Mikroelektronika | Free Online Book | PIC Microcontrollers | Introduction: World of Microcontrollers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming-8Bit-PIC
Foreword Embedded microcontrollers are everywhere today. In the average household you will find them far beyond the obvious places like cell phones, calculators, and MP3 players. Hardly any new appliance arrives in the home without at least one controller and, most likely, there will be several—one microcontroller for the user interface (buttons and display), another to control the motor, and perhaps even an overall system manager. This applies whether the appliance in question is a washing machine, garage door opener, curling iron, or toothbrush. If the product uses a rechargeable battery, modern high density battery chemistries require intelligent chargers. A decade ago, there were significant barriers to learning how to use microcontrollers. The cheapest programmer was about a hundred dollars and application development required both erasable windowed parts—which cost about ten times the price of the one time programmable (OTP) version—and a UV Eraser to erase the windowed part. Debugging tools were the realm of professionals alone. Now most microcontrollers use Flash-based program memory that is electrically erasable. This means the device can be reprogrammed in the circuit—no UV eraser required and no special packages needed for development. The total cost to get started today is about twenty-five dollars which buys a PICkit™ 2 Starter Kit, providing programming and debugging for many Microchip Technology Inc. MCUs. Microchip Technology has always offered a free Integrated Development Environment (IDE) including an assembler and a simulator. It has never been less expensive to get started with embedded microcontrollers than it is today. While MPLAB® includes the assembler for free, assembly code is more cumbersome to write, in the first place, and also more difficult to maintain. -
The Myth of the Innovator Hero - Business - the Atlantic
The Myth of the Innovator Hero - Business - The Atlantic http://www.theatlantic.com/business/print/2011/11/the-myth-of-the-inno... Print | Close By Vaclav Smil Every successful modern e-gadget is a combination of components made by many makers. The story of how the transistor became the building block of modern machines explains why. WIKIPEDIA: Steve Jobs, Thomas Edison, Benjamin Franklin We like to think that invention comes as a flash of insight, the equivalent of that sudden Archimedean displacement of bath water that occasioned one of the most famous Greek interjections, εὕρηκα. Then the inventor gets to rapidly translating a stunning discovery into a new product. Its mass appeal soon transforms the world, proving once again the power of a single, simple idea. But this story is a myth. The popular heroic narrative has almost nothing to do with the way modern invention (conceptual creation of a new product or process, sometimes accompanied by a prototypical design) and innovation (large-scale diffusion of commercially viable inventions) work. A closer examination reveals that many award-winning inventions are re-inventions. Most scientific or engineering discoveries would never become successful products without contributions from other scientists or engineers. Every major invention is the child of far-flung parents who may never meet. These contributions may be just as important as the original insight, but they will 1 of 4 11/20/2011 8:48 PM The Myth of the Innovator Hero - Business - The Atlantic http://www.theatlantic.com/business/print/2011/11/the-myth-of-the-inno... not attract public adulation. -
AN1673 Using the PIC16F1XXX High-Endurance Flash (HEF) Block
AN1673 Using the PIC16F1XXX High-Endurance Flash (HEF) Block FLASH VS. HIGH-ENDURANCE Author: Lucio Di Jasio Microchip Technology Inc. FLASH Like most other PIC microcontrollers in Flash technology, the PIC16F1XXX series features a INTRODUCTION single-voltage self-write Flash program memory array. The PIC16F1XXX family of general purpose Flash This means that, without additional external hardware microcontrollers features the 8-bit PIC® MCU support, these devices can modify the contents of their enhanced mid-range core. Carefully trading Flash memory at runtime, under firmware control. functionality versus cost, several members of this As an example, this capability is conveniently used to family, including the PIC16F14XX, PIC16F15XX and implement boot loaders, enabling embedded PIC16F17XX, have made a departure from the usual application that can be reprogrammed in the field via a set of peripherals found in previous models to achieve simple serial connection (UART, SPI, I2C™, USB, etc.) a lower price point while still offering a compelling new and without requiring the use of a dedicated in-circuit set of features. Among the several new peripherals programmer/debugger device. introduced, it is worth noting: This capability can also be used to store and/or update • Configurable Logic Cell – a small set of logic calibration data in program memory (obtained at the blocks (unlike a small PLD) that can help directly end of a production line or after product installation). interconnect various peripherals inputs/outputs However, the main limitation of the self-write Flash without CPU intervention. program memory array lies in the relatively small • Complementary Output Generator – the front end number of possible erase/write cycles. -
An Interactive Non-Linear Adventure
Rochester Institute of Technology RIT Scholar Works Theses 12-6-1994 Live it! - An Interactive non-linear adventure Gedeon Maheux Talos Tsui Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Maheux, Gedeon and Tsui, Talos, "Live it! - An Interactive non-linear adventure" (1994). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology A Thesis Submitted to the Faculty of The College of Imaging Arts and Sciences in Candidacy for the Degree of Master of Fine Arts Live It! - An Interactive Non-Linear Adventure by Gedeon Maheux & Talos, Shu-Ming, Tsui December 6, 1994 Committee Sipnatures Thesis Approval ,James VerHague Date: /.2. ~ ~ ~ 't 'f chief adviser Deborah Beardslee Date: :1 &amkv'lf associate adviser (2. - Robert Keough Date: ('-1L( associate adviser Nancy Ciolek Date: / 2 - b -9if associate adviser David Abbott Date: /2- -1- >if associate adviser Mary ANn Begland Date: /2. - 7· 91 Department Chairperson Gedeon Maheux Date: _ MFA Candidate Talos, Shu-Ming, Tsui Date: _ MFA Candidate We. & hereby grant permission to the Wallace Memorial Library of RIT to reproduce our thesis in whole or in part. Any reproduction will not be for commercial use or profit. Acknowledgements We would like to thank our parents for their support, -
32-Bit Microcontroller Families Industry’S Broadest and Most Innovative 32-Bit MCU Portfolio
32-bit Microcontrollers 32-bit Microcontroller Families Industry’s Broadest and Most Innovative 32-bit MCU Portfolio www.microchip.com/32bit World-Class 32-bit Microcontrollers Building on the heritage of Microchip Technology’s world-leading 8- and 16-bit microcontrollers, the 32-bit family offers a wide range of products from the industry’s lowest-power to highest-performance MCUs coupled with novel and easy-to-use soft- ware solutions. With a rich ecosystem of development tools, integrated development environments and third-party partners, Microchip’s families of 32-bit microcontrollers accelerate a vast array of embedded designs ranging from secured Internet of Things (IoT) to Functional Safety applications to general-purpose embedded control. Internet of Things Security Functional Safety Graphics and Touch Ultra-Low Power Digital Audio 5V Appliances Automotive Wearables Connected Lighting Motor Control Metering Broad Portfolio with Smart Peripheral Mix and Multiple Performance Options High Performance SAMS, SAME, SAMV Cortex-M7, 600 DMIPS, 512–2048 KB Flash PIC32MZ EF MIPS M-Class, 415 DMIPS, 512–2048 KB Flash Mid-Range PIC32MZ DA PIC32MK MC/GP MIPS microApv™, 330 DMIPS, 32 MB SDRAM, MIPS microApv, 198 DMIPS, 256–1024 KB Flash 1-2 MB Flash SAMD5/E5, SAM4N/4S/4E/4L, SAMG Cortex-M4/M4F, 150 DMIPS, 128–2048 KB Flash e PIC32MX3/4 MIPS M4K, 131/150 DMIPS, 64–512 KB Flash ormanc PIC32MX5/6/7 rf MIPS M4K, 105 DMIPS, 64–512 KB Flash Pe SAM7, SAM3, AVR32 Baseline Legacy 32-bit PIC32MX1/2/5 (XLP) MIPS M4K, 116 DMIPS, 16–512 KB Flash SAMD, SAML, -
Silicon Genesis: Oral History Interviews
http://oac.cdlib.org/findaid/ark:/13030/c8f76kbr No online items Guide to the Silicon Genesis oral history interviews M0741 Department of Special Collections and University Archives 2019 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Silicon Genesis oral M0741 1 history interviews M0741 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Silicon Genesis: oral history interviews creator: Walker, Rob Identifier/Call Number: M0741 Physical Description: 12 Linear Feet (26 boxes) Date (inclusive): 1995-2018 Abstract: "Silcon Genesis" is a series of interviews with individuals active in California's Silicon Valley technology sector beginning in 1995 and through at least 2018. Immediate Source of Acquisition Gift of Rob Walker, 1995-2018. Scope and Contents Interviews of key figures in the microelectronics industry conducted by Rob Walker (1935-2016) and later Rob Blair, who continues to carry out interviews for the project. Interviewees include John Derringer, Elliot Sopkin, Floyd Kvamme, Mike Markkula, Steve Zelencik, T. J. Rogers, Bill Davidow, Aart de Geus, and more. Interviews have been fully digitized and are available streaming from our catalog here: https://searchworks.stanford.edu/view/4084160 An exhibit for the collection is available here: https://silicongenesis.stanford.edu/ Written transcripts are available for the interviews with Marcian (Ted) Hoff, Federico Faggin, C. Lester Hogan, Regis McKenna, and Gordon E. Moore. Also included is an interview with Rob Walker himself, made by Susan Ayers-Walker, 1998. Conditions Governing Access Original recordings are closed. Digital copies of interviews are available online: https://exhibits.stanford.edu/silicongenesis Conditions Governing Use While Special Collections is the owner of the physical and digital items, permission to examine collection materials is not an authorization to publish. -
Microprocessors in the 1970'S
Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338]. -
Tesis De Microcontroladores.Pdf
UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE DEPARTAMENTO DE INGENIERÍA Y ARQUITECTURA. TRABAJO DE GRADUACIÓN DENOMINADO: “DISEÑO DE GUÍAS DE TRABAJO Y CONSTRUCCIÓN DE EQUIPO DIDÁCTICO PARA LA IMPLANTACIÓN DE PRÁCTICAS DE LABORATORIO CON MICRO CONTROLADORES EN LA CARRERA DE INGENIERÍA DE SISTEMAS INFORMÁTICOS DE LA FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE.” PARA OPTAR AL GRADO DE: INGENIERO DE SISTEMA INFORMÁTICOS PRESENTAN: FRANCIA ESCOBAR, ROBERTO ANTONIO GARCÍA, JUAN CARLOS UMAÑA ORDOÑEZ, JORGE ARTURO DOCENTE DIRECTOR ING. JOSE FRANCISCO ANDALUZ NOVIEMBRE, 2007. SANTA ANA EL SALVADOR CENTRO AMÉRICA UNIVERSIDAD DE EL SALVADOR RECTOR MÁSTER RUFINO ANTONIO QUEZADA SÁNCHEZ VICERRECTOR ACADÉMICO MÁSTER MIGUEL ÁNGEL PÉREZ RAMOS VICE RECTOR ADMINISTRATIVO MÁSTER ÓSCAR NOÉ NAVARRETE SECRETARIO GENERAL LICENCIADO DOUGLAS VLADIMIR ALFARO CHÁVEZ FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE DECANO LIC. JORGE MAURICIO RIVERA VICE DECANO LIC. ELADIO ZACARÍAS ORTEZ SECRETARIO LIC. VÍCTOR HUGO MERINO QUEZADA JEFE DE DEPARTAMENTO DE INGENIERÍA ING. RENÉ ERNESTO MARTÍNEZ BERMÚDEZ AGRADECIMIENTOS A DIOS TODOPODEROSO Por permitir que llegara hasta el final de la carrera, por no dejarme solo en este camino y siempre levantarme cuando necesite de su apoyo y fuerza para continuar adelante. A MI MADRE ÁNGELA VICTORIA ESCOBAR DE FRANCIA Por su apoyo, paciencia y ser un pilar en mi vida; sin la cual no hubiese podido culminar la carrera., le dedico este triunfo con las palabras con las que siempre me ha dado confianza y fuerza de seguir adelante “se triunfa cuando se persevera”. A MI PADRE JOSÉ ANTONIO FRANCIA ESCOBAR Que su ejemplo formo en mi la idea de siempre mirar más adelante, seguir luchando y creer que siempre es posible superarse cada día más; gracias por su inmenso apoyo desde todos los puntos de mi carrera y mi vida, como padre, docente, asesor y amigo. -
2 XII December 2014
2 XII December 2014 www.ijraset.com Volume 2 Issue XII, December 2014 ISSN: 2321-9653 International Journal for Research in Applied Science & Engineering Technology (IJRASET) Overview and Comparative Study of Different Microcontrollers Rajratna Khadse1, Nitin Gawai2, Bagwan M. Faruk3 1Assist.Professor, Electronics Engineering Department, RCOEM, Nagpur 2,3Assist.Professor, E & Tc Engineering Department, JDIET, Yavatmal Abstract—A microcontroller is a small and low-cost computer built for the purpose of dealing with specific tasks, such as displaying information on seven segment display at railway platform or receiving information from a television’s remote control. Microcontrollers are mainly used in products that require a degree of control to be exerted by the user. Today various types of microcontrollers are available in market with different word lengths such as 8bit, 16bit, 32bit, and microcontrollers. Microcontroller is a compressed microcomputer manufactured to control the functions of embedded systems in office machines, robots, home appliances, motor vehicles, and a number of other gadgets. Therefore in today’s technological world lot of things done with the help of Microcontroller. Depending upon the applications we have to choose particular types of Microcontroller. The aim of this paper to give the basic information of microcontroller and comparative study of 8051 Microcontroller, ARM Microcontroller, PIC Microcontroller and AVR Microcontroller Keywords— Microcontroller, Memory, Instruction, cycle, bit, architecture I. INTRODUCTION Microcontrollers have directly or indirectly impact on our daily life. Usually, But their presence is unnoticed at most of the places like: At supermarkets in Cash Registers, Weighing Scales, Video games ,security system , etc. At home in Ovens, Washing Machines, Alarm Clocks, paging, VCR, LASER Printers, color printers etc. -
Using History to Teach Computer Science and Related Disciplines
Computing Research Association Using History T o T eachComputer Science and Related Disciplines Using History To Teach Computer Science and Related Disciplines Edited by Atsushi Akera 1100 17th Street, NW, Suite 507 Rensselaer Polytechnic Institute Washington, DC 20036-4632 E-mail: [email protected] William Aspray Tel: 202-234-2111 Indiana University—Bloomington Fax: 202-667-1066 URL: http://www.cra.org The workshops and this report were made possible by the generous support of the Computer and Information Science and Engineering Directorate of the National Science Foundation (Award DUE- 0111938, Principal Investigator William Aspray). Requests for copies can be made by e-mailing [email protected]. Copyright 2004 by the Computing Research Association. Permission is granted to reproduce the con- tents, provided that such reproduction is not for profit and credit is given to the source. Table of Contents I. Introduction ………………………………………………………………………………. 1 1. Using History to Teach Computer Science and Related Disciplines ............................ 1 William Aspray and Atsushi Akera 2. The History of Computing: An Introduction for the Computer Scientist ……………….. 5 Thomas Haigh II. Curricular Issues and Strategies …………………………………………………… 27 3. The Challenge of Introducing History into a Computer Science Curriculum ………... 27 Paul E. Ceruzzi 4. History in the Computer Science Curriculum …………………………………………… 33 J.A.N. Lee 5. Using History in a Social Informatics Curriculum ....................................................... 39 William Aspray 6. Introducing Humanistic Content to Information Technology Students ……………….. 61 Atsushi Akera and Kim Fortun 7. The Synergy between Mathematical History and Education …………………………. 85 Thomas Drucker 8. Computing for the Humanities and Social Sciences …………………………………... 89 Nathan L. Ensmenger III. Specific Courses and Syllabi ………………………………………....................... 95 Course Descriptions & Syllabi 9. -
Intellectual Property Law for Engineers and Scientists
Intellectual Property Law for Engineers and Scientists Howard B. Rockman Adjunct Professor of Engineering University of Illinois at Chicago Adjunct Professor of Intellectual Property Law John Marshall Law School, Chicago Intellectual Property Attorney Barnes & Thornburg, Chicago A UIC/Novellus Systems Endeavor IEEE Antennas and Propagation Society, Sponsor IEEE PRESS A JOHN WILEY & SONS, INC., PUBLICATION Intellectual Property Law for Engineers and Scientists IEEE Press 445 Hoes Lane, Piscataway, NJ 08854 IEEE Press Editorial Board Stamatios V. Kartalopoulos, Editor in Chief M. Akay M. E. El-Hawary M. Padgett J. B. Anderson R. J. Herrick W. D. Reeve R. J. Baker D. Kirk S. Tewksbury J. E. Brewer R. Leonardi G. Zobrist M. S. Newman Kenneth Moore, Director of IEEE Press Catherine Faduska, Senior Acquisitions Editor Tony VenGraitis, Project Editor IEEE Antennas and Propagation Society, Sponsor AP-S Liaison to IEEE Press, Robert Mailloux Intellectual Property Law for Engineers and Scientists Howard B. Rockman Adjunct Professor of Engineering University of Illinois at Chicago Adjunct Professor of Intellectual Property Law John Marshall Law School, Chicago Intellectual Property Attorney Barnes & Thornburg, Chicago A UIC/Novellus Systems Endeavor IEEE Antennas and Propagation Society, Sponsor IEEE PRESS A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2004 by the Institute of Electrical and Electronics Engineers. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this -
Chapter 1 Microcontrollers
Chapter 1 Microcontrollers: Yesterday, Today, and Tomorrow 1.1 Defining Microcontrollers It is said that from the definition everything true about the con- cept follows. Therefore, at the outset let us take a brief review of how the all-pervasive microcontroller has been defined by various technical sources. A microcontroller (or MCU) is a computer-on-a-chip used to con- trol electronic devices. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC). A typical microcontroller con- tains all the memory and interfaces needed for a simple application, whereas a general purpose microprocessor requires additional chips to provide these functions. .(Wikipedia [1]) A highly integrated chip that contains all the components compris- ing a controller. Typically this includes a CPU, RAM, some form of ROM, I/O ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task – to control a particular system. As a result, the parts can be simplified and reduced, which cuts down on production costs. (Webopedia [2]) A {microprocessor} on a single {integrated circuit} intended to ope- rate as an {embedded} system. As well as a {CPU}, a microcontroller typically includes small amounts of {RAM} and {PROM} and timers and I/O ports. .(Define That [3]) A single chip that contains the processor (the CPU), non-volatile memory for the program (ROM or flash), volatile memory for input and output (RAM), a clock and an I/O control unit.