Italic Page Numbers Indicate Major References]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratigraphy of the Tuerto and Ancha Formations (Upper Santa Fe Group), Hagan and Santa Fe Embayments, North-Central New Mexico
NMBMMR 454B STRATIGRAPHY OF THE TUERTO AND ANCHA FORMATIONS (UPPER SANTA FE GROUP), HAGAN AND SANTA FE EMBAYMENTS, NORTH-CENTRAL NEW MEXICO DANIEL J. KONING 14193 Henderson Dr., Rancho Cucamonga, CA 91739 SEAN D. CONNELL N.M. Bureau of Mines and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave., SE, Albuquerque, NM 87106 FRANK J. PAZZAGLIA Lehigh University, Department of Earth and Environmental Sciences, 31 Williams Dr., Bethlehem, PA 18015 WILLIAM C. MCINTOSH New Mexico Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 INTRODUCTION which we correlate to most of their type section. The upper quarter of their type Ancha section contains Geologic studies and 40Ar/39Ar dating of basalt flows and basaltic tephra of the Cerros del Rio subhorizontally bedded strata of the upper Santa Fe volcanic field, which was emplaced between 2.8 and Group in the vicinity of the Santa Fe and Hagan 1.4 Ma (David Sawyer, personal commun., 2001), embayments (Fig. 1) indicate that revision of the with the most voluminous activity occurring between Ancha and Tuerto formations are necessary. The 2.3-2.8 Ma (Woldegabriel et al., 1996; Bachman and Ancha and Tuerto formations are included in the Mehnert, 1978; Sawyer et al., 2001). Beneath the youngest strata of the Santa Fe Group, as defined by upper volcanic flows and volcaniclastics is 12-17(?) Spiegel and Baldwin (1963), and consist of broad, m of strata, containing 1-5% quartzite clasts, that is thin alluvial aprons of Plio-Pleistocene age derived similar to a Pliocene deposit (unit Ta) mapped by from local uplands along the eastern margins of the Dethier (1997) that interfingers with Pliocene basalt Albuquerque and Española basins, Rio Grande rift, tephra of the Cerros del Rio volcanic field. -
Abstracts of REU Student Reports (SAGE 2012)
Abstracts of REU Student Reports (SAGE 2012): Evaluating Galvanic Distortion: A Comparison of Phase Tensors and Polar Diagrams Diana Brown Abstract: Galvanic distortions result from conductivity gradients. This is a fundamental concept in magnetotellurics (MT). However, distortions from shallow, small-scale heterogeneities can lead to statically shifted data. MT sites taken from a geophysical study of the Caja del Rio region of New Mexico, were analyzed for the presence of galvanic distortion. Utilizing phase tensors and polar diagrams, a comparative study was completed. Comparing the dimensionality represented by polar diagrams to that of phase tensors provides a qualitative indicator of distortion. Sites with opposing dimensionalities were those with statically shifted data. Conversely, sites with diagrams in agreement were distortion free. 1D inversion models were run from both pre and post static shift corrected sounding curves. This direct comparison of inversions illustrates how distortions can be manifested in a geologic model. Seismic Reflection: Velocity Analysis using Constant Velocity Stacks Emily Butler Abstract: The Caja del Rio area is characterized with volcanics near the surface. The goal of the seismic reflection line is to be able to determine the depth and thickness of the volcanics as well as any other significant formations. Specifically, applying an appropriate velocity analysis is key in determining the correct reflectors and reflector depth. The goal of velocity analysis using constant velocity stacks is to flatten out as many reflectors as possible by applying the correct velocity function in order to produce a stack that can be interpreted. Velocity analysis using constant velocity stacking involves developing many stacks, all with different constant velocities and determining where each reflector flattens out and at which velocity. -
CRETACEOUS-TERTIARY BOUNDARY Ijst the ROCKY MOUNTAIN REGION1
BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l..¿5, pp. 325-340 September 15, 1914 PROCEEDINGS OF THE PALEONTOLOGICAL SOCIETY CRETACEOUS-TERTIARY BOUNDARY IjST THE ROCKY MOUNTAIN REGION1 BY P. H . KNOWLTON (Presented before the Paleontological Society December 31, 1913) CONTENTS Page Introduction........................................................................................................... 325 Stratigraphic evidence........................................................................................ 325 Paleobotanical evidence...................................................................................... 331 Diastrophic evidence........................................................................................... 334 The European time scale.................................................................................. 335 Vertebrate evidence............................................................................................ 337 Invertebrate evidence.......................................................................................... 339 Conclusions............................................................................................................ 340 I ntroduction The thesis of this paper is as follows: It is proposed to show that the dinosaur-bearing beds known as “Ceratops beds,” “Lance Creek bieds,” Lance formation, “Hell Creek beds,” “Somber beds,” “Lower Fort Union,”- Laramie of many writers, “Upper Laramie,” Arapahoe, Denver, Dawson, and their equivalents, are above a major -
Preliminary Digital Model of the Arikaree Aquifer in the Sweetwater River Basin, Central Wyoming
PRELIMINARY DIGITAL MODEL OF THE ARIKAREE AQUIFER IN THE SWEETWATER RIVER BASIN, CENTRAL WYOMING U.S. GEOLOGICAL SURVEY Water-Resources Investigations 77-107 Open-File Report ATHFINDER RESERVOIR Prepared in cooperation with the Wyoming State Engineer BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No. SHEET 4. Title and Subtitle 5. Report Date PRELIMINARY DIGITAL MODEL OF THE ARIKAREE AQUIFER IN THE September. 1977 SWEETWATER RIVER BASIN, CENTRAL WYOMING 6. 7. Author(s) 8. Performing Organization Kept. William B. Borchert N°*USGS/WRI 77-107 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. U.S. Geological Survey, Water Resources Division 2120 Capitol Avenue 11. Contract/Grant No. P. 0. Box 1125 Cheyenne, Wyoming 82001 12. Sponsoring Organization Name and Address 13. Type of Report & Period U.S. Geological Survey, Water Resources Division Covered 2120 Capitol Avenue Final P. 0. Box 1125 14. Cheyenne, Wyoming 82001 15. Supplementary Notes Prepared in cooperation with the Wyoming State Engineer 16. AbstractsPotentially large supplies of ground water are available in the Sweetwater Rive basin from the Arikaree aquifer, which consists of the upper part of the White River, tb Arikaree, and the Ogallala Formations. A preliminary digital model was developed for tb Arikaree aquifer using a small amount of poorly distributed data, an estimated distri bution of recharge, and a conceptual model of the Arikaree aquifer flow system. Calibra tion of the model was based on reproduction of the potentiometric surface and the base flow of the Sweetwater River in November 1975. Calculated steady-state hydraulic heads were within 50 feet of the observed heads in about 98 percent of the nodes. -
Notes on Paleocene and Lower Eocene Mammal Horizons of Northern New Mexico and Southern Colorado
56.9(1181:78.9). Article XXXII.- NOTES ON PALEOCENE AND LOWER EOCENE MAMMAL HORIZONS OF NORTHERN NEW MEXICO AND SOUTHERN COLORADO. BY WALTER GRANGER. PLATES XCVII AND XCVIII. The purpose of the present short paper is to indicate some of the results of the Eocene exploration conducted by the writer, with the assistance of Mr. George Olsen, in the San Juan Basin in 1916. It is hoped that the fol- lowing notes may be of some aid to future Eocene collecting in this region and possibly also to detailed geologic plotting. Three separate localities were examined, viz.: the Torrejon of Angel Peak, lying south of the San Juan River; the Torrejon of the Animas Valley, between Aztec and Cedar Hill; a set of later beds in Colorado, lying north of the Denver and Rio Grande Railway, between Los Pifios and Piedra Rivers. The American Museum expedition of 1913 visited nearly all of the Paleocene localities of the San Juan Basin from which fossils had previously been obtained, made extensive collections and summarized the strati- graphic results in a paper published the following year.1 These localities are all on the south side of the San Juan River and extend in a long line from the vicinity of Ojo Alamo eastward to the Puerco River below Cuba. Exposures lying to the north near the San Juan and in the Animas Valley were known to be Paleocene but for lack of time were not examined that year. The Angel Peak Region. The exposures at Angel Peak are in the form of a gigantic crater cut out of a fairly level grass-covered plain to a depth of several hundred feet and with a diameter of three to four miles. -
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION in the CRETACEOUS Mcdermott MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION IN THE CRETACEOUS McDERMOTT MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO Colleen O’Shea A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August: 2009 Committee: James Evans, advisor Kurt Panter, co-advisor John Farver ii Abstract James Evans, advisor Volcanic processes during and after an eruption can impact adjacent fluvial systems by high influx rates of volcaniclastic sediment, drainage disruption, formation and failure of natural dams, changes in channel geometry and changes in channel pattern. Depending on the magnitude and frequency of disruptive events, the fluvial system might “recover” over a period of years or might change to some other morphology. The goal of this study is to evaluate the preservation potential of volcanic features in the fluvial environment and assess fluvial system recovery in a probable ancient analog of a fluvial-volcanic system. The McDermott Member is the lower member of the Late Cretaceous - Tertiary Animas Formation in SW Colorado. Field studies were based on a southwest-northeast transect of six measured sections near Durango, Colorado. In the field, 13 lithofacies have been identified including various types of sandstones, conglomerates, and mudrocks interbedded with lahars, mildly reworked tuff, and primary pyroclastic units. Subsequent microfacies analysis suggests the lahar lithofacies can be subdivided into three types based on clast composition and matrix color, this might indicate different volcanic sources or sequential changes in the volcanic center. In addition, microfacies analysis of the primary pyroclastic units suggests both surge and block-and-ash types are present. -
Physiographic Subdivisions of the San Luis Valley, Southern Colorado
113 PHYSIOGRAPHIC SUBDIVISIONS OF THE SAN LUIS VALLEY, SOUTHERN COLORADO by J. E. UPsolvf University of Idaho Moscow, Idaho EDITOR'S NOTE: The New Mexico Geological Society v is grateful to the Journal of Geology for permission to re- print this classic article. After 32 years the work still re- WVO. • mains the most quoted reference in its field on the basin. AP.. _ AC . I The photographs were retaken under Mr. Upson's direc- / tion and duplicate the originals as closely as possible, with –rt 1 the exception of Figure 5, which was taken a short distance ,0 "north" of the mouth of the Rio Costilla. Slight editorial /y .R changes in punctuation and capitalization were made on p 3, the article to conform to present day usage. Denver 70 0 0) INTRODUCTION 3 , CID The San Luis Valley, forming the upper end of the u) great valley of the Rio Grande, is one of the most impres- sive topographic features of southern Colorado. As orig- inally outlined by Siebenthal, 1 it is a great lowland about 150 miles long and 50 miles in maximum width, flanked on the east by the linear Sangre dc Cristo Range and on 0 7/, / the west by the eastern portion of the more extensive San 3 0 0N405 Juan Mountains. It is, in a sense, part of the chain of in- t4 •O 4. SP O V4 / termontane basins, or parks,2 lying west of the Southern ` 1,1‘0 AN Rocky Mountain front ranges, but is unlike the others in Llt IS q` having no southern mountain border. -
Analysis and Correlation of Growth
ANALYSIS AND CORRELATION OF GROWTH STRATA OF THE CRETACEOUS TO PALEOCENE LOWER DAWSON FORMATION: INSIGHT INTO THE TECTONO-STRATIGRAPHIC EVOLUTION OF THE COLORADO FRONT RANGE by Korey Tae Harvey A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date __________________________ Signed: ________________________ Korey Harvey Signed: ________________________ Dr. Jennifer Aschoff Thesis Advisor Golden, Colorado Date ___________________________ Signed: _________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Despite numerous studies of Laramide-style (i.e., basement-cored) structures, their 4-dimensional structural evolution and relationship to adjacent sedimentary basins are not well understood. Analysis and correlation of growth strata along the eastern Colorado Front Range (CFR) help decipher the along-strike linkage of thrust structures and their affect on sediment dispersal. Growth strata, and the syntectonic unconformities within them, record the relative roles of uplift and deposition through time; when mapped along-strike, they provide insight into the location and geometry of structures through time. This paper presents an integrated structural- stratigraphic analysis and correlation of three growth-strata assemblages within the fluvial and fluvial megafan deposits of the lowermost Cretaceous to Paleocene Dawson Formation on the eastern CFR between Colorado Springs, CO and Sedalia, CO. Structural attitudes from 12 stratigraphic profiles at the three locales record dip discordances that highlight syntectonic unconformities within the growth strata packages. Eight traditional-type syntectonic unconformities were correlated along-strike of the eastern CFR distinguish six phases of uplift in the central portion of the CFR. -
Restoration in the Southern Appalachians: a Dialogue Among Scientists, Planners, and Land Managers
United States Department of Agriculture Restoration in the Southern Appalachians: A Dialogue among Scientists, Planners, and Land Managers W.T. Rankin and Nancy Herbert, Editors 2005 2010 Forest Service Research & Development Southern Research Station General Technical Report SRS-189 The Editors: W.T. Rankin, Threatened and Endangered Species Program Manager, U.S. Department of Agriculture Forest Service, Southern Region, 1720 Peachtree Rd. NW, Suite 700, Atlanta, GA 30309; and Nancy Herbert, Assistant Director for Research (retired), U.S. Department of Agriculture Forest Service, Southern Research Station, 200 W.T. Weaver Blvd., Asheville, NC 28804 Cover: Before-and-after photographs of a restoration project on the Buck Creek Serpentine Barrens in western North Carolina. Left: Spring 2005 (photo by Paul Davison, University of North Alabama). Right: Fall 2010 (photo by W. T. Rankin, USDA Forest Sevice) March 2014 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 www.srs.fs.usda.gov Restoration in the Southern Appalachians: A Dialogue among Scientists, Planners, and Land Managers W.T. Rankin and Nancy Herbert, Editors CONTENTS Prologue . iv 1. The Role of Fire in the Southern Appalachians. 1 Did fire occur in the Southern Appalachians historically? . 1 What are the different kinds of fire?. 2 What are the effects of fire on nongame species in the Southern Appalachians? . 3 What are the effects of fire on soils in the Southern Appalachians? . 4 What are the effects of fire on air quality in the Southern Appalachians? . 5 Are there ecosystems in the Southern Appalachians where fire isn’t appropriate? . 7 If we don’t use fire as a management tool, what else do we use? . -
Reconnaissance for Uranium-Bearing Lignite in the Ekalaka Lignite Field, Carter County, Montana
~~) ~<~~~~~~ -J(p7r- ~ee~~ ~I Jo/09 fir} . Lfo..z, 0 Reconnaissance for Uranium-Bearing Lignite in the Ekalaka Lignite Field, Carter County, Montana By J. R. Gill Trace Elements ln'Vestigations Report 452 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY OFFICIAL USE ONLY Geology .and Mineralogy This document consists of 2? pages ~ Series A · UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY RECONNAISSANCE FOR URANIUM-BEARING LIGNITE IN THE EKALAKA LIGNITE FIELD CARTER COUNTY, MONT ANA* By James Re G.ill July 1954 Trace Elements Inveatigations Report 45Z This preliminary report is distributed without editorial and technical review for conformity with offic1al standards and nomenclature. It is not for public inspection or quotation. When separated from Part II, handle Part I as 'UNCL~: SSIFIED. * This report concerns work done on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission. OFFICIAL USE ONLY ~ USGS - TEI-454 GEOLOGY AND MINERALOGY Distribution (Series A) No. of copies Argonne Nati onal Laboratory . 1 ·Atomic Energy Commission, Vf ashington 1 Divi sion of Raw Materials~ Albuquerque 1 Divi sion of Raw Materials, Butte I Division of Raw Materials, Denver 1 Division of Raw Materials~ Douglas 1 Division of Raw Mate rials, Hot Springs • 1 Division of Raw Materials, Ishpeming 1 Divi sion of Raw Materials 1 Phoenix 1 Division of Raw Materials,·: Richfield 1 Di v ision of Raw Materi als, Salt Lake City • 1 Division of Raw Materials, Washington . 3 Explorati on Divis ion, Grand Junction Ope'rations Office • 1 Grand Junction Operations Office 1 Technic al Information Service, Oak Ridge . -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
Pre-Atoka Rocks of Northern Arkansas
Pre-Atoka Rocks of Northern Arkansas GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Pre-Atoka Rocks of Northern Arkansas By SHERWOOD E. FREZON and ERNEST E. CLICK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Thickness, lithofacies, and geologic history of potential oil and gas producing rocks of Paleozoic age in northern Arkansas UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Frezon, Sherwood Earl, 1921- Pre-Atoka rocks of northern Arkansas, by Sherwood E. Frezon and Ernest E. Glick. Washington, U. S. Govt. Print. Off., 1959. iii, 171-189 p. maps, diagrs., table. 30 cm. (U. S. Geological Sur vey. Professional paper 314-H. Shorter contributions to general geology) Part of illustrative matter fold, col., in pocket. Bibliography: p. 186-187. 1. Geology Arkansas. 2. Rocks, Sedimentary. 3. Geology, Strati- graphic Paleozoic. i. Glick, Ernest Earwood, 1922- joint author, n. Title. (Series: U. S. Geological Survey. Professional paper 314-H. Series: U. S. Geological Survey. Shorter contribu tions to general geology) 551.7209767 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract .__----_ ---_-_._--._---__-_-____ 171 Stratigraphy Continued Page Introduction. ___ ___________________________________ 171 Probable latest Mississippian and early