentlayers. Theserandom realizattonsof the V, profile representthe variability in the soil column from the Devonian D & C Limestoneto the top of the lacustrinedeposits.

The use of one BaseCase profile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well characterizedbya number of in-situ velocity measurements,and dynamic laboratorytests, and the reportedboring logs do not indicate significant variability in layer thicknessesand depths.

ABtGonsulting S.\Local\Pubs12734298FENOC Perry\31Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 OgPY Site Descriptiondocx f16]R 2734298-R-008 Reuision2 September9,201,3 Page20 of 27

Vs ffUsecl 2000 4000 6000 -l 'l 200 I 400 ! I g I 5 800 CL o o I 1000 I 'l

1200 ...... SPRALB RandOmVS I

1400 - . SPRAUB RandomVs

-SPRA Best Estimate 1600

FIGURE 3 SPRA Vs PROFILB' PNPP SITE

Figure 3 presentsthe best estimaterepresenting the BaseCase profile along with lower and upper boundsrepresented by the 60 randomizedprofiles consideredin the SPRA site response analysis.

AESGonsultlng S:\Local\Pubs\2734298FENOC Perry\3.1QReport File\R-008\R2\2734298-R-008, Rev 22013Og 09 PY Site Description,docx 2734298-R-008 Reuision2 September9,201,3 Pase21 of 27

3.3 Non-LtNEARM,q,rnntALS CHARACTERTsTIcs Usnu rN PNPP SPRA

The site responseanalysis performed as part of the PNPP SPRA representsnon-linear material propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshear strain. The dynamic propertiesfor eachlayer in the model are basedresults of resonantcolumn testsreported in Section2.5.4.2of the USAR. Non-linearityof shearmodulus and damping is expressedin terms of the shearmodulus degradationand material damping as functions of the seismicshear strain.

Table 5 and Figures 4 through 6 presentthe strain dependentshear modulus and damping for the overburdensoils. The material-dampingratio is limited to a maximum of l5 percentin the calculationsfollowing guidancein NRC RegulatoryGuide 1.208. The bedrockbelow the overburdensoils is assumedto behavelinearly and the damping ratio for the hard rock half space is assumedto be 1.0percent.

TABLE 5 STRAIN.DEPENDENTPROPERTIES FOR PNPPSUBSURFACE SOILS

Sunnn LlcusrRrnn (EPRI UppnRTrr,t (EPRI Lownn Trlr, (EPRI Srn q,rN PI:5) PI:8) PI:6) (%) G/G-u* EI%I GlG t1%l G/G ET%I 0.0001 1.000 1.00 1.00 1.00 1.00 1.00 0.0003 1.000 1.10 L00 1.10 1.00 1.10 0.0010 0.977 1.50 0.98 1.50 0.98 1.50 0.0030 0.895 2.80 0.91 2.10 0.90 2.80 0.0100 0.745 5.20 0.77 s.00 0.75 5.10 0.0300 0.533 9.20 0.57 8.70 0.55 9.00 0.1000 0.303 14.20 0.34 13.50 0.31 14.00 0.3000 0.143 r8.70 0.17 17.90 0.15 18.40 1.0000 0.041 22.30 0.06 2t.60 0.0s 22.r0 3.0000 0.030 25.20 0.04 24.50 0.03 25.00 G/G-o*: shearmodulus (G) normalizedby the low-strainshear modulus (G*r*) (: Dampingin percent

Gonsulting S:\Local\Pubs\2734298FENOC Perry\3.1Q Report File\R-008\R2\2734298-R-008, Rev 2 2013 Og09 PY Site Descriptiondocx rCR 2734298-R-008 Reaision2 September9,201.3 Page22 of 27

0 0.0001 0.01 Sherr Strrin [Yo]

Ero ctr E,'t E d o10

5

0 D 0001 001

Shcrr Struin[Yol FIGURE 4 SHEAR MODULUS AND DAMPING, LACUSTRINE SOILS,PNPP SITE G/G.o: shearmodulus (G) normalizedby the low-strain shearmodulus (G.r*) Ref. EPRI, 1993,Plasticity Index , PI : 5

fESConsulthU S:\Local\Pubs\27il298 FENOC Peny\3.1Q Report File\R408\R212734298-R-008,Rev 2 2013 Og 09 PY Site Descriptiondocx rCR 2734298-R-008 Reuision2 September9,201.3 Pase23 of 27

OE T (, c' 04

30

.tE

Ero s E r.. a'* E o o10

5

FIGURB 5 SHEAR MODULUS AND DAMPING, UPPERTILL, PNPPSITE G/G.u*: shearmodulus (G) normalizedby the low-strain shearmodulus (G-r*) Ref.EPRI,1993, Plasticity Index , PI : 8

AEgConsulting S:\Local\Pubs\27%298FENOC Perry\3.1Q Report File\R408\R2\2734298-R408, Rev. 2 2013 Og 09 PY Site Description.docx rCR 2734298-R-008 Reaision2 September9,20L3 Page24 of27

OE E gE e' 04

Ero ED E ,re. cL '- E rt oro

0.001

FIGURE 6 SHEAR MODULUS AND DAMPING, LOWER TILL, PNPPSITB G/G,nu*:shear modulus (G) normalizedby the low-strain shearmodulus (G.o) Ref. EPRI, 1993,Plasticity Index , PI : 5

AESGonsultlng S:\Locaf\Pubs\27H298 FENOC Perry\3 1Q Report File\R40€ilR2\2734298-R-008,Rev. 22013Og 09 PY Site Description.docx rCR 2734298-R-008 Reaision2 September9,20L3 Page25 of 27

The variability in the dynamic propertiesis propagatedin the site responseanalysis by selecting from 60 setsof randomizedproperty curves shown on Figures 4 through 6. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties, is paired with one combination of the randomizednon-linear dynamic property curves for input to the site responseanalysis.

Gonsultlng S:\Local\Pubs\2734298FENOC Perry\3.1QReport File\R-0Oel\R2\2734298-R-008,Rev. 2201309 @ PY Site Description.docx rG 2734298-R-008 Reaision2 September9,2073 Page26 of 27

4.0 REFERENCES

Castagna,J.P., and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P., Batzle, M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, p. 135- r7t.

EPRI, 1993"Guidelines for DeterminingDesign Basic GroundMotions, Volume 1: Method and Guidelinesfor EstimatingEarthquake Ground Motion in EasternNorth America," Report EPRI TR-l 02293,November,I 993.

EPRI, 2013 "Seismic EvaluationGuidance, Screening, Prioritization and ImplementationDetails (SPID) for the Resolutionof FukushimaNear-Term Task ForceRecommendation 2.1: Seismic," EPRI Report 1025287,February 2013.

FirstEnergyNuclear OperatingCo, "Updated SafetyAnalysis Report,Perry Nuclear Power Plant No. 1," Rev 17,Docket No.: 50-440.

FirstEnergyNuclear OperatingCo (2012)"Final Report Geology and GeotechnicalInformation for Site Amplification CalculationsSeismic Probabilistic Risk AssessmentPerry Nuclear Power Plant,"Rev. 0, July 2,2012.

Goldthwait,R., G. White, and J. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey.

Hough,J.L., l958, "Geology of the GreatLakes," University of Illinois Press,Urbana, IL.

Miller, S.L.M., and R.R. Steward,1990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocities from SonicLogs," CanadianJournal of ExplorationGeophysics, Volume26, Nos.| &2, p. 94-103.

Norris, S.E., 1975,Geologic Structureof Near-surfaceRocks in WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007, RegulatoryGuide 1.208,"A Perfoffnance-BasedApproach to Define the Site- Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission, March 2007.

NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, 'Seismic Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation2.1: Seismic,'as an acceptableAlternative to the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

AFGottsulting S:\Local\Pubs\2734298FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Descriptiondocx 2734298-R-008 Reaision2 September9,2013 Pase27 of27

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs andtheir Applicationsin Formation Evaluatior," Journalof PetroleumTechnology, Volume 15,No.6, p. 659-G67.

Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The Relationshipbetween Acoustic Propertiesand the PetrographicCharacter of CarbonateRocks," Geophysics,Volume 49,No. 10, p. 1622-1636.

R.IZZO,2013, "Probabilistic Seismic HazardAnalysis and Ground Motion ResponseSpectra, PerryNPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, May 15,2013.

Toro, G. R. 1996"Probabilistic Models of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,Associated Universities, Inc. Upton,New York 11973,Contract No. 770573,Published as Appendix D in W.J. Silva,N. Abrahamson,G. Toro and Costantino,1996.

fBSConsulting S:\Local\Pubs\2734298FENOC Perry\3,1 Q ReportFile\R-008\R2U734298-R-OOs, Rev 2 2013 09 09 py Site Descriptiondocx rce