Timeline of Computing History 4000-1200 B.C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West”
© 2002 The Charles Babbage Institute for the History of Information Technology 211 Andersen Library, 222 – 21st Avenue South, Minneapolis, MN 55455 USA Researching the History of Software: Mining Internet Resources in the “Old World,” “New World,” and the “Wild West” Juliet Burba University of Minnesota Philip L. Frana Charles Babbage Institute Date published: 13 September 2002 Sanity is a madness put to good uses. So wrote the great philosopher and poet Jorge Augustín Nicolás Ruiz de Santayana in his essay “The Elements and Function of Poetry.”1 Without doubt, the advent of the early Web unleashed a mania, an unreasonable recklessness that to this day resists being swept back under the rug. How can we tease “sanity” out of the Web? Can the historian put this madness to good use? When the World Wide Web made its debut in the early 1990s, it resembled a pageant that only a parent could love. The Internet Movie Database, the WebCrawler search engine, the Web cam of an isolated unbent spoon and its associated challenge to the telekinetic Uri Geller—those were “reliable” sites. Indeed, the most useful sites looked suspiciously like they had been ripped from Internet Gopher menus. Even Jerry’s Guide to the World Wide Web (later rechristened “Yahoo!”) could not be judged an entirely trustworthy directory in those days. Already it is difficult to remember a time when banner advertising could be used as a legitimate navigational tool, when sessions running a Mosaic browser with its (usually slowly) pulsing upper right-hand image of Earth and two orbiting plan- etoids seemed interminable, and where alternatives to the hand-coding of new Web pages did not exist. -
Microprocessors History of Computing Nouf Assaid
MICROPROCESSORS HISTORY OF COMPUTING NOUF ASSAID 1 Table of Contents Introduction 2 Brief History 2 Microprocessors 7 Instruction Set Architectures 8 Von Neumann Machine 9 Microprocessor Design 12 Superscalar 13 RISC 16 CISC 20 VLIW 23 Multiprocessor 24 Future Trends in Microprocessor Design 25 2 Introduction If we take a look around us, we would be sure to find a device that uses a microprocessor in some form or the other. Microprocessors have become a part of our daily lives and it would be difficult to imagine life without them today. From digital wrist watches, to pocket calculators, from microwaves, to cars, toys, security systems, navigation, to credit cards, microprocessors are ubiquitous. All this has been made possible by remarkable developments in semiconductor technology enabling in the last 30 years, enabling the implementation of ideas that were previously beyond the average computer architect’s grasp. In this paper, we discuss the various microprocessor technologies, starting with a brief history of computing. This is followed by an in-depth look at processor architecture, design philosophies, current design trends, RISC processors and CISC processors. Finally we discuss trends and directions in microprocessor design. Brief Historical Overview Mechanical Computers A French engineer by the name of Blaise Pascal built the first working mechanical computer. This device was made completely from gears and was operated using hand cranks. This machine was capable of simple addition and subtraction, but a few years later, a German mathematician by the name of Leibniz made a similar machine that could multiply and divide as well. After about 150 years, a mathematician at Cambridge, Charles Babbage made his Difference Engine. -
Analytical Engine, 1838 ALLAN G
Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices. -
Finding a Story for the History of Computing 2018
Repositorium für die Medienwissenschaft Thomas Haigh Finding a Story for the History of Computing 2018 https://doi.org/10.25969/mediarep/3796 Angenommene Version / accepted version Working Paper Empfohlene Zitierung / Suggested Citation: Haigh, Thomas: Finding a Story for the History of Computing. Siegen: Universität Siegen: SFB 1187 Medien der Kooperation 2018 (Working paper series / SFB 1187 Medien der Kooperation 3). DOI: https://doi.org/10.25969/mediarep/3796. Erstmalig hier erschienen / Initial publication here: https://nbn-resolving.org/urn:nbn:de:hbz:467-13377 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Creative Commons - This document is made available under a creative commons - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0/ Attribution - Non Commercial - No Derivatives 4.0/ License. For Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz more information see: finden Sie hier: https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Finding a Story for the History of Computing Thomas Haigh University of Wisconsin — Milwaukee & University of Siegen WORKING PAPER SERIES | NO. 3 | JULY 2018 Collaborative Research Center 1187 Media of Cooperation Sonderforschungsbereich 1187 Medien der Kooperation Working Paper Series Collaborative Research Center 1187 Media of Cooperation Print-ISSN 2567 – 2509 Online-ISSN 2567 – 2517 URN urn :nbn :de :hbz :467 – 13377 This work is licensed under the Creative Publication of the series is funded by the German Re- Commons Attribution-NonCommercial- search Foundation (DFG). No Derivatives 4.0 International License. The Arpanet Logical Map, February, 1978 on the titl e This Working Paper Series is edited by the Collabora- page is taken from: Bradley Fidler and Morgan Currie, tive Research Center Media of Cooperation and serves “Infrastructure, Representation, and Historiography as a platform to circulate work in progress or preprints in BBN’s Arpanet Maps”, IEEE Annals of the History of in order to encourage the exchange of ideas. -
Milestones in Analog and Digital Computing
Milestones in Analog and Digital Computing Contributions to the History of Mathematics and Information Technology by Herbert Bruderer Numerous recent discoveries of rare historical analog and digital calculators and previously unknown texts, drawings, and pictures from Germany, Austria, Switzerland, Liechtenstein, and France. Worldwide, multilingual bibliography regarding the history of computer science with over 3000 entries. 12 step-by-step set of instructions for the operation of historical analog and digital calculating devices. 75 comparative overviews in tabular form. 200 illustrations. 20 comprehensive lists. 7 timelines of computer history. Published by de Gruyter Oldenbourg. Berlin/Boston 2015, xxxii, 820 pages, 119.95 Euro. During the 1970's mechanical calculating instruments and machines suddenly disappeared from the scene. They were replaced by electronic versions. Most of these devices developed since the 17th century – often very clever constructions – have been forgotten. Who can imagine today how difficult calculation was only a few decades ago? This book introduces the reader to selected milestones from prehistory and early history of computing. The Antikythera Mechanism This puzzling device was made around 200 BC. It was discovered around 1900 by divers off the Greek island of Antikythera. It is believed to be the oldest known analog (or rather hybrid) computing device. Numerous replicas have been built to unravel the mysteries of this calendar calculator. It is suspected that the machine came from the school of Archimedes. 1 Androids, Music Boxes, Chess Automatons, Looms This treatise also explores topics related to computing technology: automated human and animal figures, mecha- nized musical instruments, music boxes, as well as punched tape controlled looms and typewriters. -
The History of Computing in the History of Technology
The History of Computing in the History of Technology Michael S. Mahoney Program in History of Science Princeton University, Princeton, NJ (Annals of the History of Computing 10(1988), 113-125) After surveying the current state of the literature in the history of computing, this paper discusses some of the major issues addressed by recent work in the history of technology. It suggests aspects of the development of computing which are pertinent to those issues and hence for which that recent work could provide models of historical analysis. As a new scientific technology with unique features, computing in turn can provide new perspectives on the history of technology. Introduction record-keeping by a new industry of data processing. As a primary vehicle of Since World War II 'information' has emerged communication over both space and t ime, it as a fundamental scientific and technological has come to form the core of modern concept applied to phenomena ranging from information technolo gy. What the black holes to DNA, from the organization of English-speaking world refers to as "computer cells to the processes of human thought, and science" is known to the rest of western from the management of corporations to the Europe as informatique (or Informatik or allocation of global resources. In addition to informatica). Much of the concern over reshaping established disciplines, it has information as a commodity and as a natural stimulated the formation of a panoply of new resource derives from the computer and from subjects and areas of inquiry concerned with computer-based communications technolo gy. -
MTS on Wikipedia Snapshot Taken 9 January 2011
MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors -
Implications of Historical Trends in the Electrical Efficiency of Computing
[3B2-9] man2011030046.3d 29/7/011 10:35 Page 46 Implications of Historical Trends in the Electrical Efficiency of Computing Jonathan G. Koomey Stanford University Stephen Berard Microsoft Marla Sanchez Carnegie Mellon University Henry Wong Intel The electrical efficiency of computation has doubled roughly every year and a half for more than six decades, a pace of change compa- rable to that for computer performance and electrical efficiency in the microprocessor era. These efficiency improvements enabled the cre- ation of laptops, smart phones, wireless sensors, and other mobile computing devices, with many more such innovations yet to come. Valentine’s day 1946 was a pivotal date in trends in chip production.2 (It has also some- human history. It was on that day that the times served as a benchmark for progress in US War Department formally announced chip design, which we discuss more later on the existence of the Electronic Numerical in this article.) As Gordon Moore put it in Integrator and Computer (ENIAC).1 ENIAC’s his original article, ‘‘The complexity [of inte- computational engine had no moving parts grated circuits] for minimum component and used electrical pulses for its logical oper- costs has increased at a rate of roughly a fac- ations. Earlier computing devices relied on tor of two per year,’’3 where complexity is mechanical relays and possessed computa- defined as the number of components (not tional speeds three orders of magnitude just transistors) per chip. slower than ENIAC. The original statement of Moore’s law has Moving electrons is inherently faster than been modified over the years in several differ- moving atoms, and shifting to electronic digital ent ways, as previous research has estab- computing began a march toward ever-greater lished.4,5 The trend, as Moore initially defined and cheaper computational power that contin- it, relates to the minimum component costs ues even to this day. -
Tomo II • Maestría En Ciencia E Ingeniería De La Computación
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN Tomo II (Maestría en Ciencia e Ingeniería de la Computación) Planes de Estudio Maestría en Ciencia e Ingeniería de la Computación Doctorado en Ciencia e Ingeniería de la Computación Especialización en Cómputo de Alto Rendimiento Grados que se otorgan Maestro(a) en Ciencia e Ingeniería de la Computación Doctor(a) en Ciencia e Ingeniería de la Computación Especialista en Cómputo de Alto Rendimiento Campos de conocimiento que comprende Teoría de la Computación Inteligencia Artificial Computación Científica Señales, Imágenes y Ambientes Virtuales Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Campos de conocimiento en los que se articula la especialización Computación Científica Ingeniería de Software y Bases de Datos Redes y Seguridad en Cómputo Entidades académicas participantes • Facultad de Ciencias • Facultad de Ingeniería • Facultad de Estudios Superiores Cuautitlán • Instituto de Ingeniería • Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas • Instituto de Matemáticas • Centro de Ciencias Aplicadas y Desarrollo Tecnológico Entidades académicas que se incorporan de manera exclusiva a la especialización • Instituto de Geofísica (IG) • Instituto de Astronomía (IA) • Instituto de Física (IF) • Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC) Fechas de aprobación u opiniones Modificación del Programa de Posgrado en Ciencia e Ingeniería de la Computación, que implica: a) Adecuación y modificación del plan de estudios de la Maestría en Ciencia e Ingeniería de la Computación. b) Modificación del plan de estudios de Doctorado en Ciencias e Ingeniería de la Computación. c) Cambio de denominación del campo de conocimiento de: “Ingeniería de Sistemas y Redes Computacionales" por "Redes y seguridad en cómputo". -
Publications Core Magazine, 2007 Read
CA PUBLICATIONo OF THE COMPUTERre HISTORY MUSEUM ⁄⁄ SPRINg–SUMMER 2007 REMARKABLE PEOPLE R E scuE d TREAsuREs A collection saved by SAP Focus on E x TRAORdinARy i MAGEs Computers through the Robert Noyce lens of Mark Richards PUBLISHER & Ed I t o R - I n - c hie f THE BEST WAY Karen M. Tucker E X E c U t I V E E d I t o R TO SEE THE FUTURE Leonard J. Shustek M A n A GI n G E d I t o R OF COMPUTING IS Robert S. Stetson A S S o c IA t E E d I t o R TO BROWSE ITS PAST. Kirsten Tashev t E c H n I c A L E d I t o R Dag Spicer E d I t o R Laurie Putnam c o n t RIBU t o RS Leslie Berlin Chris garcia Paula Jabloner Luanne Johnson Len Shustek Dag Spicer Kirsten Tashev d E S IG n Kerry Conboy P R o d U c t I o n ma n ager Robert S. Stetson W E BSI t E M A n AGER Bob Sanguedolce W E BSI t E d ESIG n The computer. In all of human history, rarely has one invention done Dana Chrisler so much to change the world in such a short time. Ton Luong The Computer History Museum is home to the world’s largest collection computerhistory.org/core of computing artifacts and offers a variety of exhibits, programs, and © 2007 Computer History Museum. -
A Short History of Computing
A Short History of Computing 01/15/15 1 Jacques de Vaucanson 1709-1782 • Gifted French artist and inventor • Son of a glove-maker, aspired to be a clock- maker • 1727-1743 – Created a series of mechanical automations that simulated life. • Best remembered is the “Digesting Duck”, which had over 400 parts. • Also worked to automate looms, creating the first automated loom in 1745. 01/15/15 2 1805 - Jacquard Loom • First fully automated and programmable loom • Used punch cards to “program” the pattern to be woven into cloth 01/15/15 3 Charles Babbage 1791-1871 • English mathematician, engineer, philosopher and inventor. • Originated the concept of the programmable computer, and designed one. • Could also be a Jerk. 01/15/15 4 1822 – Difference Engine Numerical tables were constructed by hand using large numbers of human “computers” (one who computes). Annoyed by the many human errors this produced, Charles Babbage designed a “difference engine” that could calculate values of polynomial functions. It was never completed, although much work was done and money spent. Book Recommendation: The Difference Engine: Charles Babbage and the Quest to Build the First Computer by Doron Swade 01/15/15 5 1837 – Analytical Engine Charles Babbage first described a general purpose analytical engine in 1837, but worked on the design until his death in 1871. It was never built due to lack of manufacturing precision. As designed, it would have been programmed using punch-cards and would have included features such as sequential control, loops, conditionals and branching. If constructed, it would have been the first “computer” as we think of them today. -
The Digital Information Revolution: the Era of Immediacy
The Digital Information Revolution: The Era of Immediacy Michael B. Spring May 2011 The Digital Information Revolution: the Era of Immediacy Table of Contents Table of Contents .................................................................................................................................................. ii Chapter I: Introduction ................................................................................................................ 1 Origins of This Book ............................................................................................................................................ 1 Audience for this Book ......................................................................................................................................... 2 The Author’s Perspective ..................................................................................................................................... 2 Acknowledgments ................................................................................................................................................ 4 Organization of the Book ...................................................................................................................................... 5 Chapter II: History ........................................................................................................................ 6 Introduction .........................................................................................................................................................