ALTAIR Orbital Module Preliminary Mission and System Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frequently Asked Questions
Frequently Asked Questions What Types of Companies Are on the "Don't Test" List? This list includes companies that make cosmetics, personal-care products, household-cleaning products, and other common household products. All companies that are included on PETA's "don't test" list have signed our statement of assurance verifying that they and their ingredient suppliers don't conduct, commission, pay for, or allow any tests on animals for ingredients, formulations, or finished products anywhere in the world and will not do so in the future. We encourage consumers to support the companies on this list, since we know that they're committed to making products without harming animals. Companies on the "Do Test" list should be shunned until they implement a policy that prohibits animal testing. The "do test" list doesn't include companies that manufacture only products that are required by law to be tested on animals (e.g., pharmaceuticals and garden chemicals). Although PETA is opposed to all animal testing, our focus in those instances is less on the individual companies and more on the regulatory agencies that require animal testing. _________________________________________________________________________________________________________________ Legend V - The company makes or sells strictly vegan products. L - The company has licensed PETA's official cruelty-free bunny logo. F - The company is a PETA Business Friend, and shopping at this company supports an innovative partnership for compassionate companies willing to assist in PETA's groundbreaking work to stop animal abuse and suffering. Companies Whose Products Are Available in Russian Federation L F 100% Pure 510-836-6500 http://www.100percentpure.com L 3INA https://3ina.com/ V L 66°30 https://66-30.com/en/ V L Abyssal Japan Co. -
Constellation Program Overview
Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Rex D. Hall and David J. Shayler
Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54 -
Building and Maintaining the International Space Station (ISS)
/ Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance -
Sounding Rockets 2013 Annual Report
National Aeronautics and Space Administration NASA Sounding Rockets Annual Report 2013 The NASA Sounding Rockets Program has closed another highly successful op- erational year with the completion of 19 successful flights. As of October 2013, the program has had 100% success on 38 flights over a period of 24 months. This is an impressive accomplishment. The scientific teams, the technical and administrative sounding rocket staff, and the launch ranges are to be congratu- lated on a job well done! This year involved flights from Wallops Flight Facility (Virginia), White Sands Missile Range (New Mexico), the Kwajalein Atoll (Marshall Islands), and Poker Flat Research Range (Alaska). The Kwajalein campaign involved four rockets designed to probe the equatorial ionosphere and gain a better understanding of plasma energies and particle dynamics af- fecting the Earth. Multiple telescope missions were flown from White Sands Missile Range to study the Sun, the interstellar medium, and distant galaxies. Message from the Chief Message Flights from Wallops and Alaska have furthered our understanding of how the Phil Eberspeaker Earth and Sun interact. With every flight, NASA added to the body of scien- Chief, Sounding Rockets Program Office tific knowledge that will help unravel a host of scientific mysteries. The Sounding Rockets Program also continued to cultivate young minds by offering two university-level flight opportunities. Approximately 250 students from universities around the country had the opportunity to fly experiments aboard two-stage sounding rockets in 2013. The Sounding Rockets Program once again provided a unique teacher training workshop known as WRATS. With the knowledge obtained from this experience, teachers returned to the classroom with exciting options for enhancing their STEM curriculum. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
ALTAIR - Design & Progress on the Space Launch Vehicle Design
DOI: 10.13009/EUCASS2017-575 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) ALTAIR - Design & Progress on the Space Launch Vehicle Design Cédric Dupont*, Andrea Tromba*, Bastien Haemmerli**, Eduard Diez*** , Giulio Molinari****, Christoph Karl**** * Bertin Technologies, France – [email protected], [email protected] **NAMMO Raufoss AS, P.O. Box 162, NO-2831 Raufoss, Norway – [email protected] *** GTD Sistemas de Información S.A, Spain - [email protected] ***** ETH Zürich, Switzerland – [email protected], [email protected] Abstract ALTAIR is an innovative air-launch system consisting of a reusable unmanned aircraft carrier, an expendable launch vehicle and a cost-effective ground segment. The autonomous aircraft brings the launcher at altitude; following the release, the launcher boosts the payload to the intended orbit. This paper presents the launcher design at the project mid-term. Primary aims of the development are risk mitigation, cost savings, reliability and high performance. The project leverages collaborative engineering, design-to-cost techniques and multidisciplinary design optimization strategies. The resulting design utilizes low-cost hybrid propulsion, lightweight composite structures, innovative avionics and a smart multi-mission upper-stage to simultaneously attain all goals. 1. Introduction The market of satellite launches will drastically change in the coming decade. While being nowadays monopolised by the needs of massive and expensive satellites, requiring heavy launchers of the size of the Proton M, Delta IV or Ariane 5, it is foreseen that another product will take a large share of the global market: small satellites in the 50-150 kg range. This growth will be mainly driven by two factors. -
China's Space Program: an Overview
Order Code RS21641 Updated October 18, 2005 CRS Report for Congress Received through the CRS Web China’s Space Program: An Overview Marcia S. Smith Specialist in Aerospace and Telecommunications Policy Resources, Science, and Industry Division Summary The People’s Republic of China successfully completed its second human spaceflight mission on October 17, 2005. China is only the third country, after Russia and the United States, able to launch people into space. Its first human spaceflight was in 2003 when a single astronaut, or “taikonaut,” made a flight lasting slightly less than a day. The 2005 flight lasted five days, and involved two taikonauts. As the United States embarks upon President Bush’s “Vision for Space Exploration” to return astronauts to the Moon by 2020 and someday send them to Mars, some may view China’s entrance into the human exploration of space as a competitive threat, while others may view China as a potential partner. This report will be updated as warranted. Introduction China has been launching satellites since 1970. Most of the launches are of Chinese communications, weather, remote sensing, navigation, or scientific satellites. Some of those satellites may be for military applications, or are dual use. Some were commercial launches for foreign countries or companies, primarily placing communications satellites into orbit. China launched its first astronaut, or “taikonaut,”1 in October 2003. China has three space launch sites: Jiuquan (also called Shuang Cheng-tzu) in the Gobi desert; Xichang, in southeastern China (near Chengdu); and Taiyuan, south of Beijing. Jiuquan was China’s first launch site, and is used for launches of a variety of spacecraft, including those related to the human spaceflight program. -
Apollo-Soyuz Test Project
--.I m ...ir,,.= The document_-contains materials on the Soyuz-Apollo test and consists of two parts, prepared by the USSR and USA sides res- pectively. Both parts outline the purposes and program of the mission, the spacecraft design, the flight plan and information on Joint and unilateral scientific experiments. Brief biographies of the cosmonauts and astronauts, the Joint mission crew members_ are also presented. The document covers technical support activities providing mission control and gives information about the ASTP Soviet and American leaders. As the USSR and USA parts of the document have been prepared independently, there might be duplication in the sections dealing with the Joint activities. The document is intended for press representatives and various mass information means. CONTENTS Page I.0 INTRODUCTION ....................................... 10 1.1 Background ......................................... I0 1,2 Apollo-Soyuz joint test project objectives .......... 13 2.0 COMPATIBILITY PROBLEMS ................... ......... • 15 2.1 Spacecraft compatibility conditions and principal solutions accepted for Apollo-Ssyuz Test Mission .... 15 2.2 Compatibility of ground flight control personnel ... 18 2_3 Methodological compatibility ....................... 20 3.0 SOYUZ SPACECRAFT ................................... 22 3.1 PurPose. Brief data on Soyuz spacecraft flights .... 22 3.2 Soyuz spacecraft description ....................... 25 3.2.1 General description of the Soyuz spacecraft.. 25 Main characteristics ........................ -
Spaceport News America’S Gateway to the Universe
July 28, 2000 Vol. 39, No. 15 Spaceport News America’s gateway to the universe. Leading the world in preparing and launching missions to Earth and beyond. http://www-pao.ksc.nasa.gov/kscpao/snews/snewstoc.htm John F. Kennedy Space Center Zvezda takes flight Launch of key component heralds new phase of International Space Station Destined to transform the for the Station. International Space Station into a At press time, the module was new home in orbit, the Russian- operating well in an orbit with a built Zvezda living quarters high point of about 221 statute module lifted off flawlessly from the miles and a low point of 115 Baikonur Cosmodrome, Kazakh- statute miles. stan, at 12:56 a.m. on July 15. Flight controllers at the Russian Only 15 minutes after its launch Mission Control Center in aboard a Russian Proton booster, Korolev, Russia, were continuing the new module was safely in orbit, to activate and check out the with its antennas, solar arrays and module’s systems, fire its engines other exterior equipment perfectly periodically to adjust its orbit, and extended. prepare for a docking with the In addition to serving as the Space Station. early station living quarters, The Station was set to begin a Zvezda will be the main docking final rendezvous with Zvezda, port for Russian Progress cargo culminating in a docking planned resupply vehicles. It also will at about 8:45 p.m. July 25. At top, a Proton rocket lifts the Zvezda module from the Baikonur provide early propulsive attitude Cosmodrome, Kazakhstan. -
Part 2 Almaz, Salyut, And
Part 2 Almaz/Salyut/Mir largely concerned with assembly in 12, 1964, Chelomei called upon his Part 2 Earth orbit of a vehicle for circumlu- staff to develop a military station for Almaz, Salyut, nar flight, but also described a small two to three cosmonauts, with a station made up of independently design life of 1 to 2 years. They and Mir launched modules. Three cosmo- designed an integrated system: a nauts were to reach the station single-launch space station dubbed aboard a manned transport spacecraft Almaz (“diamond”) and a Transport called Siber (or Sever) (“north”), Logistics Spacecraft (Russian 2.1 Overview shown in figure 2-2. They would acronym TKS) for reaching it (see live in a habitation module and section 3.3). Chelomei’s three-stage Figure 2-1 is a space station family observe Earth from a “science- Proton booster would launch them tree depicting the evolutionary package” module. Korolev’s Vostok both. Almaz was to be equipped relationships described in this rocket (a converted ICBM) was with a crew capsule, radar remote- section. tapped to launch both Siber and the sensing apparatus for imaging the station modules. In 1965, Korolev Earth’s surface, cameras, two reentry 2.1.1 Early Concepts (1903, proposed a 90-ton space station to be capsules for returning data to Earth, 1962) launched by the N-1 rocket. It was and an antiaircraft cannon to defend to have had a docking module with against American attack.5 An ports for four Soyuz spacecraft.2, 3 interdepartmental commission The space station concept is very old approved the system in 1967.