Phase I Hydrogeologic Modelling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambrian Ordovician
Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation. -
(Medina, Clinton, and Lockport Groups) in the Type Area of Western New York
Revised Stratigraphy and Correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York By Carlton E. Brett, Dorothy H. Tepper, William M. Goodman, Steven T. LoDuca, and Bea-Yeh Eckert U.S. GEOLOGICAL SURVEY BULLETIN 2086 Prepared in cooperation with the U.S. Environmental Protection Agency and the Department of Earth and Environmental Sciences of the University of Rochester UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1995 10 REVISED STRATIGRAPHY AND CORRELATIONS OF THE NIAGARAN PROVINCIAL SERIES been made in accordance with the NASC. Because the The history of nomenclature of what is now termed the NASC does not allow use of the "submember" category, Medina Group, beginning with Conrad ( 1837) and ending units that would be of this rank are treated as informal units with Bolton (1953), is presented in Fisher (1954); Bolton and have been given alphanumeric designations. Informal (1957, table 2) presents a detailed summary of this nomen- units are discussed under the appropriate "member" clature for 1910-53. A historical summary of nomenclature categories. of the Medina Group in the Niagara region is shown in fig- The use of quotes for stratigraphic nomenclature in this ure 7. Early investigators of the Medina include Conrad report is restricted to units that have been misidentified or (1837); Vanuxem (1840, first usage of Medina; 1842); Hall abandoned. If stratigraphic nomenclature for a unit has (1840, 1843); Gilbert (1899); Luther (1899); Fairchild changed over time, the term for the unit is shown, with cap- (1901); Grabau (1901, 1905, 1908, 1909, 1913); Kindle and italization, as given in whatever reference is cited rather Taylor (1913); Kindle (1914); Schuchert (1914); Chadwick than according to the most recent nomenclature. -
Stratigraphic Succession in Lower Peninsula of Michigan
STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation -
Paleozoic Geology
Map 2339 ORANG EVILLE Paleozoic Geology ONTARIO DIVISION OF MINES HONOURABLE LEO EERNIER, Minister of Natural Resources DR .l. K REYNOLDS, Deputy Minister ofNaluraI Resources G A Jewett, Executive Director. Division of Mines E, G Pye, Director, Geological Branch The Niagara Escarpment trends north-south through the extreme eastern part of the map-area though it is largely obscured by relatively thick deposits oi Pleistocene glacial driit. Silurian strata upon the dip Adjniris Map 2340 slope of the Escarpment form the bedrock of most of the area. In the 30°30’ east the glacial deposits overlying the plateau of Silurian strata have M°m’ generated an irregular hummocky topography with relief of 200 to 300 feet. Amount of relief decreases westwards and the physiography of the western half of the map-area is dominated by the drainage system oi the southward ilowing Grand River Older (Ordovician) rocks are exposed only in the northeastern and southeastern corners of the area \ where the Nottawasaga and Credit Ftivers have cut re-entrants into the Escarpment. 'n;WhiDri.gtoriQ STRATIGRAPHY ‘{ Oueenston Formation (Upper Ordovician-Richmondian) Beds oi this unit are exposed only in the deeply incised river valleys at the eastern i W=t='l°°~imci.en.r edge oi the map-area. The lower boundary of the unit is not exposed ‘Cambridge although outcrops in the Nottawasaga River at Glen Cross may be close to the gradational boundary with the underlying Georgian Bay Forma- tion The lithology of the Oueenston Formation is consistent throughout -Wimdslvck 'BrzritIord M 2343 Niagara F"a 5 the area Dark red, hematitic.blocky, non-iissile calcareous shale seams "' Map 234 up to B leet in thickness typify the formation; thin to medium beds of . -
NIAGARA ROCKS, BUILDING STONE, HISTORY and WINE
NIAGARA ROCKS, BUILDING STONE, HISTORY and WINE Gerard V. Middleton, Nick Eyles, Nina Chapple, and Robert Watson American Geophysical Union and Geological Association of Canada Field Trip A3: Guidebook May 23, 2009 Cover: The Battle of Queenston Heights, 13 October, 1812 (Library and Archives Canada, C-000276). The cover engraving made in 1836, is based on a sketch by James Dennis (1796-1855) who was the senior British officer of the small force at Queenston when the Americans first landed. The war of 1812 between Great Britain and the United States offers several examples of the effects of geology and landscape on military strategy in Southern Ontario. In short, Canada’s survival hinged on keeping high ground in the face of invading American forces. The mouth of the Niagara Gorge was of strategic value during the war to both the British and Americans as it was the start of overland portages from the Niagara River southwards around Niagara Falls to Lake Erie. Whoever controlled this part of the Niagara River could dictate events along the entire Niagara Peninsula. With Britain distracted by the war against Napoleon in Europe, the Americans thought they could take Canada by a series of cross-border strikes aimed at Montreal, Kingston and the Niagara River. At Queenston Heights, the Niagara Escarpment is about 100 m high and looks north over the flat floor of glacial Lake Iroquois. To the east it commands a fine view over the Niagara Gorge and river. Queenston is a small community perched just below the crest of the escarpment on a small bench created by the outcrop of the Whirlpool Sandstone. -
Xerox University Microfilms
information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
Geology of Michigan and the Great Lakes
35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed. -
The Silurian of Central Kentucky, U.S.A.: Stratigraphy, Palaeoenvironments and Palaeoecology
The Silurian of central Kentucky, U.S.A.: Stratigraphy, palaeoenvironments and palaeoecology FRANK R. ETTENSOHN, R. THOMAS LIERMAN, CHARLES E. MASON, WILLIAM M. ANDREWS, R. TODD HENDRICKS, DANIEL J. PHELPS & LAWRENCE A. GORDON ETTENSOHN, F.R., LIERMAN, R.T., MASON, C.E., ANDREWS, W.M., HENDRICKS, R.T., PHELPS, D.J. & GORDON, L.A., 2013:04:26. The Silurian of central Kentucky, U.S.A.: Stratigraphy, palaeoenvironments and palaeoecology. Memoirs of the Association of Australasian Palaeontologists 44, 159-189. ISSN 0810-8889. Silurian rocks in Kentucky are exposed on the eastern and western flanks of the Cincinnati Arch, a large-wavelength cratonic structure separating the Appalachian foreland basin from the intracratonic Illinois Basin. The Cincinnati Arch area experienced uplift during latest Ordovician-early Silurian time, so that the exposed Silurian section is relatively thin due to onlap and post- Silurian erosional truncation on the arch. On both flanks of the arch, dolomitic carbonates predominate, but the section on the eastern side reflects a more shale-rich ramp that faced eastern Appalachian source areas. In the Silurian section on the western side of the arch, which apparently developed across a platform-like isolation-accommodation zone, shales are rare except dur- ing some highstand episodes, and rocks in the area reflect deposition across a broad, low-gradient shelf area, interrupted by structurally controlled topographic breaks. Using the progression of interpreted depositional environments and nearshore faunal communities, a relative sea-level curve, which parallels those of previous workers, was generated for the section in Kentucky. While the curve clearly shows the influence of glacial eustasy, distinct indications of the far-field, flexural influence of Taconian and Salinic tectonism are also present. -
Hydrogeologic Modelling
Hydrogeologic Modelling March 2011 Prepared by: J.F. Sykes, S.D. Normani, and Y. Yin NWMO DGR-TR-2011-16 Hydrogeologic Modelling March 2011 Prepared by: J.F. Sykes, S.D. Normani, and Y. Yin NWMO DGR-TR-2011-16 Hydrogeologic Modelling - ii - March 2011 THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY Hydrogeologic Modelling - iii - March 2011 Document History Title: Hydrogeologic Modelling Report Number: NWMO DGR-TR-2011-16 Revision: R000 Date: March 2011 AECOM Canada Ltd. Prepared by: J.F. Sykes (University of Waterloo), S.D. Normani (University of Waterloo), Y. Yin (University of Waterloo) Reviewed by: R.E.J. Leech Approved by: R.E.J. Leech Nuclear Waste Management Organization Reviewed by: M. Jensen Accepted by: M. Jensen Hydrogeologic Modelling - iv - March 2011 THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY Hydrogeologic Modelling - v - March 2011 EXECUTIVE SUMMARY A Deep Geologic Repository (DGR) for Low and Intermediate Level Waste (L&ILW) has been proposed by Ontario Power Generation (OPG) for the Bruce nuclear site in the Municipality of Kincardine, Ontario, Canada. This report presents hydrogeologic modelling and analyses that were completed as part of the Geosynthesis DGR work program. As envisioned, the proposed DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. The objectives of this report are to develop the regional-scale hydrogeological conceptual model for the DGR site, to undertake numerical modelling using the computational models FRAC3DVS-OPG and TOUGH2-MP and to support the safety case for the DGR. A primary focus of the numerical modelling study is the investigation of a DGR program hypothesis that solute transport in the Ordovician sediments is diffusion dominant. -
Geoscientific Review of the Sedimentary Sequence in Southern Ontario
July 2004 NWMO BACKGROUND PAPERS 6. TECHNICAL METHODS 6-12 LONG-TERM USED NUCLEAR FUEL WASTE MANAGEMENT - GEOSCIENTIFIC REVIEW OF THE SEDIMENTARY SEQUENCE IN SOUTHERN ONTARIO Martin Mazurek Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Switzerland NWMO Background Papers NWMO has commissioned a series of background papers which present concepts and contextual information about the state of our knowledge on important topics related to the management of radioactive waste. The intent of these background papers is to provide input to defining possible approaches for the long-term management of used nuclear fuel and to contribute to an informed dialogue with the public and other stakeholders. The papers currently available are posted on NWMO’s web site. Additional papers may be commissioned. The topics of the background papers can be classified under the following broad headings: 1. Guiding Concepts – describe key concepts which can help guide an informed dialogue with the public and other stakeholders on the topic of radioactive waste management. They include perspectives on risk, security, the precautionary approach, adaptive management, traditional knowledge and sustainable development. 2. Social and Ethical Dimensions - provide perspectives on the social and ethical dimensions of radioactive waste management. They include background papers prepared for roundtable discussions. 3. Health and Safety – provide information on the status of relevant research, technologies, standards and procedures to reduce radiation and security risk associated with radioactive waste management. 4. Science and Environment – provide information on the current status of relevant research on ecosystem processes and environmental management issues. They include descriptions of the current efforts, as well as the status of research into our understanding of the biosphere and geosphere. -
Bedrock Maps
1987 BEDROCK GEOLOGY OF MICHIGAN BEDROCK GEOLOGY OF EASTERN UPPER PENINSULA MACKINAC BRECCIA BOIS BLANC FORMATION GARDEN ISLAND FORMATION BASS ISLAND GROUP SALINA GROUP SAINT IGNACE DOLOMITE POINT AUX CHENES SHALE ENGADINE GROUP MANISTIQUE GROUP BURNT BLUFF GROUP KEWEENAW CABOT HEAD SHALE MANITOULIN DOLOMITE QUEENSTON SHALE BIG HILL DOLOMITE HOUGHTON STONINGTON FORMATION UTICA SHALE MEMBER COLLINGWOOD SHALE MEMBER TRENTON GROUP BLACK RIVER GROUP ONTONAGON BARAGA PRAIRIE DU CHIEN GROUP TREMPEALEAU FORMATION MUNISING FORMATION GOGEBIC LU CE MARQUETTE ALGER CHIPPEWA IRON MACKINAC SCHOOLC RAF T DELT A DICKIN SON BEDROCK GEOLOGY OF WESTERN UPPER PENINSULA MACKINAC BRECCIA JACOBSVILLE SANDSTONE EMMET MENOMINEE FREDA SANDSTONE CHEBOYGAN NONESUCH FORMATION PRESQUE ISLE COPPER HARBOR CONGLOMERATE OAK BLUFF FORMATION CHAR LEVOIX PORTAGE LAKE VOLCANICS MONTMORENCY SIEMENS CREEK FORMATION ANT RIM ALPENA INTRUSIVE OTSEGO QUINNESEC FORMATION LEELANAU PAINT RIVER GROUP RIVERTON IRON FORMATION BIJIKI IRON FORMATION GRAND TR AVERSE ALCONA KALKASKA CRAW FOR D OSCOD A NEGAUNEE IRON FORMATION BENZIE IRONWOOD IRON FORMATION DUNN CREEK FORMATION BADWATER GREENSTONE MICHIGAMME FORMATION MANISTEE WEXFORD MISSAUKEE ROSCOMMON OGEMAW IOSCO GOODRICH QUARTZITE HEMLOCK FORMATION BEDROCK GEOLOGY OF ARENAC MENOMINEE & CHOCOLAY GROUPS LOWER PENINSULA EMPEROR VULCANIC COMPLEX MASON LAKE OSCEOLA CLARE GLADWIN SIAMO SLATE & AJIBIK QUARTZITE RED BEDS HURON PALMS FORMATION GRAND RIVER FORMATION CHOCOLAY GROUP SAGINAW FORMATION BAY RANDVILLE DOLOMITE BAYPORT LIMESTONE MICHIGAN -
Post-Martinsburg Ordovician Stratigraphy of Virginia and West Virginia
VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 57 POST-MARTINSBURG ORDOVICIAN STRATIGRAPHY OF VIRGINIA AND WEST VIRGINIA Richard J. Diecchio COMMONWEALTH OF VIRGINIA DEPARTMENT OF MINES, MINERALS AND ENERGY DIVISION OF MINERAL RESOURCES R<>bert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVI LLE, VIRG IN IA 1 985 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 57 POST-MARTINSBURG ORDOVICIAN STRATIGRAPHY OF VIRGINIA AND WEST VIRGINIA Richard J. Diecchio COMMONWEALTH OF VIRGINIA DEPARTMENT OF MINES, MINERALS AND ENERGY DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVI LLE, VI RGI N IA 1 985 FRONT COVER: Two cycles within the Juniata Formation, Cumberland, Maryland. Jacob's staff is 5 feet long, graduated in feet. Bottom of staff marks base of lowermost sandstone bed (base of cycle). Basal sandstone is here channeled into the underlying mudstone. Top of Jacob's staff marks the middle Sholithos- bearing portion of cycle. Mudstone overlies the Skoli,thos facies and continues up to base of overlying sandstone bed, marking the base of the next cycle. VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 57 POST-MARTINSBURG ORDOVICIAN STRATIGRAPHY OF VIRGINIA AND WEST VIRGINIA Richard J. Diecchio COMMONWEALTH OF VIRGINIA DEPARTMENT OF MINES, MINERALS AND ENERGY DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVI LLE, VI RGI N IA 1985 DEPARTMENT OF MINES, MINERALS AND ENERGY Richmond, Virginia O. GENE DISHNER, Director COMMONWEALTH OF VIRGINIA DEPARTMENT OF PURCHASE AND SUPPLY RICHMOND 1985 Publication available from Virginia Division of Mineral Resources, Box 366?, Charlottesville, VA 22g0g.