ELE22MIC - Microprocessors

Total Page:16

File Type:pdf, Size:1020Kb

ELE22MIC - Microprocessors ELE22MIC - Microprocessors. Lecturer: Paul Main. Email: [email protected] Room: BG 441 Tel: 9018 6732 Laboratory Coordinator: Geoff Tobin. Room: Physical Sciences 2, Room 114 Email: [email protected] Tel: 9479 3736 Course Outline: Aims: Develop a working knowledge of digital logic and how those principles can be applied to implement a microprocessor system. Learn how to design, build, program and debug a useful basic microcomputer system. Familiarise students to basic architecture of modern microprocessors, micro-controllers and common peripherals. Learn interfacing techniques for simple transducers (via the Analog to Digital Converter) and how to apply them to implement electronic systems. Develop an ability to write ATMEGA128L (assembly language and C) code to meet a design goal. Handbook Course Description This is a first course in microprocessors and their applications. Topics include introduction to microprocessors, microprocessor architecture, microcomputers, assembly language programming, memory, parallel and serial I/O, computer design, timing, address decoding, interrupts, memory management, caches, virtual memory, mass storage devices, DMA, systems programming and other processors. 1 Class Requirements: Two lectures per week (total of 26) One problem class per fortnight (total of 6 problem classes) Three hours practical work per fortnight (total of 6 sessions). Three assignments. Lectures: 26 One-Hour Lectures. Tuesday 9:00am HS1 136 Friday 9:00am PW 101 Laboratory Sessions: One 3-Hour Laboratory Session per fortnight. - Total of 6 Labs commence next week. Duration: 3Hours WEDNESDAY: 2:00 pm THURSDAY: 2:00 pm Location: Beth Gleeson, Room 310 Problem Classes: - Total of 6 TUESDAY: 12noon, Duration: 1 Hours WEDNESDAY: 12noon, Duration: 1 Hours Location: HS1, ROOM 302 Consultation Times: - weekly during semester 2 Tuesday 10:00am - 12 noon PS2 Room 118 Friday 10:00am - 12 Noon PS2 Room 118 2 Lecture Topics Include Introduction to microprocessors -History & perspective Digital Logic Review Hexadecimal & Binary Arithmetic Review The CPU : What's inside ? CPU operation: Instruction Pointer, Fetch-Execute cycle, jump Microcomputers, Microprocessor architecture, The Arithmetic and Logic Unit - ALU Arithmetic & Logical Instructions : Add, Subtract, Shift Left/Right Multiply & Divide Assembly language programming ATMEGA128 Instruction set : Registers, Load, store, transfer, exchange, Addressing Modes The Condition Codes Register, Jumping, Conditional Branching, Programming techniques and applications Flow charts Interrupts & interrupt handlers Memory, Computer design - Timing diagrams & meeting timing constraints Address decoding, Interrupts, Computer memories (hardware aspect) Computer memories (system application) Memory management, Virtual memory, Mass storage devices, Input/Output: Parallel and serial I/O, Grey codes Serial Input/Output serial interface devices UARTS, RS232, RS485 Simple computer networks Designing a ATMEGA128 based computer: memory address space considerations bus timing considerations Expanded memory design & caches The counter/timer subsystem on ATMEGA128 The A to D converter subsystem on ATMEGA128 Mass storage devices Advanced Aspects Caches, Direct memory access (DMA) and related issues, DMA, Features of other micro-controllers RISC vs CISC 3 Assessment: 2-hour Examination (70%), Laboratory work (20%) Assignments (10%). Microprocessors Resources: Textbooks Embedded C Programming and the Atmel AVR Barnett, Cox and O’Cull ISBN 1-4018-1206-6 $96 Designing Embedded Hardware - John Catsoulis ISBN 0-595-00362-5 $51 Web site URLs: Course Notes: http://www.sea.vg/mic http://www.atmel.com/products/avr/overview.asp ELE22MIC Resource CDROM To be handed out in lecture 3. Containing notes & device datasheets. 4 Laboratory sessions cover: Familiarisation with ATMEGA128 hardware Find out about the Bootloader monitor program, Use AVR Studio commands to view the contents of memory and processor registers. Examine the directly addressable memory space of ATMEGA128 microprocessor and find out how it is partitioned, Explore various instructions and addressing modes of the ATMEGA128. “Hello World” program. Study the ATMEGA128's - addressing modes, - registers, - Reset vector and interrupt vectors. This lab involves designing and writing an application program in assembler. The aim of the program is to non-destructively test an area of memory for corruption. The problem is to be broken up into smaller parts which are much easier to manage... The Stepper Motor Control Lab. The timer counter subsystem. System software development - The analog to digital (AD) converter. Applications of the AD Converter Decoding Gray codes. Designing, building and prototyping a useful microprocessor system. 5 HISTORIC PERSPECTIVE - TIMELINE OF COMPUTING The Abacus “Computing Tray” The first mechanical calculating machine. 28? The Computing Tray - was used by Babylonian priests to keep track of their vast storehouses of grain. Still in use today. Circa 3000BC. In Roman times the board was given grooves to facilitate moving the counters in the proper files. Circa 1300BC Wire & Bead Abacus replaced the Chinese calculating rods. A modern equivalent is an Accumulator it is used to accumulate intermediate results of arithmetic calculations. Modern accumulator uses binary numbers. 6 Analog Calculators: In 1612 John Napier uses the printed decimal point, devised logarithms and used numbered sticks (or Napiers Bones) for calculating. This principle lead to the invention of the slide rule. Mechanical Calculators In 1642: Blaise Pascal Invented the first mechanical calculator constructed of 10-toothed gears, wheels & teeth. It was called “Pascalene”. The same principle is still in use in automobile’s (mechanical) odometer mechanism. The same principle was the basis for all mechanical calculators. Punched Cards In 1801 Joseph Marie Jacquard invented a machine to use a linked sequence of punched cards programmed to control a weaving machine and produce intricate weaving patterns in cloth. 7 1823: The royal Astronomical Society of Great Britain commissioned Charles Babbage to produce a programmable calculating machine. He was aided by Augusta Ada Byron, the countess of Lovelace - the first programmer. The machine was to produce navigational tables for the Royal Navy. 1834 Babbage shifted his focus to work on The Analytical Engine. The mechanical computer stored 1000 20-digit decimal numbers and a variable program that could modify the function of the machine to perform various tasks. Input to his engine was through punched cards. It is assumed that he obtained the idea from Frenchman, Joseph Jaquard. After many years of work, Babage’s dream faded when he realised that the machinists of the day were unable to create the parts needed to complete his work. The analytical engine required 50 000 precision machined parts to allow his engine to function reliably. Michael Faraday Was the son of a blacksmith. He had limited formal education but attended public lectures and became an avid reader. In 1813 Started working life at the London Royal Institution as a laboratory assistant. In 1821 demonstrated the electric motor effect. In 1831 demonstrated EMF(current) induced by motion of magnet by a nearby conductor. Electric Motors became available. Motor driven adding machines based on mechanical calculators developed by Blaise Pascal became popular. Electrically driven mechanical calculators were common office equipment until 1970s. Telecommunication by Morse Code 1844 - Samuel Morse sent a telegraph from Washington to Baltimore. 8 George Boole Publishes “Laws of Thought”, describing a system for symbolic & logical reasoning which becomes the basis for computer design. 1858 A telegraph cable spans the Atlantic Ocean & provides service for a few days. Alexander Graham Bell in 1876, invents and patents the telephone. Herman Hollerith’s Tabulator In 1889, Herman Hollerith developed punched cards for storing data. Like babbage he also borrowed the idea of a punched card from Joseph Jaquard. Hollerith developed a machine that counted, sorted and collated information stored on punched cards. He founded the Tabulating Machine Company. After a number of mergers, the Tabulating Machine Company was formed into the International Business Machines Corporation - IBM. The punched cards used in computer systems are often called Hollerith cards. The 12-Bit code used on a punched card is called the Hollerith Code. Mechanical machines continued to dominate the Information Processing world until 1941. Guglielmo Marconi In 1895, transmitted the first radio signal. Claude Shannon in 1937 publishes the principles for an electric adder using base two. Conrad Zuse German Inventor, created the first electro-mechanical calculating computer in 1941. It was used for aircraft & missile design during World War II for the German war effort. The Z3 used a 5.33Hertz clocking frequency and was based on electro-mechanical relays. 9 World War II (WWII) commenced. Great Britain’s survival depended on imports of fuel, food, weapons & industrial raw materials. Germany’s Gossadmiral Doenitz’s planned to sink the merchant ships that were bringing supplies to Brittain by using a powerful submarine fleet. Doenitz calculated that sinking 800 000 tons of merchant ships per month would bring Britain to starvation, surrender and a request for peace would result. Enigma: 1941 German Commands to the submarine fleet were initially encrypted with a three rotor Enigma before being transmitted by radio
Recommended publications
  • Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West”
    © 2002 The Charles Babbage Institute for the History of Information Technology 211 Andersen Library, 222 – 21st Avenue South, Minneapolis, MN 55455 USA Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West” Juliet Burba University of Minnesota Philip L. Frana Charles Babbage Institute Date published: 13 September 2002 Sanity is a madness put to good uses. So wrote the great philosopher and poet Jorge Augustín Nicolás Ruiz de Santayana in his essay “The Elements and Function of Poetry.”1 Without doubt, the advent of the early Web unleashed a mania, an unreasonable recklessness that to this day resists being swept back under the rug. How can we tease “sanity” out of the Web? Can the historian put this madness to good use? When the World Wide Web made its debut in the early 1990s, it resembled a pageant that only a parent could love. The Internet Movie Database, the WebCrawler search engine, the Web cam of an isolated unbent spoon and its associated challenge to the telekinetic Uri Geller—those were “reliable” sites. Indeed, the most useful sites looked suspiciously like they had been ripped from Internet Gopher menus. Even Jerry’s Guide to the World Wide Web (later rechristened “Yahoo!”) could not be judged an entirely trustworthy directory in those days. Already it is difficult to remember a time when banner advertising could be used as a legitimate navigational tool, when sessions running a Mosaic browser with its (usually slowly) pulsing upper right-hand image of Earth and two orbiting plan- etoids seemed interminable, and where alternatives to the hand-coding of new Web pages did not exist.
    [Show full text]
  • Microprocessors in the 1970'S
    Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338].
    [Show full text]
  • MTS on Wikipedia Snapshot Taken 9 January 2011
    MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors
    [Show full text]
  • Tomo II • Maestría En Ciencia E Ingeniería De La Computación
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN Tomo II (Maestría en Ciencia e Ingeniería de la Computación) Planes de Estudio Maestría en Ciencia e Ingeniería de la Computación Doctorado en Ciencia e Ingeniería de la Computación Especialización en Cómputo de Alto Rendimiento Grados que se otorgan Maestro(a) en Ciencia e Ingeniería de la Computación Doctor(a) en Ciencia e Ingeniería de la Computación Especialista en Cómputo de Alto Rendimiento Campos de conocimiento que comprende Teoría de la Computación Inteligencia Artificial Computación Científica Señales, Imágenes y Ambientes Virtuales Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Campos de conocimiento en los que se articula la especialización Computación Científica Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Entidades académicas participantes • Facultad de Ciencias • Facultad de Ingeniería • Facultad de Estudios Superiores Cuautitlán • Instituto de Ingeniería • Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas • Instituto de Matemáticas • Centro de Ciencias Aplicadas y Desarrollo Tecnológico Entidades académicas que se incorporan de manera exclusiva a la especialización • Instituto de Geofísica (IG) • Instituto de Astronomía (IA) • Instituto de Física (IF) • Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC) Fechas de aprobación u opiniones Modificación del Programa de Posgrado en Ciencia e Ingeniería de la Computación, que implica: a) Adecuación y modificación del plan de estudios de la Maestría en Ciencia e Ingeniería de la Computación. b) Modificación del plan de estudios de Doctorado en Ciencias e Ingeniería de la Computación. c) Cambio de denominación del campo de conocimiento de: “Ingeniería de Sistemas y Redes Computacionales" por "Redes y seguridad en cómputo".
    [Show full text]
  • Publications Core Magazine, 2007 Read
    CA PUBLICATIONo OF THE COMPUTERre HISTORY MUSEUM ⁄⁄ SPRINg–SUMMER 2007 REMARKABLE PEOPLE R E scuE d TREAsuREs A collection saved by SAP Focus on E x TRAORdinARy i MAGEs Computers through the Robert Noyce lens of Mark Richards PUBLISHER & Ed I t o R - I n - c hie f THE BEST WAY Karen M. Tucker E X E c U t I V E E d I t o R TO SEE THE FUTURE Leonard J. Shustek M A n A GI n G E d I t o R OF COMPUTING IS Robert S. Stetson A S S o c IA t E E d I t o R TO BROWSE ITS PAST. Kirsten Tashev t E c H n I c A L E d I t o R Dag Spicer E d I t o R Laurie Putnam c o n t RIBU t o RS Leslie Berlin Chris garcia Paula Jabloner Luanne Johnson Len Shustek Dag Spicer Kirsten Tashev d E S IG n Kerry Conboy P R o d U c t I o n ma n ager Robert S. Stetson W E BSI t E M A n AGER Bob Sanguedolce W E BSI t E d ESIG n The computer. In all of human history, rarely has one invention done Dana Chrisler so much to change the world in such a short time. Ton Luong The Computer History Museum is home to the world’s largest collection computerhistory.org/core of computing artifacts and offers a variety of exhibits, programs, and © 2007 Computer History Museum.
    [Show full text]
  • The Digital Information Revolution: the Era of Immediacy
    The Digital Information Revolution: The Era of Immediacy Michael B. Spring May 2011 The Digital Information Revolution: the Era of Immediacy Table of Contents Table of Contents .................................................................................................................................................. ii Chapter I: Introduction ................................................................................................................ 1 Origins of This Book ............................................................................................................................................ 1 Audience for this Book ......................................................................................................................................... 2 The Author’s Perspective ..................................................................................................................................... 2 Acknowledgments ................................................................................................................................................ 4 Organization of the Book ...................................................................................................................................... 5 Chapter II: History ........................................................................................................................ 6 Introduction .........................................................................................................................................................
    [Show full text]
  • Computer History a Look Back Contents
    Computer History A look back Contents 1 Computer 1 1.1 Etymology ................................................. 1 1.2 History ................................................... 1 1.2.1 Pre-twentieth century ....................................... 1 1.2.2 First general-purpose computing device ............................. 3 1.2.3 Later analog computers ...................................... 3 1.2.4 Digital computer development .................................. 4 1.2.5 Mobile computers become dominant ............................... 7 1.3 Programs ................................................. 7 1.3.1 Stored program architecture ................................... 8 1.3.2 Machine code ........................................... 8 1.3.3 Programming language ...................................... 9 1.3.4 Fourth Generation Languages ................................... 9 1.3.5 Program design .......................................... 9 1.3.6 Bugs ................................................ 9 1.4 Components ................................................ 10 1.4.1 Control unit ............................................ 10 1.4.2 Central processing unit (CPU) .................................. 11 1.4.3 Arithmetic logic unit (ALU) ................................... 11 1.4.4 Memory .............................................. 11 1.4.5 Input/output (I/O) ......................................... 12 1.4.6 Multitasking ............................................ 12 1.4.7 Multiprocessing .........................................
    [Show full text]
  • Timeline of Computing History 4000-1200 B.C
    T o commemorate the 50th year of modern computing and the Computer Society, the timeline on the following pages traces the evolution of computing and computer technology. Timeline research by Bob Carlson, Angela Burgess, and Christine Miller. Timeline design and production by Larry Bauer. We thank our reviewers: Ted Biggerstaff, George Cybenko, Martin Campbell-Kelly, Alan Davis, Dan O’Leary, Edward Parrish, and Michael Williams. In 2012 the timeline was augmented through 2010 by the Society's History Committee. Janice Hall did the update graphics. Timeline of Computing History 4000-1200 B.C. 3000 B.C. The abacus is invented Inhabitants of in Babylonia. the first known civilization in Sumer keep 250-230 B.C. The Sieve of records of Eratosthenes is used to determine commercial prime numbers. transactions on clay tablets. About 79 A.D. The “Antikythera IBM Archives Device,” when set correctly About 1300 The more familiar according to latitude and day wire-and-bead abacus replaces The University Museum, of Pennsylvania of the week, gives alternating the Chinese calculating rods. 29- and 30-day lunar months. 4000 B.C. — 1300 1612-1614 John Napier uses the printed decimal point, devises 1622 William Oughtred invents the circular slide 1666 In logarithms, and uses numbered sticks, England, or Napiers Bones, for calculating. rule on the basis of Napier’s logarithms. Samuel Morland produces a mechanical 1623 William (Wilhelm) calculator that Schickard designs a can add and “calculating clock” with subtract. a gear-driven carry mechanism to aid in The Computer Museum multiplication of 1642-1643 Blaise Pascal creates a multi-digit numbers.
    [Show full text]
  • Chapter 1 Microcontrollers
    Chapter 1 Microcontrollers: Yesterday, Today, and Tomorrow 1.1 Defining Microcontrollers It is said that from the definition everything true about the con- cept follows. Therefore, at the outset let us take a brief review of how the all-pervasive microcontroller has been defined by various technical sources. A microcontroller (or MCU) is a computer-on-a-chip used to con- trol electronic devices. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC). A typical microcontroller con- tains all the memory and interfaces needed for a simple application, whereas a general purpose microprocessor requires additional chips to provide these functions. .(Wikipedia [1]) A highly integrated chip that contains all the components compris- ing a controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task – to control a particular system. As a result, the parts can be simplified and reduced, which cuts down on production costs. (Webopedia [2]) A {microprocessor} on a single {integrated circuit} intended to ope- rate as an {embedded} system. As well as a {CPU}, a microcontroller typically includes small amounts of {RAM} and {PROM} and timers and I/O ports. .(Define That [3]) A single chip that contains the processor (the CPU), non-volatile memory for the program (ROM or flash), volatile memory for input and output (RAM), a clock and an I/O control unit.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]
  • History of Data Centre Development
    History of Data Centre Development Rihards Balodis and Inara Opmane Institute of Mathematics and Computer Science, University of Latvia (IMCS UL), Riga, Latvia [email protected] Abstract: Computers are used to solve different problems. For solving these problems computer software and hardware are used, but for operations of those computing facilities a Data Centre is necessary. Therefore, development of the data centre is subordinated to solvable tasks and computing resources. We are studying the history of data centres’ development, taking into consideration an understanding of this. In the beginning of the computer era computers were installed in computing centres, because all computing centres have defined requirements according to whom their operation is intended for. Even though the concept of ‘data centre’ itself has been used since the 1990s, the characteristic features and requirement descriptions have been identified since the beginning of the very first computer operation. In this article the authors describe the historical development of data centres based on their personal experience obtained by working in the Institute of Mathematics and Computer Science, University of Latvia and comparing it with the theory of data centre development, e.g. standards, as well as other publicly available information about computer development on the internet. Keywords: Computing facilities, Data Centre, historical development. 1. Basic Characteristics of Data Centre Facilities 1.1 Data centre definition A data centre is a physical environment facility intended for housing computer systems and associated components. Data centres comprise the above-mentioned computer systems and staff that maintains them. The necessary physical environment facility encompasses power supplies with the possibility to ensure backup power, necessary communication equipment and redundant communication cabling systems, air conditioning, fire suppression and physical security devices for staff entrances.
    [Show full text]
  • Oyo-Buturi International
    Oyo-Buturi International Interview few books on to the subject. One was Den- work? shi-Keisanki (obi: “Electronic Computer”) Dr Shima: I did it for about four months. Dr Masatoshi Shima was part of a talent- by Shigeru Takahashi, which outlined the The next development in my career oc- ed group of engineers who in 1971 de- system, architecture, instruction set and curred as a result of my being lucky or as we veloped the world’s first microprocessor, microprogramming of computers; almost say in Japanese unmei (obi: fate or destiny). the 4004. In this interview, Dr Shima everything concerning computers. Another OBI: What do you mean by that? sheds light on some of the critical events book I read was about logic. It was written Dr Shima: Well, although the transistor leading up to the development of the by Professor Udagawa. I read both of these was invented in 1947, it was not commer- technology that revolutionised the elec- books avidly and then began to design the cialised until 1951. The commercial use of tronics industry and society as a whole. circuit boards that go into a calculator. This the transistor then led to a new era, namely, process involves connecting ics with wires the “era of the circuit”. That is to say, if you OBI: You studied chemistry as an under- and designing complicated wiring patterns. could fabricate a circuit by putting together graduate but then joined a com- a transistor, a resistor and a di- pany working on calculating ma- ode, you could construct and de- chines.
    [Show full text]