Geology of Michigan and the Great Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Geology of Michigan and the Great Lakes 35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed. Coastal issues and mineral resources are detailed. Students will develop a better appreciation for the importance of geology to the inhabitants of the region today. About the authors Dr. Robb Gillespie is currently an Assistant Professor in the Department of Geosciences and Research Associate with the Michigan Core Repository for Research and Education (MCRRE) at Western Michigan University. Dr. Gillespie has over 24 years experience in the oil and gas industry having worked for ARCO Oil and Gas in their domestic, international, and research groups, and for COHO Resources redeveloping old oil fields. He has also oper- ated his own oil and gas consulting business since 1992, and co-founded Tres Rios Resources, Inc. (TRR), a small oil and gas company in 1993. Dr. Gillespie’s geological specialty is reser- voir delineation, characterization and modeling based upon detailed stratigraphic analysis. Dr. William B. Harrison, III is Professor Emeritus in the Department of Geosciences and Director of the Michigan Basin Core Research Laboratory that is part of the Michigan Geological Repository for Research and Education (MGRRE) at Western Michigan University. Dr. Harrison has over 34 years experience in research related to sedimentary geology, Michigan stratigraphy and petroleum geology. He is the founder of the Michigan Basin Core Research Laboratory (1982). He taught Undergraduate and Graduate students at Western Michigan University for 30 years. He continues to be active in research and outreach related to Michigan geology. G. Michael Grammer is Director of the Michigan Geological Repository for Research and Education at Western Michigan University and an Associate Professor in the Department of Geosciences. He received his B.A. from the University of South Florida, M.S. from Southern Methodist University and Ph.D. from the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences. He has been at WMU since 2002 after earlier stops in the oil and gas industry and as a faculty member at the University of Miami. His specialties include carbonate sedimentology and sequence stratigraphy. © Linda Harrison. Michigan Potato Patch Falls, Lake Superior, Munising, Michigan. Cross-bedded sand- Geology of Michigan stone, Chapel Rock Member, Cambrian Munising Formation. Wave-cut platform Visit Cengage and the Great Lakes and undercut rock Custom Solutions online at ledges. Trees on www.custom.cengage.com Robb Gillespie, William B. Harrison III, older wave-cut plat- form formed during For your lifelong learning needs: and G. Michael Grammer a higher, post- www.academic.cengage.com glacial lake stage. Michigan Geological Repository for Research and Education Dark-colored, basaltic glacial Western Michigan University erratic on shoreline. 35133_Geo_Michigan_INC.qxd 11/13/07 10:27 AM Page ii 1987 BEDROCK GEOLOGY OF MICHIGAN BEDROCK GEOLOGY OF EASTERN UPPER PENINSULA MACKINAC BRECCIA BOIS BLANC FORMATION GARDEN ISLAND FORMATION BASS ISLAND GROUP SALINA GROUP SAINT IGNACE DOLOMITE POINT AUX CHENES SHALE ENGADINE GROUP MANISTIQUE GROUP BURNT BLUFF GROUP KEW EENAW CABOT HEAD SHALE MANITOULIN DOLOMITE QUEENSTON SHALE BIG HILL DOLOMITE HOUGHTON STONINGTON FORMATION UTICA SHALE MEMBER COLLINGWOOD SHALE MEMBER TRENTON GROUP BLACK RIVER GROUP ONTONAGON BARAGA PRAIRIE DU CHIEN GROUP TREMPEALEAU FORMATION MUNISING FORMATION GOGEBIC LUCE MARQUETTE ALGER CHIPPEWA IRON MACKINAC SCHOOLCRAFT DELTA DICKINSON BEDROCK GEOLOGY OF WESTERN UPPER PENINSULA MACKINAC BRECCIA JACOBSVILLE SANDSTONE FREDA SANDSTONE EMMET NONESUCH FORMATION MENOMINEE CHEBOYGAN COPPER HARBOR CONGLOMERATE OAK BLUFF FORMATION PRESQUE ISLE PORTAGE LAKE VOLCANICS CHARLEVOIX SIEMENS CREEK FORMATION MONTMORENCY INTRUSIVE ANTRIM QUINNESEC FORMATION ALPENA OTSEGO PAINT RIVER GROUP LEELANAU RIVERTON IRON FORMATION BIJIKI IRON FORMATION NEGAUNEE IRON FORMATION GRAND TRAVERSE OSCODA ALCONA IRONWOOD IRON FORMATION KALKASKA CRAWFORD BENZIE DUNN CREEK FORMATION BADWATER GREENSTONE MICHIGAMME FORMATION GOODRICH QUARTZITE MANISTEEWEXFORD MISSAUKEE ROSCOMMON OGEMAW IOSCO HEMLOCK FORMATION MENOMINEE & CHOCOLAY GROUPS BEDROCK GEOLOGY OF ARENAC EMPEROR VULCANIC COMPLEX LOWER PENINSULA SIAMO SLATE & AJIBIK QUARTZITE MASON GLADWIN PALMS FORMATION RED BEDS LAKE OSCEOLA CLARE CHOCOLAY GROUP GRAND RIVER FORMATION HURON RANDVILLE DOLOMITE SAGINAW FORMATION ARCHEAN ULTRAMAFIC BAYPORT LIMESTONE BAY ARCHEAN GRANITE & GNEISSIC MICHIGAN FORMATION OCEANA MECOSTA ISABELLA MIDLAND ARCHEAN VOL. & SEDIMENTARY MARSHALL FORMATION NEWAYGO COLDWATER SHALE TUSCOLA SANILAC SUNBURY SHALE BEREASS&BEDFORDSH SAGINAW GRATIOT BEDFORD SHALE MUSKEGON MONTCALM ELLSWORTH SHALE LAPEER ST CLAIR ANTRIM SHALE SHIAWASSEE TRAVERSE GROUP KENT GENESEE OTTAWA BELL SHALE IONIA CLINTON DUNDEE LIMESTONE MACOMB DETROIT RIVER GROUP SYLVANIA SANDSTONE OAKLAND MACKINAC BRECCIA LIVINGSTON BARRY EATON INGHAM BOIS BLANC FORMATION ALLEGAN GARDEN ISLAND FORMATION BASS ISLAND GROUP WAYNE SALINA GROUP WASHTENAW VAN BUREN KALAMAZOO CALHOUN JACKSON SOURCE BERRIEN MONROE CASS ST JOSEPH BRANCH HILLSDALE LENAW EE MICHIGAN DEPARTMENT OF NATURAL RESOURCES Michigan LAND AND MINERALS SERVICES DIVISION RESOURCE MAPPING AND AERIAL PHOTOGRAPHY RMAP Michigan Resource Information System Part 609, Resource Inventory, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Automated from "Bedrock Geology of Michigan," 1987, 1:500,000 scale, which was compiled from a variety of sources by the Michigan Department of Environmental Quality, Geological Survey Division. Date: 11/12/99 02040Miles N From State of Michigan, Department Natural Resources. State of Michigan: Bedrock Geology Map 35133_Geo_Michigan.qxd 11/14/07 6:21 PM Page 1 ESSENTIAL QUESTIONS TO ASK Michigan.1 Introduction Ⅲ Why is the geology of Michigan important to students of physical geology and to all the inhabitants of the state today? Michigan.2 Precambrian and Paleozoic Geology Ⅲ What is the structural pattern of the sedimentary rock layers of the Michigan Lower Peninsula that makes it a basin? Ⅲ What are the various regional structural or geologic elements that define the margins of the Michigan Basin? Ⅲ What are the ranges of ages for sedimentary rocks in Michigan’s Lower Peninsula? Ⅲ Describe the main geologic differences in rock in Michigan’s Eastern and Western Upper Peninsula. Michigan.3 Quaternary Geology Ⅲ What were the main controlling factors during formation of the Great Lakes basins? Ⅲ When was the last glacial (Wisconsinan) event? Ⅲ Where did erosional and depositional glacial landscapes develop in the Great Lakes watershed? Ⅲ What types of depositional landforms are found throughout Michigan? Ⅲ What types of modern-day coastal features are currently evolving along Michigan’s shorelines? Ⅲ How did the inland lakes in Michigan form? Michigan.4 Modern-Day Geologic Processes Ⅲ What are the two main types of shoreline found around the Great Lakes in Michigan? Ⅲ Name three processes that reshape the Michigan shoreline and a depositional feature produced by each process. Michigan.5 Geology of Water Resources Ⅲ What are the two types of geologic materials that contain groundwater in Michigan? Michigan.6 Mineral Resources Ⅲ What is “banded iron formation” (BIF)? Ⅲ What are the main types of copper ore? Ⅲ Name some of the other non-metallic mineral resources produced in Michigan. Michigan.7 Oil, Gas, and Coal Resources Ⅲ When and where was oil first discovered in the Michigan Basin? Ⅲ What was the significance of discovering oil at the Saginaw, Muskegon, and Mt Pleasant Fields? Ⅲ What geologic factors controlled the ultimate shape and size of the Albion-Scipio Field? Ⅲ What oil and gas exploration and development plays were important in Michigan in the 1970s and 1980s? In the 1990s and 2000s? © 2008 Cengage Brooks/Cole, a part of Cengage Learning. ALL RIGHTS RESERVED.
Recommended publications
  • Michigan Technological University Archives' Postcard Collection MTU-196
    Michigan Technological University Archives' Postcard Collection MTU-196 This finding aid was produced using ArchivesSpace on February 08, 2019. Description is in English Michigan Technological University Archives and Copper Country Historical Collections 1400 Townsend Drive Houghton 49931 [email protected] URL: http://www.lib.mtu.edu/mtuarchives/ Michigan Technological University Archives' Postcard Collection MTU-196 Table of Contents Summary Information .................................................................................................................................... 3 Biography ....................................................................................................................................................... 3 Collection Scope and Content Summary ....................................................................................................... 4 Administrative Information ............................................................................................................................ 4 Controlled Access Headings .......................................................................................................................... 4 Collection Inventory ....................................................................................................................................... 5 A ................................................................................................................................................................... 5 B ..................................................................................................................................................................
    [Show full text]
  • Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan
    Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan By D.B. WESTJOHN and T.L. WEAVER U.S. Geological Survey Water-Resources Investigations Report 94-4246 Lansing, Michigan 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Earth Science Information Center 6520 Mercantile Way, Suite 5 Open-File Reports Section Lansing, Ml 48911 Box 25286, MS 517 Denver Federal Center Denver, CO 80225 CONTENTS Abstract .......................................................... 1 Introduction ....................................................... 1 Geology .......................................................... 3 Coldwater Shale ................................................ 3 Marshall Sandstone .............................................. 6 Michigan Formation .............................................. 7 Hydrogeologic framework of Mississippian rocks ................................ 8 Relations of stratigraphic units to aquifer and confining units .................... 8 Delineation of aquifer- and confining-unit boundaries ......................... 9 Description of confining units and the Marshall aquifer ........................ 9 Michigan confining
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Triassic- Jurassic Stratigraphy Of
    Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... ..........................................................................................
    [Show full text]
  • PROFESSIONAL PAPER 1418 USGS Cience for a Changing World AVAILABILITY of BOOKS and MAPS of the U.S
    PROFESSIONAL PAPER 1418 USGS cience for a changing world AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis­ agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are ANCHORAGE, Alaska Rm. 101,4230 University Dr. obtainable by mail from LAKEWOOD, Colorado Federal Center, Bldg. 810 U.S. Geological Survey, Information Services MENLO PARK, California Bldg. 3, Rm.
    [Show full text]
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Attachment B-13
    Attachment B-13 Hydrogeology for Underground Injection Control · n Michigan: Part 1 Department of Geology Western Michigan University Kalamazoo, Michigan U.S. Environmental Protection Agency Underground Injection Control Program 1981 Acknowledgements ADMINISTRATIVE STAFF DENNIS L. CURRAN LINDA J. MILLER DONALD N. LESKE Project Coordinator Cartographer Regional Coordinator PROJECT DIRECTORS RICHARD N. PASSERO W. Thomas Straw Lloyd J. Schmaltz Ph .D., Professor of Geology Ph.D., Professor of Geology Chatrman, Department of Geology Department of Geology, Western Michigan University RESEARCH STAFF CYNTHIA BATHRICK WILLIAM GIERKE CRYSTAL KEMTER JEFFREY PFOST PAUL CIARAMITARO PAUL GOODREAULT STEVEN KIMM NICK POGONCHEFF PATRICIA DALIAN DAVID HALL KEVIN KINCARE KIFF SAMUELSON DOUGLAS DANIELS EVELYN HALL MICHAEL KLEIN JEFFREY SPRUIT DARCEY DAVENPORT THOMAS HANNA BARBARA LEONARD GARY STEFANIAK JEFFREY DEYOUNG ROBERT HORNTVEDT THOMAS LUBY JOSEPH VANDERMEULEN GEORGE DUBA JON HERMANN HALLY MAHAN LISA VARGA SHARON EAST WILLIAM JOHNSTON JAMES McLAUGHLIN KATHERINE WILSON JAMES FARNSWORTH PHILLIP KEAVEY DEANNA PALLADINO MICHAEL WIREMAN LINDA FENNER DONALD PENNEMAN CARTOGRAPHIC STAFF LINDA J. MILLER Chief Cartographer SARAH CUNNINGHAM CAROL BUCHANAN ARLENE D. SHUB DAVID MOORE KENNETH BATTS CHRISTOPHER H. JANSEN NORMAN AMES ANDREW DAVIS ANN CASTEL PATRICK HUDSON MARK LUTZ JOAN HENDRICKSEN MAPPING CONSULTANT THOMAS W. HODLER Ph.D., Assistant Professor of Geography Department of Geography Western Michigan University CLERICAL PERSONNEL KARN KIK JANET NIEWOONDER
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • Understanding Our Coastal Environment
    Preface The South Carolina Beachfront Management Act In the Beginning The Coastal Zone Management Act of 1977 was enacted to protect our coastal resources from unwise development. This legislation served the beaches well during its first decade, but as South Carolina became a more popular tourist destination, it became apparent that the portion of the Act that dealt with beaches was inadequate. As development crept seaward, seawalls and rock revetments proliferated, damaging the public’s beach. In many areas there was no beach left at high tide. In some areas, there was no beach at low tide, either. In 1988 and again in 1990, South Carolina’s legislators took action and amended and strengthened the Coastal Zone Management Act. The resulting Beachfront Management Act protects South Carolina’s sandy shores by increasing the state’s jurisdiction and encouraging development to move landward. South Carolina’s Beachfront Jurisdiction To find the boundaries of this jurisdiction, staff from the Office of Ocean and Coastal Resource Management must first locate the baseline, which is the crest of the primary oceanfront sand dune. Where there are no dunes, the agency uses scientific methods to determine where the natural dune would lie if natural or man-made occurrences had not interfered with nature’s dune building process. The setback line is the most landward boundary and is measured from the baseline. To find the depth of the setback line, the beach’s average annual erosion rate for the past forty years is calculated and multiplied by forty. For example, if the erosion rate is one foot per year, the results will be a setback line that stretches forty feet from the baseline.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • CONTROLS on DOLOMITIZATION of the UPPER ORDOVICIAN TRENTON LIMESTONE in SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department Of
    CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY COLLIN JAMES GRAY Department of Geological Sciences APPROVED: Dr. Katherine Giles, Ph.D., Chair Dr. Richard Langford, Ph.D. Dr. Matthew Johnston, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Collin James Gray 2015 Dedication I dedicate my thesis work to my family. My dedicated and loving parents, Michael and Deborah Gray have always supported me and provided words of encouragement during the struggles of my research. The support provided was second to none and I could not imagine reaching this point in my education without them. I also dedicate this thesis to my two brothers, Michael and Nathan Gray and my sister Nicole Gray. Without these role models I cannot imagine where my education would have ended. I will always appreciate the support provided by all three of you and consider you to be role models that I can always look up to. CONTROLS ON DOLOMITIZATION OF THE UPPER ORDOVICIAN TRENTON LIMESTONE IN SOUTH-CENTRAL KENTUCKY by COLLIN JAMES GRAY, B.S. GEOLOGY THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2015 Acknowledgements I wish to thank my committee whose time and expertise provided excellent input into my research. Dr. Katherine Giles, my M.S. supervisor provided guidance and provided endless suggestions and recommendations throughout my research while continuously motivating me to continue my education.
    [Show full text]