PROFESSIONAL PAPER 1418 USGS Cience for a Changing World AVAILABILITY of BOOKS and MAPS of the U.S

Total Page:16

File Type:pdf, Size:1020Kb

PROFESSIONAL PAPER 1418 USGS Cience for a Changing World AVAILABILITY of BOOKS and MAPS of the U.S PROFESSIONAL PAPER 1418 USGS cience for a changing world AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis­ agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are ANCHORAGE, Alaska Rm. 101,4230 University Dr. obtainable by mail from LAKEWOOD, Colorado Federal Center, Bldg. 810 U.S. Geological Survey, Information Services MENLO PARK, California Bldg. 3, Rm. 3128, 345 Box 25286, Federal Center, Denver, CO 80225 MiddlefieldRd. RESIGN, Virginia USGS National Center, Rm. 1C402, Subscriptions to Preliminary Determination of Epicenters 12201 Sunrise Valley Dr. can be obtained ONLY from the SALT LAKE CITY, Utah Federal Bldg., Rm. 8105, 125 Superintendent of Documents South State St. Government Printing Office SPOKANE, Washington U.S. Post Office Bldg., Rm. 135, Washington, DC 20402 West 904 Riverside Ave. WASHINGTON, D.C. Main Interior Bldg., Rm. 2650,18th (Check or money order must be payable to Superintendent of Documents.) and C Sts., NW. Maps Only Maps Maps may be purchased over the counter at the following For maps, address mail orders to U.S. Geological Survey office: U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 ROLLA, Missouri 1400 Independence Rd. Hydrogeologic Framework of the Michigan Basin Regional Aquifer System By D.B. WESTJOHN and T.L. WEAVER REGIONAL AQUIFER-SYSTEM ANALYSIS MICHIGAN BASIN AQUIFER SYSTEM U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1418 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government. Library of Congress Cataloging in Publication Data Westjohn, D.B. (David B.) Hydrogeologic framework of the MicMgan basin regional aquifer system / by D.B. Westjohn and T.L. Weaver. p. cm. (Regional aquifer-system analysis Michigan Basin aquifer system) (U.S. Geological Survey professional paper ; 1418) Includes bibliographical references (p. - ). Supt.ofDocs.no.: I 19.16:1418 1. Hydrogeology Michigan Basin (Mich. and Ont.) 2. Hydrogeology Michigan. 3. Aquifers Michigan Basin (Mich. and Ont.) 4. Aquifers Michigan. I. Weaver, T.L. (Thomas Lynn), 1954- . II. Title. III. Series. IV. Series: U.S. Geological Survey professional paper ; 1418. GB1025.M5W47 1997 551.49'09774 dc21 97-34036 CDP ISBN 0-607-88068-6 For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 FOREWORD THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM The RASA Program represents a systematic effort to study a number of the Nation's most important aquifer systems, which, in aggregate, underlie much of the country and which represent an important component of the Nation's total water supply. In general, the boundaries of these studies are identified by the hydrologic extent of each system and, accordingly, tran­ scend the political subdivisions to which investigations have often arbi­ trarily been limited in the past. The broad objective for each study is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabili­ ties that will contribute to the effective management of the system. The use of computer simulation is an important element of the RASA studies to develop an understanding of the natural, undisturbed hydrologic system and the changes brought about in it by human activities and to provide a means of predicting the regional effects of future pumping or other stresses. The final interpretive results of the RASA Program are presented in a series of U.S. Geological Survey Professional Papers that describe the geology, hydrology, and geochemistry of each regional aquifer system. Each study within the RASA Program is assigned a single Professional Paper number beginning with Professional Paper 1400. Thomas J. Casadevall Acting Director CONTENTS Page Page Foreword................................................................................................... Ill Hydrogeology of Aquifers and Confining Units Continued Abstract..................................................................................................... 1 Saginaw Aquifer Continued Introduction.............................................................................................. 1 Area, Thickness, and Surface Configuration......................... 22 Regional Geologic Setting...................................................................... 2 Hydraulic Properties................................................................. 22 Previous Geologic Investigations................................................... 2 Saginaw Confining Unit.................................................................. 22 Depositional Setting......................................................................... 2 Parma-Bayport Aquifer................................................................... 22 Structures........................................................................................... 3 Area, Thickness, and Surface Configuration......................... 22 Geology of Mississippian and Younger Geologic Units.................... 5 Hydraulic Properties................................................................. 27 Coldwater Shale................................................................................ 6 Michigan Confining Unit................................................................ 27 Marshall Sandstone.......................................................................... 6 Area, Thickness, and Surface Configuration......................... 27 Michigan Formation........................................................................ 12 Hydraulic Properties................................................................. 27 Bayport Limestone........................................................................... 13 Marshall Aquifer.............................................................................. 27 Parma Sandstone.............................................................................. 13 Area, Thickness, and Surface Configuration......................... 31 Saginaw and Grand River Formations.......................................... 14 Hydraulic Properties................................................................. 31 Jurassic "Red Beds".......................................................................... 14 Coldwater Confining Unit.............................................................. 31 Pleistocene Glacial Deposits........................................................... 15 Area and Surface Configuration.............................................. 31 Hydrogeology of Aquifers and Confining Units................................ 16 Relations of Stratigraphic Units to Aquifers and Confining Hydraulic Properties................................................................. 35 Units......................................................................................... 16 Base of Freshwater.................................................................................. 35 Methods of Investigation................................................................ 16 Compilation and Analysis of Water-Quality Data...................... 35 Glaciofluvial Deposits...................................................................... 17 Collection and Analysis of Geophysical Logs............................. 37 Area, Distribution, and Thickness........................................... 17 Geologic Controls of Distribution of Freshwater ............................... 37 Hydraulic Properties................................................................. 19 Glacial Deposits................................................................................ 37 Glacial Lacustrine/Glacial Till Confining Units.......................... 19 Saginaw Aquifer............................................................................... 39 Jurassic "Red Beds" Confining Unit.............................................. 19 Parma-Bayport Aquifer................................................................... 39 Area, Thickness, and Surface Configuration........................
Recommended publications
  • Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan
    Hydrogeologic Framework of Mississippian Rocks in the Central Lower Peninsula of Michigan By D.B. WESTJOHN and T.L. WEAVER U.S. Geological Survey Water-Resources Investigations Report 94-4246 Lansing, Michigan 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Earth Science Information Center 6520 Mercantile Way, Suite 5 Open-File Reports Section Lansing, Ml 48911 Box 25286, MS 517 Denver Federal Center Denver, CO 80225 CONTENTS Abstract .......................................................... 1 Introduction ....................................................... 1 Geology .......................................................... 3 Coldwater Shale ................................................ 3 Marshall Sandstone .............................................. 6 Michigan Formation .............................................. 7 Hydrogeologic framework of Mississippian rocks ................................ 8 Relations of stratigraphic units to aquifer and confining units .................... 8 Delineation of aquifer- and confining-unit boundaries ......................... 9 Description of confining units and the Marshall aquifer ........................ 9 Michigan confining
    [Show full text]
  • Exploring the Use of Zircon Geochronology As an Indicator of Laurentide Ice Sheet Till Provenance, Indiana, U.S.A
    EXPLORING THE USE OF ZIRCON GEOCHRONOLOGY AS AN INDICATOR OF LAURENTIDE ICE SHEET TILL PROVENANCE, INDIANA, U.S.A. Christine M. Kassab1*, Samantha L. Brickles1, Kathy J. Licht1, and G. William Monaghan2 1Department of Earth Sciences Indiana University-Purdue University Indianapolis 723 W Michigan St, SL118 Indianapolis, IN 46202 2Indiana Geological Survey 611 N. Walnut Grove Bloomington, IN 47405 *corresponding author ([email protected]; Tel: 317-278-1343) ___________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Kassab, C. M., Brickles, S. L., Licht, K. J., & Monaghan, G. W. (2017). Exploring the use of zircon geochronology as an indicator of Laurentide Ice Sheet till provenance, Indiana, USA. Quaternary Research, 88(3), 525–536. https://doi.org/10.1017/qua.2017.71 Abstract A pilot study was designed to evaluate the potential of zircon geochronology as a provenance indicator of till from the Lake Michigan, Saginaw, and Huron-Erie Lobes of the Laurentide Ice Sheet. Based on existing ice flow-path models, we hypothesized that till from each lobe would have different zircon age population distributions because the lobes originated from regions of the Canadian Shield with different bedrock ages. After correcting for zircon fertility, the majority of grains in all till samples are 1600–950 Ma, with ~30% of ages >2500 Ma. This similarity means that till from the three lobes cannot be clearly differentiated based on their zircon populations. The dominant ages found and the homogeneity of distributions in the till indicates a non-Shield source and instead reflect an origin from some combination of underlying till and sedimentary bedrock in the Great Lakes region.
    [Show full text]
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Attachment B-13
    Attachment B-13 Hydrogeology for Underground Injection Control · n Michigan: Part 1 Department of Geology Western Michigan University Kalamazoo, Michigan U.S. Environmental Protection Agency Underground Injection Control Program 1981 Acknowledgements ADMINISTRATIVE STAFF DENNIS L. CURRAN LINDA J. MILLER DONALD N. LESKE Project Coordinator Cartographer Regional Coordinator PROJECT DIRECTORS RICHARD N. PASSERO W. Thomas Straw Lloyd J. Schmaltz Ph .D., Professor of Geology Ph.D., Professor of Geology Chatrman, Department of Geology Department of Geology, Western Michigan University RESEARCH STAFF CYNTHIA BATHRICK WILLIAM GIERKE CRYSTAL KEMTER JEFFREY PFOST PAUL CIARAMITARO PAUL GOODREAULT STEVEN KIMM NICK POGONCHEFF PATRICIA DALIAN DAVID HALL KEVIN KINCARE KIFF SAMUELSON DOUGLAS DANIELS EVELYN HALL MICHAEL KLEIN JEFFREY SPRUIT DARCEY DAVENPORT THOMAS HANNA BARBARA LEONARD GARY STEFANIAK JEFFREY DEYOUNG ROBERT HORNTVEDT THOMAS LUBY JOSEPH VANDERMEULEN GEORGE DUBA JON HERMANN HALLY MAHAN LISA VARGA SHARON EAST WILLIAM JOHNSTON JAMES McLAUGHLIN KATHERINE WILSON JAMES FARNSWORTH PHILLIP KEAVEY DEANNA PALLADINO MICHAEL WIREMAN LINDA FENNER DONALD PENNEMAN CARTOGRAPHIC STAFF LINDA J. MILLER Chief Cartographer SARAH CUNNINGHAM CAROL BUCHANAN ARLENE D. SHUB DAVID MOORE KENNETH BATTS CHRISTOPHER H. JANSEN NORMAN AMES ANDREW DAVIS ANN CASTEL PATRICK HUDSON MARK LUTZ JOAN HENDRICKSEN MAPPING CONSULTANT THOMAS W. HODLER Ph.D., Assistant Professor of Geography Department of Geography Western Michigan University CLERICAL PERSONNEL KARN KIK JANET NIEWOONDER
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2015 Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A. Joseph G. Adducci Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons, Geomorphology Commons, and the Sedimentology Commons Recommended Citation Adducci, Joseph G., "Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A." (2015). Master's Theses. 617. https://scholarworks.wmich.edu/masters_theses/617 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. GEOLOGICAL CONTROLS ON STRATIGRAPHY AND SEDIMENTATION OF THE MISSISSIPPIAN MARSHALL FORMATION, MICHIGAN BASIN, U.S.A by Joseph G. Adducci A thesis Submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science Geosciences Western Michigan University August 2015 Thesis Committee: David A. Barnes, Ph.D. (Chair) William B. Harrison, III, Ph.D. Peter J. Voice, Ph.D. GEOLOGICAL CONTROLS ON STRATIGRAPHY AND SEDIMENTATION OF THE MISSISSIPPIAN MARSHALL FORMATION, MICHIGAN BASIN, U.S.A. Joseph G. Adducci, M.S. Western Michigan University, 2015 An understanding of regional orogenic, climatic, and eustatic processes is critical to the interbasinal correlation of Paleozoic strata in eastern North America. Tectonic activity associated with the culmination of Appalachian Orogenic events has been shown to have regional influence on paleostructure and sediment dispersal in the Appalachian foreland basin and adjacent intracratonic Illinois and Michigan basins.
    [Show full text]
  • XRF Workshop Book
    Workshop Materials (1 of 2) Table of Contents Workshop Materials (book 1 of 2) Page Agenda 1 Welcome Presentation (Steve Kaczmarek) 3 Lectures Introduction to the Chemistry of Rocks and Minerals (Peter Voice) 7 Geology of Michigan (Bill Harrison) 22 XRF Theory (Steve Kaczmarek) 44 Student Research Posters Silurian A-1 Carbonate (Matt Hemenway) 56 Silurian Burnt Bluff Group (Mohamed Al Musawi) 58 Classroom Activities Powder Problem 60 Fossil Free For All 69 Bridge to Nowhere 76 Get to Know Your Pet Rock 90 Forensic XRF 92 Alien Agua 96 Appendices (book 2 of 2) Appendix A: MGRRE Factsheet 105 Appendix B: Michigan Natural Resources Statistics 107 Appendix C: CoreKids Outreach Program 126 Appendix D: Graphing & Statistical Analysis Activity 138 Appendix E: K-12 Science Performance Expectations 144 Appendix F: Workshop Evaluation Form 179 Workshop Facilitators Bridging the Gap between Geology & Chemistry Sponsored by the Western Michigan University, the Michigan Geological Repository for Research and Education, and the U.S. National Science Foundation This workshop is for educators interested in learning more about the chemistry of geologic materials. Wednesday, August 9, 2017 (8 am - 5 pm) Tentative Agenda 8:00-8:20: Welcome (Steve Kaczmarek) Agenda, Safety, & Introductions 8:20-8:50: Introduction to Geological Materials (Peter Voice) An introduction to rocks, minerals, and their elemental chemistry 8:50-9:00: Questions/Discussion 9:00-9:30: Introduction to MI Basin Geology (Bill Harrison) An introduction to the common rock types and economic
    [Show full text]
  • Summary of Hydrogelogic Conditions by County for the State of Michigan. Apple, B.A., and H.W. Reeves 2007. U.S. Geological Surve
    In cooperation with the State of Michigan, Department of Environmental Quality Summary of Hydrogeologic Conditions by County for the State of Michigan Open-File Report 2007-1236 U.S. Department of the Interior U.S. Geological Survey Summary of Hydrogeologic Conditions by County for the State of Michigan By Beth A. Apple and Howard W. Reeves In cooperation with the State of Michigan, Department of Environmental Quality Open-File Report 2007-1236 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation Beth, A. Apple and Howard W. Reeves, 2007, Summary of Hydrogeologic Conditions by County for the State of Michi- gan. U.S. Geological Survey Open-File Report 2007-1236, 78 p. Cover photographs Clockwise from upper left: Photograph of Pretty Lake by Gary Huffman. Photograph of a river in winter by Dan Wydra. Photographs of Lake Michigan and the Looking Glass River by Sharon Baltusis. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Source of Scheelite in the Turbidite
    SOURCE OF SCHEELITE IN THE TURBIDITE-HOSTED OROGENIC AU DEPOSITS OF OTAGO, NEW ZEALAND: AN INTEGRATED METAMORPHIC SOURCE MODEL EXPLAINING THE PRESENCE OR ABSENCE OF SCHEELITE IN TURBIDITE-HOSTED OROGENIC AU DEPOSITS Ben J. Cave (BSc. Honours, University of Adelaide) ARC Centre of Excellence in Ore Deposits (CODES) School of Physical Sciences (Earth Sciences) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania May, 2016 Declaration This thesis does not contain any material that has been accepted for degree or diploma by the University or any other institution, except where it has been duly acknowledged in the thesis. To the best of the author's knowledge it also contains no previously published material written by another person, except where it is acknowledged in the text of the thesis. Ben J. Cave Date: Ct-o9- 2o({, B.J. Cave ii Authority of Access The publisher of the papers comprising Chapter 7 (The Canadian Mineralogist) and Chapter 8 (Mineralium Deposita) holds the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. B.J. Cave iii Statement of Co-authorship The following people and institutions contributed to the publication of work undertaken as part of this thesis: Ben Cave, University of Tasmania = Candidate Aleksandr Stepanov, University of Tasmania = Author 1 Dave
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • Quartzitic Phyllites of the Gerichtsgra- W-GWZ: up to 600 M; E-GWZ: Eisenerzer Alpen: up to Ben Formation
    Overlying unit(s): Quartzitic phyllites of the Gerichtsgra- W-GWZ: up to 600 m; E-GWZ: Eisenerzer Alpen: up to ben Formation. 1,500 m (Polster area: 400 m, Rötzgraben: > 1,000 m, Bla- Lateral unit(s): Gerichtsgraben Formation; ? correlation seneck: 1,500 m). with acid tuffs above the Kalwang Conglomerate N Kal- Lithostratigraphically higher rank unit: - wang/Lange Teichen valley (LOESCHKE et al., 1990; NEU- Lithostratigraphic subdivision: - BAUER et al., 1994: p. 69). Underlying unit(s): E-GWZ: Gerichtsgraben Formation Geographic distribution: E-GWZ; Styria, Kaintaleck area. (FLAjs & SCHÖNLAUB, 1976; SCHÖNLAUB, 1982a, b). Remarks: - W-GWZ: Wildschönau Schists (MOSTLER, 1970; SCHÖN- Complementary references: - LAUB, 1979, 1980a). In the Wildseeloder Unit W Zell am See the underlying schists are sheared off (HEINISCH, 1988). Overlying unit(s): The Blasseneck Porphyry is overlain Blasseneck Porphyroid / Blasseneck Porphyry above erosional unconformities in the E-GWZ by the Pol- FRITZ EBNER ster Quartzite (FLAjs & SCHÖNLAUB, 1976) and in the W- GWZ by “Conglomerates” and Llandoverian “Dolomites, Validity: Invalid; lithostratigraphic unit used since PANTZ & Limestones with tuffs” (MOSTLER, 1964, 1968, 1970). ATZL (1814) in terms of a formation but not formalized; well Lateral unit(s): W-GWZ: parts of the Wildschönau Schists. characterized by HEINISCH (1981). E-GWZ: Volcaniclastics and coarse quartzites (= reworked Type area: Eisenerzer Alpen, ÖK50-UTM, map sheet 4215 Blasseneck Porphyry; SCHÖNLAUB, 1982a). Eisenerz (ÖK50-BMN, map sheet 101 Eisenerz) and ÖK50- Geographic distribution: W-GWZ: Tyrol – Salzburg: Kitz- UTM, map sheet 4214 Trieben (ÖK50-BMN, map sheet büheler Alpen, Dientener Berge, N Pongau. 131 Kalwang). E-GWZ: from the Eisenerzer Alpen in Styria to Gloggnitz in Type section: Not yet indicated.
    [Show full text]
  • Pennsylvanian Pewamo Formation and Haybridge Strata of Central Michigan: the Youngest Rocks of the Michigan Basin?
    The Geological Society of America Special Paper 531 Pennsylvanian Pewamo Formation and Haybridge strata of central Michigan: The youngest rocks of the Michigan Basin? Kathleen C. Benison* Department of Geology and Geography, West Virginia University, 98 Beechurst Avenue, Morgantown, West Virginia 26506-6300, USA ABSTRACT Pennsylvanian red beds are the youngest known rocks in the Michigan Basin. Two new formation-level units, the Pewamo Formation and the Haybridge strata, have recently been described. The Pewamo Formation, composed of Pennsylvanian red sandstones and minor laminated mudstones, is known from outcrops, abandoned quarries, and one core in Ionia County. The Haybridge unit is located in the shal- low subsurface and in coal mine tailing piles in Shiawassee County. It consists of red sandstone, red mudstone, coal, and gray mudstone, all hosting Pennsylvanian macroscopic plant fossils. Neither the Pewamo nor the Haybridge rocks have any demonstrated relationship to red core cuttings reported as Jurassic from the central Lower Peninsula of Michigan. No fi rm evidence exists for Jurassic, or any other post- Pennsylvanian rocks in the Michigan Basin. The red core cuttings may be glacial sediments with reworked palynomorphs from rocks transported from elsewhere. A shallow coring project, followed by detailed sedimentologic, petrographic, miner- alogic, and paleontologic studies, is necessary to: (1) refi ne the vertical and lateral stratigraphy of the Pennsylvanian rocks in Michigan; (2) solve the “Jurassic red bed problem”; and (3) understand the late Pennsylvanian–Pleistocene history of the Michigan Basin. INTRODUCTION This time has been referred to as the “missing interval” for the Lower Peninsula of Michigan. The Michigan Basin is rich in geologic resources, including The purpose of this paper is threefold: (1) to provide an over- oil, gas, salt, groundwater, and sand and gravel.
    [Show full text]