Figure 2 (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Figure 2 (Pdf) South North West East West East West East West East Eastern Kentucky Central West Virginia Eastern and Central Ohio Western and Central Pennsylvania Western and Central New York Age Stratigraphy from: Repetski and others (2008) Stratigraphy from: Ryder and others (2008, 2009) Stratigraphy from: Ryder and others (2008, 2009, 2010) Stratigraphy from: Berg and others (1983); Ryder and others (2010) Stratigraphy from: Repetski and others (2008) Era System Series (Ma) Valley Valley Rome Trough Rome Trough Rome Trough and Ridge Bedford Shale and Ridge Cleveland Member Venango Group Catskill Formation 359.2 Upper Devonian strata, undivided Ohio Shale Ohio Three Lick Bed Chagrin Shale equivalent rocks Chagrin Shale Bradford Group Foreknobs Formation Perrysburg Formation Shale Dunkirk Shale Member Huron Member of Ohio Shale Huron Member Elk Group Scherr Formation Upper Dunkirk Shale Java Formation Angola Shale Member Olentangy Shale (upper) Java Formation Java Formation Angola Shale Member West Falls West Falls Brallier Formation West Falls Angola Shale Member Formation Rhinestreet Shale Member Rhinestreet Shale Member of the Formation Rhinestreet Shale Member Formation Rhinestreet Shale Member Upper Devonian strata, undivided West Falls Formation 385.3 Sonyea and Genesee Formations, undivided Sonyea and Genesee Formations, undivided Sonyea and Genesee Formations, undivided Tully Limestone Tully Limestone Tully Limestone Mahantango Formation Mahantango Formation Moscow, Ludlowville, and Skaneateles Shales, undivided Hamilton Olentangy Shale (lower) Hamilton Hamilton Middle Group Group Group Tioga Bentonite Marcellus Shale Marcellus Shale Tioga Bentonite Marcellus Shale Marcellus Shale Onondaga Limestone Boyle Dolomite Delaware Limestone Onondaga Limestone Huntersville Chert Huntersville Chert and Onondaga Limestone Needmore Onondaga Limestone Devonian Columbus Limestone Shale 397.5 Oriskany Sandstone Oriskany Sandstone Ridgeley Sandstone Bois Blanc Formation Oriskany Oriskany Sandstone Lower Sandstone Shriver Formation and Helderberg Limestone Helderberg Licking Creek Limestone, Limestone undivided Mandata Shale Mandata Shale Helderberg Limestone 416.0 Keyser Limestone (upper) Corriganville and New Creek Limestones, undivided Bass Islands Dolomite Keyser Formation Helderberg Group Bass Islands Dolomite Keyser Limestone (lower) Big Mountain Shale Bass Islands Dolomite Akron Dolomite Pridoli Camillus Shale Camillus Formation Salina Group Tonoloway Formation Salina Salina Group Tonoloway Limestone Salina Group Salina Group Syracuse Formation Syracuse Formation Group 418.7 Vernon Formation Wills Creek Formation Vernon Formation ? “Newburg zone” of drillers ? “Corniferous ” carbonate formations Tymochtee and Upper Newburg sandstone Wills Creek Formation Paleozoic Ludlow Greenfield Limestones, McKenzie Eramosa Dolomite Lockport Dolomite McKenzie Limestone undivided Lockport Dolomite Lockport Dolomite 422.9 Member Lockport Group Formation Rochester Member of Berg Mifflintown and others (1983) Keefer Sandstone of Ohio and West Virginia (Ryder, 2004) Wenlock Keefer Formation of Pennsylvania (Ryder, 2004) Keefer Sandstone Keefer Sandstone of Ohio 428.2 (Big Six sandstone) and West Virginia (Ryder, 2004) Keefer Formation of Silurian Rochester Shale Rochester Shale Pennsylvania (Ryder, 2004) Alger Shale Rose Hill Formation Clinton Group Lower Silurian carbonates Rose Hill Formation Rose Hill Lower Silurian carbonates and shales, undivided Formation and shales, undivided Lower Llandovery Group Drowning Castanea Member Clinch Crab Orchard Undivided members Cabot Head Shale “Clinton” sandstone, Cabot Head Shale, and Medina Sandstone Creek Tuscarora Sandstone Cabot Head Shale Medina Group Formation Medina sandstone, undivided Group Tuscarora Formation 443.7 Brassfield Member Brassfield Limestone Juniata Formation Queenston Shale Drakes Formation through Clays Ferry Formation, undivided Juniata Formation Queenston Shale Queenston Shale Reedsville Shale Cincinnati group (informal usage) Reedsville Shale Bald Eagle Formation Oswego Sandstone Lorraine Group Utica Shale Lexington Limestone Utica Shale Utica Shale Antes Shale Utica Shale Upper Trenton Limestone Trenton Group Millbrig Bentonite Bed Millbrig Bentonite Bed Trenton Limestone Millbrig Bentonite Bed Millbrig Bentonite Bed Trenton Limestone Deicke Bentonite Bed Deicke Bentonite Bed Deicke Bentonite Bed Deicke Bentonite Bed Black River Group Black River Group Ordovician High Bridge Group Black River Limestone Black River Group 460.9 Loysburg Formation Wells Creek dolomite (informal usage) Unnamed anhydritic dolomite Wells Creek formation (informal usage) Middle St. Peter Sandstone Unnamed sandstone (St. Peter Sandstone Beekmantown Group 471.8 equivalent) EXPLANATION Major lithology Sample locations Sandstone Limestone with chert From Salina Group, Bass Islands Dolomite, Keyser Limestone Figure 2. Correlation chart of Middle Ordovician through Upper Devonian rocks in Kentucky, New York, Ohio, Pennsylvania, and West Virginia showing intervals sampled for total organic carbon (TOC) and (or Formation), Wills Creek Formation, or Tonoloway Limestone Gray shale Dolomite Rock-Eval analysis. Geologic time scale from Gradstein and others (2004). Black shale Dolomite with dark-gray to black shale From Lockport Dolomite (or Group), Eramosa Dolomite, or McKenzie Limestone (or Member) U.S. Geological Survey Professional Paper 1708–G.11 Red shale Dolomite with evaporite beds From Cabot Head Shale, Rose Hill Formation, Rochester Shale, Limestone Bentonite bed—Dashed where or other Lower Silurian strata approximate.
Recommended publications
  • Cambrian Ordovician
    Open File Report LXXVI the shale is also variously colored. Glauconite is generally abundant in the formation. The Eau Claire A Summary of the Stratigraphy of the increases in thickness southward in the Southern Peninsula of Michigan where it becomes much more Southern Peninsula of Michigan * dolomitic. by: The Dresbach sandstone is a fine to medium grained E. J. Baltrusaites, C. K. Clark, G. V. Cohee, R. P. Grant sandstone with well rounded and angular quartz grains. W. A. Kelly, K. K. Landes, G. D. Lindberg and R. B. Thin beds of argillaceous dolomite may occur locally in Newcombe of the Michigan Geological Society * the sandstone. It is about 100 feet thick in the Southern Peninsula of Michigan but is absent in Northern Indiana. The Franconia sandstone is a fine to medium grained Cambrian glauconitic and dolomitic sandstone. It is from 10 to 20 Cambrian rocks in the Southern Peninsula of Michigan feet thick where present in the Southern Peninsula. consist of sandstone, dolomite, and some shale. These * See last page rocks, Lake Superior sandstone, which are of Upper Cambrian age overlie pre-Cambrian rocks and are The Trempealeau is predominantly a buff to light brown divided into the Jacobsville sandstone overlain by the dolomite with a minor amount of sandy, glauconitic Munising. The Munising sandstone at the north is dolomite and dolomitic shale in the basal part. Zones of divided southward into the following formations in sandy dolomite are in the Trempealeau in addition to the ascending order: Mount Simon, Eau Claire, Dresbach basal part. A small amount of chert may be found in and Franconia sandstones overlain by the Trampealeau various places in the formation.
    [Show full text]
  • Mapping Potential Geologic Hazards for Proposed Highway Construction Projects in Pennsylvania: Route 15 in Lycoming County
    Mapping Potential Geologic Hazards for Proposed Highway Construction Projects in Pennsylvania: Route 15 in Lycoming County By Stuart O. Reese, P.G. Pennsylvania Geological Survey 3240 Schoolhouse Road Middletown, PA 17057 Telephone: (717) 702-2028 Fax: (717) 702-2065 email: [email protected] INTRODUCTION acidic drainage from uncovered Marcellus Shale (a black shale with approximately 3 percent sulfur) that had to be mitigated. The current project is situated in north-central Pennsyl- Recently, the Pennsylvania Geological Survey has vania in the Deep Valleys section of the Appalachian Plateaus worked on behalf of the Pennsylvania Department of Trans- portation (PennDOT) to develop maps for specific highway physiographic province in Lycoming County, Pennsylvania. construction projects. The purpose of these maps is to identify Section C41 of U.S. Route 15 is located from north of Trout potential geologic hazards such as landslides, sinkholes, min- Run to the Village of Buttonwood in the “Steam Valley” eralization, historic deep mines, acid drainage, and ground- area of Cogan House and Lewis Townships. The improved water conditions. Map layers have included aerial imagery, highway corridor will become part of Interstate 99, the Appa- digital elevation model (DEM) datasets, digital raster graphics lachian Thruway. This requires an upgrade of the 4 1/2 mile (DRGs), bedrock units and their contacts, surficial and struc- Steam Valley section (C41) to a four-lane limited access high- tural geology features, mapped landslides, glacial boundaries, way that meets current design standards comparable to adja- and water well locations. Possible issues are described in cent sections of U.S. 15. Construction is estimated to begin in the accompanying poster for the proposed construction zones fall 2007 (pending the availability of funds).
    [Show full text]
  • (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York
    Revised Stratigraphy and Correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York By Carlton E. Brett, Dorothy H. Tepper, William M. Goodman, Steven T. LoDuca, and Bea-Yeh Eckert U.S. GEOLOGICAL SURVEY BULLETIN 2086 Prepared in cooperation with the U.S. Environmental Protection Agency and the Department of Earth and Environmental Sciences of the University of Rochester UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1995 10 REVISED STRATIGRAPHY AND CORRELATIONS OF THE NIAGARAN PROVINCIAL SERIES been made in accordance with the NASC. Because the The history of nomenclature of what is now termed the NASC does not allow use of the "submember" category, Medina Group, beginning with Conrad ( 1837) and ending units that would be of this rank are treated as informal units with Bolton (1953), is presented in Fisher (1954); Bolton and have been given alphanumeric designations. Informal (1957, table 2) presents a detailed summary of this nomen- units are discussed under the appropriate "member" clature for 1910-53. A historical summary of nomenclature categories. of the Medina Group in the Niagara region is shown in fig- The use of quotes for stratigraphic nomenclature in this ure 7. Early investigators of the Medina include Conrad report is restricted to units that have been misidentified or (1837); Vanuxem (1840, first usage of Medina; 1842); Hall abandoned. If stratigraphic nomenclature for a unit has (1840, 1843); Gilbert (1899); Luther (1899); Fairchild changed over time, the term for the unit is shown, with cap- (1901); Grabau (1901, 1905, 1908, 1909, 1913); Kindle and italization, as given in whatever reference is cited rather Taylor (1913); Kindle (1914); Schuchert (1914); Chadwick than according to the most recent nomenclature.
    [Show full text]
  • Geology of the Devonian Marcellus Shale—Valley and Ridge Province
    Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 By Catherine B. Enomoto1, James L. Coleman, Jr.1, John T. Haynes2, Steven J. Whitmeyer2, Ronald R. McDowell3, J. Eric Lewis3, Tyler P. Spear3, and Christopher S. Swezey1 1U.S. Geological Survey, Reston, VA 20192 2 James Madison University, Harrisonburg, VA 22807 3 West Virginia Geological and Economic Survey, Morgantown, WV 26508 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Ken Salazar, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • Geoloaic District. Subsequent Stratigraphic Studies in This Area
    DEVONIAN STRATA AND PALEOENVIRONMENTS: CHAUTAUQUA COUNTY REGION: NEW YORK STATE GORDON C. BAIRD and GARY G. LASH Department of Geosciences State University of New York College at Fredonia Fredonia, New York 14063 INTRODUCTION The history of the study of the Paleozoic stratigraphic divisions in New York State spans, at least, two centuries, and it records the early development of important concepts centrally germane to the study of sedimentary basins worldwide (see Tesmer, 1989). The works of James Hall, John Clarke, HenryS. Williams, Joseph Barrell, and George Chadwick are well known to most sedimentary workers, as are those of numerous subsequent workers. In particular, the sedimentary sequences of the Allegheny Plateau Region (••southern Tier" region) served as important sources of information for refinement of the fac ies concept ar.d for the widespread recognition of the westwardly prograding Catskill Delta Complex which is the primary Paleozoic story recorded in Southern Tier bedrock deposits (see Chadwick, 1924, 1933; Cooper, et al., 1942; Caster, 1934; Woodrow, 1985). ---- The first significant geologic work relating to the Chautauqua County region was presented in James Hall's (1843) Survey of the Fourth Geoloaic District. Subsequent stratigraphic studies in this area inclu e Clarke (1903), Chadwick (1923, 1924), Caster (1934), Pepper and de Witt (1950, 1951) and de Witt and Colton (1953). In northwest Pennsylvania, significant synthetic contributions include I.C. White (1881), Butts (1906-1908), Chadwick (1925), Caster ·(1934), Pepper et al. (1954). In Ohio, deposits equivalent to parts of the New York and -­ Pennsylvania Upper Devonian section (Chagrin Shale) have been the subject of recent paleoenvironmental studies (see Weidner and Feldmann, 1983; Schwimmer and Feldmann, 1990).
    [Show full text]
  • Exhibit 5 Town of Barton Geology and Seismicity Report Sections
    GEOLOGY AND SEISMICITY REPORT SNYDER E1-A WELL TOWN OF BARTON TIOGA COUNTY, NEW YORK Prepared for: Couch White, LLP 540 Broadway P.O. Box 22222 Albany, New York 12201 Prepared by: Continental Placer Inc. II Winners Circle Albany, New York 12205 July 25, 2017 Table of Contents 1.0 EXECUTIVE SUMMARY............................................................................................................. 1 2.0 INTRODUCTION ........................................................................................................................... 2 2.1 Depositional Sequences and General Stratigraphic Sequence ................................................ 2 2.1.1 Upper Devonian Lithologies ........................................................................................................ 4 2.1.2 Marcellus-Hamilton ..................................................................................................................... 4 2.1.3 Tristates-Onondaga ...................................................................................................................... 4 2.1.4 Helderberg .................................................................................................................................... 4 2.1.5 Oneida-Clinton-Salina ................................................................................................................. 4 2.1.6 Black River-Trenton-Utica-Frankfort .......................................................................................... 5 2.1.7 Potsdam-Beekmantown ..............................................................................................................
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]