Oyo-Buturi International

Total Page:16

File Type:pdf, Size:1020Kb

Oyo-Buturi International Oyo-Buturi International Interview few books on to the subject. One was Den- work? shi-Keisanki (obi: “Electronic Computer”) Dr Shima: I did it for about four months. Dr Masatoshi Shima was part of a talent- by Shigeru Takahashi, which outlined the The next development in my career oc- ed group of engineers who in 1971 de- system, architecture, instruction set and curred as a result of my being lucky or as we veloped the world’s first microprocessor, microprogramming of computers; almost say in Japanese unmei (obi: fate or destiny). the 4004. In this interview, Dr Shima everything concerning computers. Another OBI: What do you mean by that? sheds light on some of the critical events book I read was about logic. It was written Dr Shima: Well, although the transistor leading up to the development of the by Professor Udagawa. I read both of these was invented in 1947, it was not commer- technology that revolutionised the elec- books avidly and then began to design the cialised until 1951. The commercial use of tronics industry and society as a whole. circuit boards that go into a calculator. This the transistor then led to a new era, namely, process involves connecting ics with wires the “era of the circuit”. That is to say, if you OBI: You studied chemistry as an under- and designing complicated wiring patterns. could fabricate a circuit by putting together graduate but then joined a com- a transistor, a resistor and a di- pany working on calculating ma- ode, you could construct and de- chines. Why did you change velop a “system”. Furthermore, fields? in 1961 the first commercial ic Dr Shima: I studied chemistry at was developed. This led to the university because I liked it and “era of logic”. It was at the begin- was interested in the subject. But ning of the “era of logic” that I I graduated in 1967 when the first started working on the de- Japanese economy was weak. velopment of calculators in in- There was not a lot of demand dustry. So I was lucky that the for chemistry graduates, so I had tools for development were al- to consider other fields of em- ready available when I started ployment. It was at just this time work. Incidentally, it’s interesting that an “electronic computer” to note that there were periods of was installed at Tokyo University. exactly 10 years between the The machine was supposed to be commercialisation of the transis- able to calculate the structure of tor in 1951, the ic in 1961, and compounds. It was in stark con- the microprocessor in 1971. trast to the mechanical calcula- In 1968, one year after I grad- tors that I had been using. The uated from university, my com- idea of an electronic computer pany decided to relocate its was very intriguing, so, after con- R&D to Tokyo. So I, too, re- sulting a friend who was working turned to Tokyo. there, I joined Busicom Incorpo- OBI: Did the move affect the na- rated. Busicom manufactured ture of your work? calculating machines and other Dr Shima: Yes. In 1968 Japan such office equipment. had won a major share of the OBI: What kind of work did you world calculator market, mostly do when you first joined Busi- based on (oem) agreements. Bu- com? sicom also carried out oem-relat- Dr Shima: I first learnt how to ed business. Their major concern write a program. I did not have was that most of the calculators any previous experience in pro- were made using “hard-wired gramming but I managed to pick-up the There is also the inter-board wiring. If logic” which would be difficult to use in basics quite quickly. I did that kind of work there are, say, ten boards then they all have the longer term. Our technical manager for about six months but I found that the to be physically wired up. There were two wanted an alternative to this technology applications side of the work, such as busi- main problems to be overcome in this and, because I had some relevant experi- ness applications, did not interest me work. The first was how to transfer the sig- ence, I was asked to study the introduction much. nal with a minimum of losses. The second, of the “programming” approach instead of OBI: So what did you do instead? was how to devise a process whereby the the “hard-wired” approach. “Stored pro- Dr Shima: Well, Busicom had a manufac- wiring up could be undertaken according gramming logic” as it was called. So I had turing subsidiary working on calculators to a set of instructions by people who were the task of defining the instruction set nec- and I asked to be moved there. So, in Oc- often not qualified engineers. This work re- essary for the development of calculators; tober 1967 I moved to a place called Ibar- quired a lot of new thinking and many as- the programs and instruction set would aki in Osaka and became involved in work pects of the ideas were original. I believe then be given to hardware engineers for im- related to the development of calculators. that no matter what the task may be, it is plementation. Since it was also necessary to OBI: What was your approach to this new always important to try to do something connect a printer to the final version of the field of development? creative and original in your work. calculator, I had to take that into account Dr Shima: I decided to begin by reading a OBI: For how long did you do this kind of as well. That was in the Spring of 1968. OBI: How did you approach the new real problem with the designs. America I met Ted Hoff. He said he going project? OBI: So what did you do? off on his vacation- a big surprise for me. I Dr Shima: I succeeded in designing a sys- Dr Shima: I continued to try to explain the then met Federico Faggin, who had started tem based on “stored programming logic” designs to him for a few months but still at Intel only about a week before. He said and tested it with a printer. It worked very without making any progress. So I then de- he had not been told anything about the well. Then, towards the end of 1968, a ma- cided to talk about the programming of project and asked me to explain it to him. jor Japanese company announced that it desk top calculators, instruction sets, such Another surprise. When I asked why they had developed a calculator using only four as the binary instruction sets and the deci- had not hired more people for the project lsi chips; truth to tell, it was actually five. mal instruction sets, flow charts and so on. and I was told that they had not been able This caused quite a stir in industry because Thankfully, Ted Hoff understood all this find any suitable people. So I decided to at the time no Japanese companies had the and he agreed with some of the new ideas participate in the development myself once technology to make high performance lsi and approaches that I had proposed. He again. chips. The result was that almost all the pointed out, though, that computers based There were four chips and I decided to major companies went to the usa to find on the decimal instruction sets are more develop the 4004 microprocessor by my- partners to fabricate ics. complicated than those based on the binary self. The others parts were to be developed OBI: And what did your company do? instruction sets. by Federico Faggin. Dr Shima: The company’s Osaka branch, It was towards the end of August 1969, OBI: How long did this stage take? which worked on small pocket-sized calcu- that Ted came into the room with several Dr Shima: There was already a working lators, chose mostek. Tokyo, which pieces of paper in his hands. He looked processor in December 1970 when I left for worked not only on calculators but also on quite excited about something. He said Japan via Europe; we then entered the last business machines such as billing ma- that he “had come up with an idea”. phase of designing the calculator. The final chines, approached Intel. OBI: What was his idea? product was ready in March 1971. OBI: How did you choose those two com- Dr Shima: There were “three boxes”. One OBI: How did you feel after this achieve- panies? of the boxes was a 4-bit alu for “making ment? Dr Shima: The decision was based partly micro-commands out of macro com- Dr Shima: I was more deeply moved by the on information provided by consultants mands”. The other two boxes were the completion of the calculator development but, more important, the Busicom presi- “stacks” and “registers” which could be project than by the microprocessor. I think dent of the day had a very good “eye” when used as “address pointers”... So the 4-bit it’s because the original goal was to develop it came to judging potential business part- alu would use “micro commands” for pro- the calculator. The microprocessor was ners. He said that the key requirements for ducing “macro-commands by program, us- merely a means to that end. So, if you were a successful project would be reliable top ing micro-commands”. That was the idea. to ask me why the microprocessor was management and expertise in silicon gate I think that this could be considered to be- born, I would say it’s because we had an ap- technology, instead of metal gate technolo- ing the “birth of the microprocessor”.
Recommended publications
  • When Is a Microprocessor Not a Microprocessor? the Industrial Construction of Semiconductor Innovation I
    Ross Bassett When is a Microprocessor not a Microprocessor? The Industrial Construction of Semiconductor Innovation I In the early 1990s an integrated circuit first made in 1969 and thus ante­ dating by two years the chip typically seen as the first microprocessor (Intel's 4004), became a microprocessor for the first time. The stimulus for this piece ofindustrial alchemy was a patent fight. A microprocessor patent had been issued to Texas Instruments, and companies faced with patent infringement lawsuits were looking for prior art with which to challenge it. 2 This old integrated circuit, but new microprocessor, was the ALl, designed by Lee Boysel and used in computers built by his start-up, Four-Phase Systems, established in 1968. In its 1990s reincarnation a demonstration system was built showing that the ALI could have oper­ ated according to the classic microprocessor model, with ROM (Read Only Memory), RAM (Random Access Memory), and I/O (Input/ Output) forming a basic computer. The operative words here are could have, for it was never used in that configuration during its normal life­ time. Instead it was used as one-third of a 24-bit CPU (Central Processing Unit) for a series ofcomputers built by Four-Phase.3 Examining the ALl through the lenses of the history of technology and business history puts Intel's microprocessor work into a different per­ spective. The differences between Four-Phase's and Intel's work were industrially constructed; they owed much to the different industries each saw itselfin.4 While putting a substantial part ofa central processing unit on a chip was not a discrete invention for Four-Phase or the computer industry, it was in the semiconductor industry.
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Microprocessors in the 1970'S
    Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338].
    [Show full text]
  • Bit Bang Rays to the Future
    Bit Bang Rays to the Future Editors Yrjö Neuvo & Sami Ylönen Bit Bang Rays to the Future ISBN (pbk) 978-952-248-078-1 Layout: Mari Soini Printed by: Helsinki University Print, 2009 Table of Contents FOREWORD 1 BIT BANG 7 1.1 The Digital Evolution – From Impossible to Spectacular 8 1.2 Life Unwired – The Future of Telecommunications and Networks 42 1.3 Printed Electronics – Now and Future 63 1.4 Cut the Last Cord by Nanolution 103 2 RAYS TO THE FUTURE 141 2.1 Future of Media – Free or Fantastic? 142 2.2 Future of Living 174 2.3 Wide Wide World – Globalized Regions, Industries and Cities 205 2.4 Augmenting Man 236 APPENDICES 265 1 Course Participants 266 2 Guest Lecturers 268 3 Course Books 268 4 Schedule of the California Study Tour in February 2009 269 5 Study Tour Summary Reports 272 Foreword Bit Bang – Rays to the Future is a post-graduate cross-disciplinary course on the broad long-term impacts of information and communications technologies on life- styles, society and businesses. It includes 22 students selected from three units making the upcoming Aalto University: Helsinki University of Technology (TKK), Helsinki School of Economics (HSE) and University of Art and Design Helsinki (UIAH). Bit Bang is a part of the MIDE (Multidisciplinary Institute of Digitalisation and Energy) research program, which the Helsinki University of Technology has started as part of its 100 years celebration of university level education and research. Professor Yrjö Neuvo, MIDE program leader, Nokia’s former Chief Technology Officer, is the force behind this course.
    [Show full text]
  • Chapter 1 Microcontrollers
    Chapter 1 Microcontrollers: Yesterday, Today, and Tomorrow 1.1 Defining Microcontrollers It is said that from the definition everything true about the con- cept follows. Therefore, at the outset let us take a brief review of how the all-pervasive microcontroller has been defined by various technical sources. A microcontroller (or MCU) is a computer-on-a-chip used to con- trol electronic devices. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC). A typical microcontroller con- tains all the memory and interfaces needed for a simple application, whereas a general purpose microprocessor requires additional chips to provide these functions. .(Wikipedia [1]) A highly integrated chip that contains all the components compris- ing a controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task – to control a particular system. As a result, the parts can be simplified and reduced, which cuts down on production costs. (Webopedia [2]) A {microprocessor} on a single {integrated circuit} intended to ope- rate as an {embedded} system. As well as a {CPU}, a microcontroller typically includes small amounts of {RAM} and {PROM} and timers and I/O ports. .(Define That [3]) A single chip that contains the processor (the CPU), non-volatile memory for the program (ROM or flash), volatile memory for input and output (RAM), a clock and an I/O control unit.
    [Show full text]
  • Mikroelektronika | Free Online Book | PIC Microcontrollers | Introduction: World of Microcontrollers
    mikroElektronika | Free Online Book | PIC Microcontrollers | Introduction: World of Microcontrollers ● TOC ● Introduction ● Ch. 1 ● Ch. 2 ● Ch. 3 ● Ch. 4 ● Ch. 5 ● Ch. 6 ● Ch. 7 ● Ch. 8 ● Ch. 9 ● App. A ● App. B ● App. C Introduction: World of microcontrollers The situation we find ourselves today in the field of microcontrollers had its beginnings in the development of technology of integrated circuits. This development has enabled us to store hundreds of thousands of transistors into one chip. That was a precondition for the manufacture of microprocessors. The first computers were made by adding external peripherals such as memory, input/output lines, timers and others to it. Further increasing of package density resulted in creating an integrated circuit which contained both processor and peripherals. That is how the first chip containing a microcomputer later known as a microcontroller has developed. This is how it all got started... In the year 1969, a team of Japanese engineers from BUSICOM came to the USA with a request that a few integrated circuits for calculators were to be designed according to their projects. The request was sent to INTEL and Marcian Hoff was in charge of the project there. Having experience working with a computer, the PDP8, he came up with an idea to suggest fundamentally different solutions instead of the suggested design. This solution presumed that the operation of integrated circuit was to be determined by the program stored in the circuit itself. It meant that configuration would be simpler, but it would require far more memory than the project proposed by Japanese engineers.
    [Show full text]
  • Technology and Obsolescence in America Copyright © 2006 by Giles Slade All Rights Reserved Printed in the United States of America
    Made to Break GILES SLADE Harvard University Press Cambridge, Massachusetts I London, England Made To Break Technology and Obsolescence in America Copyright © 2006 by Giles Slade All rights reserved Printed in the United States of America First Harvard University Press paperback edition, 2007 Library of Congress Cataloging-in-Publication Data Slade, Giles. Made to break : technology and obsolescence in America I Giles Slade. p. cm. ISBN-13 978-0-674-02203-4 (cloth: alk. paper) ISBN-10 0-674-02203-3 (cloth: alk. paper) ISBN-13 978-0-674-02572-1 (pbk.) ISBN-10 0-674-02572-5 (pbk.) 1. Technological innovations-United States. I. Title. T173.8.S595 2006 609.73-dc22 2005036315 Introduction 1 1 Repetitive Consumption 9 2 The Annual Model Change 29 3 Hard Times 57 4 Radio, Radio 83 5 The War and Postwar Progress 115 6 The Fifties and Sixties 151 7 Chips 187 8 Weaponizing Planned Obsolescence 227 9 Cell Phones and E-Waste 261 Notes 283 Acknowledgments 313 Index 316 America, I do not call your name without hope -PABLO NERUDA To scrutinize the trivial can be to discover the monumental. Almost any object can serve to unveil the mysteries of engineering and its relation to art, business, and all other aspects of our culture. HENRY PETROSKI, THE PENCIL: A HISTORY (1989) For no better reason than that a century of advertising has condi­ tioned us to want more, better, and fa ster from any consumer good we purchase, in 2004 about 315 million working PCs were retired in North America. Of these, as many as 10 percent would be refurbished and reused, but most would go straight to the trash heap.
    [Show full text]
  • Microprocessor Wikipedia,TheFreeEncyclopedia Page 1Of 16
    Microprocessor - Wikipedia,thefreeencyclopedia Page 1of 16 Microprocessor From Wikipedia,the free encyclopedia A microprocessor incorporatesthefunctionsof acomputer's central processingunit(CPU)onasingle integratedcircuit,[1] (IC)oratmostafewintegratedcircuits. [2]Itisa multipurpose,programmabledevicethataccepts digitaldata asinput,processesitaccordingtoinstructionsstoredinits memory,andprovidesresultsasoutput.Itisanexampleof sequentialdigitallogic,asithasinternalmemory. Microprocessorsoperateonnumbersandsymbols representedin the binarynumeralsystem. Theadventoflow-costcomputersonintegratedcircuitshas transformedmodernsociety.General-purpose microprocessorsinpersonalcomputersareusedfor computation,textediting,multimediadisplay,and Intel 4004,thefirstgeneral-purpose, communicationovertheInternet.Manymore commercial microprocessor microprocessorsare partof embeddedsystems,providing digitalcontrolofamyriadofobjectsfromappliancesto automobilestocellular phonesandindustrial processcontrol. Contents ■ 1Origins ■ 2Embeddedapplications ■ 3Structure ■ 4Firsts ■ 4.1Intel4004 ■ 4.2TMS1000 ■ 4.3Pico/GeneralInstrument ■ 4.4CADC ■ 4.5GilbertHyatt ■ 4.6Four-PhaseSystemsAL1 ■ 58bitdesigns ■ 612bitdesigns ■ 716bitdesigns ■ 832bitdesigns ■ 964bitdesignsinpersonalcomputers ■ 10Multicoredesigns ■ 11RISC ■ 12Special-purposedesigns ■ 13Marketstatistics ■ 14See also ■ 15Notes ■ 16References ■ 17Externallinks http://en.wikipedia.org/wiki/Microprocessor 2012 -03 -01 Microprocessor -Wikipedia,thefreeencyclopedia Page 2of 16 Origins Duringthe1960s,computer processorswereconstructedoutofsmallandmedium-scaleICseach
    [Show full text]
  • MEMORY MAKER ROBERT DENNARD, Winner of THIS YEAR’S IEEE MEDAL of HONOR, FIGURED out How to DO DRAM RIGHT
    THE MAGAZINE OF TECHNOLOGY INSIDERS 05.09 MEMORY MAKER ROBERT DENNARD, WINNER OF THIS YEAR’S IEEE MEDAL OF HONOR, FIGURED OUT HOW TO DO DRAM RIGHT THE 25 MOST REMARKABLE CHIPS EVER TOUCH SCREENS GET TOUCHY-FEELY THE NETFLIX CHALLENGE: HELP US RECOMMEND MOVIES, WIN A MILLION DOLLARS volume 46 number 5 north american 05.09 UPDATE 11 BAIT TO TRACK DATA THIEVES A honeypot project in Germany finds viruses and tracks down the data they steal. By Michael Dumiak 12 CELLPHONE SECURITY THREAT 14 BRIGHT SPOTS IN THE GLOOM 14 ROBOTIC SEALS AID RESEARCH 15 TOUCH SCREENS WITH FEELING 16 THE RFID AS COMPUTER 24 18 ULTRAVIOLET RADIOS BEAM TO LIFE 20 THE BIG PICTURE Fabs get the white-glove treatment. OPINION 8 SPECTRAL LINES IEEE’s 125th-anniversary celebrations reveal the depth and breadth of its members’ contributions to technology. 10 FORUM Readers discuss the state of the U.S. nuclear arsenal and the demise of the business-method patent. 27 REFLECTIONS Bob Lucky’s head is in the clouds— 44 28 the computing clouds, that is. BETTER PICS: COVER STORY Medical DEPARTMENTS ultrasound 4 BACK STORY images will soon 48 THANKS FOR A man vanishes. Can Google find him? be much sharper [above]; a famed THE MEMORIES 6 CONTRIBUTORS 8-bit processor Robert Dennard’s 1968 invention of the one-transistor dynamic random- 22 HANDS ON powers a famed A high-definition CL D projector can cartoon robot access memory set the path of computing for the next half century. set you back US $2000—or you could [top right]; For this, he will receive the 2009 IEEE Medal of Honor.
    [Show full text]
  • The Decline of Computers As a General Purpose Technology: Why Deep Learning and the End of Moore's Law Are Fragmenting Computi
    WORKING PAPER The Decline of Computers as a General Purpose Technology: Why Deep Learning and the End of Moore’s Law are Fragmenting Computing Neil C. Thompson* Svenja Spanuth* Laboratory for Innovation Science at Harvard & MIT Sloan School of Management & MIT Computer Science and Artificial Intelligence Lab RWTH Aachen University November 2018 Abstract It is a triumph of technology and of economics that our computer chips are so universal. Countless applications are only possible because of the staggering variety of calculations that modern chips can compute. But, this was not always the case. Computers used to be specialized, doing only narrow sets of calculations. Their rise as a ‘general purpose technology (GPT)’ only happened because of the technical breakthroughs by computer scientists like von Neumann and Turing, and the mutually-reinforcing economic cycle of general purpose technologies, where product improvement and market growth fuel each other. This paper argues that technological and economic forces are now pushing computing in the opposite direction, making computer processors less general purpose and more *N. Thompson and S. Spanuth contributed equally to this work. specialized. This process has already begun, driven by the slow-down in Moore’s Law and the algorithmic success of Deep Learning. This trend towards specialization threatens to fragment computing into 'fast lane' applications that get powerful customized chips and 'slow lane' applications that get stuck using general purpose chips whose progress fades. The rise of general purpose computer chips has been remarkable. So, too, could be their fall. This paper outlines the forces already starting to fragment this general purpose technology.
    [Show full text]
  • Microprocessor (Edited from Wikipedia)
    Microprocessor (Edited from Wikipedia) SUMMARY A microprocessor is a computer processor which incorporates the functions of a computer's central processing unit (CPU) on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock-driven [crystal oscillator-driven], register based, digital-integrated circuit which accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary numeral system. Combinational logic is a type of digital logic which is implemented by Boolean [true or false] circuits, where the output is a pure function of the present input only. This is in contrast to sequential logic, in which the output depends not only on the present input but also on the history of the input. In other words, sequential logic has memory while combinational logic does not. The integration of a whole CPU onto a single chip or on a few chips greatly reduced the cost of processing power, increasing efficiency. Integrated circuit processors are produced in large numbers by highly automated processes resulting in a low per unit cost. Single-chip processors increase reliability as there are many fewer electrical connections to fail. As microprocessor designs get better, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same. Before microprocessors, small computers had been built using racks of circuit boards with many medium- and small-scale integrated circuits.
    [Show full text]
  • Fairchild Semiconductor
    Report to the Computer History Museum on the Information Technology Corporate Histories Project Semiconductor Sector Fairchild Semiconductor Company Details Name: Fairchild Semiconductor Sector: Semiconductor Sector Description . THIS SITE WAS ESTABLISHED TO COLLECT AND PRESENT INFORMATION AND STORIES RELATED TO FAIRCHILD SEMICONDUCTOR AS PART OF THE OCTOBER 2007 CELEBRATION OF THE FIFTIETH ANNIVERSARY OF THE FOUNDING OF THE COMPANY. IF YOU HAVE ANY CORRECTIONS OR ADDITIONAL INFORMATION TO CONTRIBUTE PLEASE CONTACT THE FACILITATORS LISTED BELOW. Overview Founded in 1957 in a building now designated as California Historical Landmark # 1000 in Palo Alto, California by eight young engineers and scientists from Shockley Semiconductor Laboratories, Fairchild Semiconductor Corporation pioneered new products and technologies together with an entrepreneurial style and manufacturing and marketing techniques that reshaped Silicon Valley and the world-wide industry. The Planar process invented in 1959 revolutionized the production of semiconductor devices and enables the manufacture of today's billion transistor microprocessor and memory chips. Funded by and later acquired as a division of Fairchild Camera and Instrument Corporation of Syosset, New York, Fairchild was the first manufacturer to introduce high-frequency silicon transistors and practical monolithic integrated circuits to the market. At the peak of its influence in the mid-1960s, the division was one of the world’s largest producers of silicon transistors and controlled over 30 percent of the market for ICs. Director of Research and Development, Gordon Moore observed in 1965 that device complexity was increasing at a consistent rate and predicted that this would continue into the future. “Moore’s Law,” as it became known, created a yardstick against which companies have measured their technology progress for over 40 years.
    [Show full text]