Ares V Launch Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Ares V Launch Vehicle National Aeronautics and Space Administration Lunar Program Industry Briefing: Ares V Overview Steve Cook Manager, Ares Projects Office www.nasa.gov Ares Projects Overview ♦ Deliver crew and cargo for missions to International Space Station (ISS), the Moon and beyond ♦ Continuing progress toward design, component testing, and early flight testing ♦ Ares I Crew Launch Vehicle • Carries 6 crew to ISS, 4 to Moon • First flight test scheduled in 2009 • Initial Operational Capability in 2015 ♦ Ares V Cargo Launch Vehicle • Launches Earth Departure Stage (EDS), Altair and Orion to Low Earth Orbit for lunar missions • Largest launch vehicle ever designed • Ongoing concept design work leading into detailed development work starting in 2011 • First flight test planned in 2018 National Aeronautics and Space Administration 2 Ares V Cargo Launch Vehicle Heavy Lift for Science and Exploration ♦ Key transportation system for exploration beyond Low Earth Orbit • Offers unique payload capabilities opening new doors to human exploration on the Moon and beyond • Designed for routine crew and cargo transportation to the Moon − EDS + Altair to LEO − EDS + Altair + Orion to TLI • Considered national asset creating new opportunities for science, national security and space business • Capable of transporting more than 71 metric tons to the Moon • Focal point for design and development located at MSFC with support across the Agency National Aeronautics and Space Administration 3 Building on a Foundation of Proven Technologies Launch Vehicle Comparisons 122 m (400 ft) Crew Altair 91 m Lunar (300 ft) Orion Earth Departure Lander Stage (EDS) (1 J-2X) 253.0 mT (557.7K lbm) LOX/LH2 S-IVB (1 J-2 engine) Upper Stage 108.9 mT (1 J-2X) (240.0K 137.1 mT 61 m LOX/LH (200 ft) (302.2K lbm) 2 LOX/LH 2 S-II (5 J-2 engines) 453.6 mT 5-Segment Core Stage Overall Vehicle Height, m (ft) (1,000.0K lbm) Reusable (6 RS-68 Engines) Solid Rocket 1,587.3 mT LOX/LH2 30 m Booster (3,499.5K lbm) (100 ft) S-IC (RSRB) LOX/LH2 (5 F-1) 2 5.5-Segment 1,769.0 mT RSRBs (3,900.0K lbm) LOX/RP-1 0 Space Shuttle Ares I Ares V Saturn V Height: 56.1 m (184.2 ft) Height: 99.1 m (325.0 ft) Height: 116.2 m (381.1 ft) Height: 110.9 m (364 ft) Gross Liftoff Mass: Gross Liftoff Mass: Gross Liftoff Mass: Gross Liftoff Mass: 2,041.1 mT (4,500.0K lbm) 927.1 mT (2,044.0K lbm) 3,704.5 mT (8,167.1K lbm) 2,948.4 mT (6,500K lbm) Payload Capability: Payload Capability: Payload Capability: Payload Capability: 25.0 mT (55.1K lbm) to 25.5 mT (56.2K lbm) 71.1 mT (156.7K lbm) to TLI (with Ares I) 44.9 mT (99K kbm) to TLI DAC 2 TR 6 Low Earth Orbit (LEO) to LEO 118.8 mT (262K lbm) to LEO LV 51.00.48 62.8 mT (138.5K lbm) to Direct TLI National Aeronautics and Space Administration ~187.7 mT (413.8K lbm) to LEO 4 Ares V Element Heritage Upper Stage Derived Vehicle Systems J-2X Upper Stage Engine From Delta IV RS-68 Elements from First Stage RSRB (5-Segment RSRB) Ares I Ares V Delta IV 25.5 t (56.2K lbm) to 71.1 t (156.7K lbm) to TLI (with Ares I) Low Earth Orbit (LEO) 63.0 t (138.5K lbm) to Direct TLI 187.7 t (413.8K lbm) to LEO National Aeronautics and Space Administration 7603.5 ESAS to LCCR Major Events National Aeronaut ics and Space Administr ation 7405.177330. Original ESAS CY-06 Budget Detailed Cost Trade of Recommended IDAC 3 Trade Space EDS Diameter Incorporate Ares I Capability Trade to Increase SSME vs RS-68 Design Lessons Option Change from • Lunar Architecture Learned / • 6 Core Engines • Ares I / Ares V • ~$4.25B Life Cycle Cost • 45.0 mT Lander Team 1/2 (LAT) Studies 8.4m to 10m Parameters • 5.5 Segment Savings for • 20.0 mT CEV Commonality • Lunar Architecture PBAN • Ares I : 5 Seg RSRB • 5 Engine Core • No Loiter in LEO • Mission Delta V’s Team 1/2 (LAT) / J2-X instead of • Core Engine / SRB • 8.4m OML increased Studies Air-Start SSME • Increased Commonality Trades to Increase Updated • 5 SSMEs / 2J2S • Ares V: 1 J2-X with Ares I Booster Design Margins • Increase Margins From • Lunar /Mars Capability TLI Only to Earth Systems Benefits • 45.0t Lander • 30-95 Day LEO Loiter • Increase Subsystem through TLI • 20.2t CEV Assessed • Tank Assembly Mass Growth • ~6t Perf. Margin Allowance (MGA) • Loiter Penalties for 30 Tooling • 4 Day LEO Loiter Commonality Day Orbit Quantified • Ares I Common MGAs • HTPB Decision End of FY09 220 Concepts 320 Concepts 730 Concepts 460 Concepts Evaluated Evaluated Evaluated Evaluated 2005 2006 2007 2008 ESAS Ares I ATP Orion ATP Ares I SRR Orion SRR Ares I SDR Ares V MCR Complete National Aeronautics and Space Administration 7603.6 Ares V Elements New LCCR Point-of-Departure (51.0.48) Gross Lift Off Mass: 3,704.5 mT (8,167.1k lbm) Integrated Stack Length: 116.2 m (381.1 ft) Altair Lunar Lander Payload Adapter J–2X Loiter Skirt Payload Solid Rocket Boosters (2) Shroud Interstage • Two recoverable 5.5-segment PBAN-fueled, steel-case boosters (derived from current Ares I First Stage) Earth Departure Stage (EDS) • Option for new design • One Saturn-derived J–2X LOX/LH2 engine (expendable) • 10-m (33-ft) diameter stage • Aluminum-Lithium (Al-Li) tanks • Composite structures, Instrument Unit and Interstage RS–68B • Primary Ares V avionics system Core Stage Engines • Six Delta IV-derived RS–68B (6) LOX/LH2 engines (expendable) • 10-m (33-ft) diameter stage • Composite structures • Aluminum-Lithium (Al-Li) tanks 9/25/08National Aeronautics and Space Administration 7603.7 Ares V Technology Needs ETDP Technology Prioritization Process (TPP) Ares V Technology Priorities 1. Large Composite Manufacturing Nose Cone/Forward Skirt Loaded Motor 2. HTPB Propellant 3. Long Term CFM Ares Value Stream 4. Composite Damage Tolerance/Detection Key Technology Areas 5. EDS State Determination & Abort Composites 6. Composite Joining Technology Cryo Fluid Management 7. Liquid Level Measurement Solids 8. Multi Layer Insulation Automation 9. Leak Detection Liquid Propulsion 10. Non Autoclave Composites Control/Separation 11. SRM Composite Metal Technology 12. Composite Dry Structure Development 13. Composite Damage Failure Detection for Abort 14. Nozzle Sensitivity to Pocketing (High Heat Flux from HTPB) 15. LH2 Tank Micro Cracking Core Stage Aft Skirt Point of Departure Shroud (Biconic) National Aeronautics and Space Administration 7603.8 Ares V Summary Schedule 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Ares V FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19 FY20 SRR Level I/II Milestones 6-10 SRR PDR CDR DCR Altair Milestones (for reference only) Altair 1 Altair 2 Altair 3 Altair 4 ATP PRR SRR SDR PDR CDR DCR Phase 1 Ares V-Y Ares V Project Milestones 6-9 7-11 3-12 12-10 Phase 023-14 12-16 STUDY DEFINITION CoDR DESIGN System Engineering and DEVELOPMENT STUDY OPERATIONS Integration RAC 1 RAC 2 RAC 3 RAC 4 DAC 1 RR PDR CDR Core Stage Core Stage Engine (RS-68B) RR PDR CDR Booster RR PDR CDR Earth Departure Stage RR PDR CDR RR PDR CDR Earth Departure Stage Engine RR PDR Payload Shroud CDR RR PDR Instrument Unit CDR MPTA CDR SRR SDR PDR CS MPTA Systems Testing EDS IGVT National Aeronautics and Space Administration 7603.9 Ares V Profile 51.00.48 Recommended POD (Lunar Sortie) Time Altitude Event EDS Engine Cutoff (sec) (km) Time = 806.0 sec Sub-Orbital Burn Duration = 502.9 sec Liftoff 0.0 0.0 Injected Weight = 187.7 mT Orbital Altitude = 240.8 km circ @ 29.0° Maximum Dynamic Pressure 78.8 14.4 SRB Separation 121.6 36.4 Shroud Separation 295.0 126.9 Core Stage Separation Main Engine Cutoff 303.1 133.3 & EDS Ignition EDS TLI Burn Time = 303.1 sec Orbital Altitude = 185.2 km circ @ 29.0º EDS Ignition 303.1 133.3 Burn Duration = 424.9 sec EDS Engine Cutoff 806.0 243.5 EDS TLI Burn Duration 424.9 TBD LSAM/CEV LSAM/CEV Separation TBD TBD Separation Shroud Separation Time = 295.0 sec SRB Separation Time = 121.6 sec EDS Disposal Liftoff CEV Rendez. & Dock w/EDS Time - Assumed Up to 4 Days Time = +1 sec Orbital Altitude Assumed to Degrade to 185.2 km Thrust-to-Weight Ratio = 1.36 GLOM =3,704.5 mT Launch SRB Core Stage Impact Splashdown National Aeronautics and Space Administration 7603.10 Payload Utilization Ares V as a National Asset ♦ Ares V offers the largest payload capability than all other existing launch vehicles • Over 40% more lift capability than Saturn V • 3-5 times for volume than most other launch systems ♦ These unique capabilities open new worlds and create unmatched opportunities • Human exploration • Science • Space Business ♦ Ares V is actively engaged with external organizations during this early concept phase to ensure its utilization for other missions • National Security • Astronomy and Solar System Science National Aeronautics and Space Administration 7603.11 Our Achievements ♦ Programmatic Milestones • Completed Ares I System Requirements Review (SRR) – Jan 2007 • Awarded contracts for Ares I First Stage, J-2X Engine, Upper Stage and Instrument Unit • Completed Ares I System Definition Review (SDR) – Oct 2007 • Completed Ares V Mission Concept Review (MCR) – Jun 2008 • Completed Constellation Lunar Capability Concept Review (LCCR) – Jun 2008 • Released Ares V Request For Information (RFI) and evaluating responses – Aug 2008 • Completion of Ares I Preliminary Design Review (PDR) – Sep 2008 ♦ Technical Accomplishments • Ares I Drogue Chute Drop Test – July 2008 • Ares I First Stage Separation and Re-entry Wind Tunnel Tests • J-2X Injector and Power Pack Tests • A-3 Test Stand Construction for J-2X Engine at Stennis Space Center • MSFC Dynamic Test Stand 4550 Refurbishment for Ares I and Ares V Integrated Vehicle Ground Vibration Testing • Established Ares V
Recommended publications
  • Frequently Asked Questions
    Frequently Asked Questions What Types of Companies Are on the "Don't Test" List? This list includes companies that make cosmetics, personal-care products, household-cleaning products, and other common household products. All companies that are included on PETA's "don't test" list have signed our statement of assurance verifying that they and their ingredient suppliers don't conduct, commission, pay for, or allow any tests on animals for ingredients, formulations, or finished products anywhere in the world and will not do so in the future. We encourage consumers to support the companies on this list, since we know that they're committed to making products without harming animals. Companies on the "Do Test" list should be shunned until they implement a policy that prohibits animal testing. The "do test" list doesn't include companies that manufacture only products that are required by law to be tested on animals (e.g., pharmaceuticals and garden chemicals). Although PETA is opposed to all animal testing, our focus in those instances is less on the individual companies and more on the regulatory agencies that require animal testing. _________________________________________________________________________________________________________________ Legend V - The company makes or sells strictly vegan products. L - The company has licensed PETA's official cruelty-free bunny logo. F - The company is a PETA Business Friend, and shopping at this company supports an innovative partnership for compassionate companies willing to assist in PETA's groundbreaking work to stop animal abuse and suffering. Companies Whose Products Are Available in Russian Federation L F 100% Pure 510-836-6500 http://www.100percentpure.com L 3INA https://3ina.com/ V L 66°30 https://66-30.com/en/ V L Abyssal Japan Co.
    [Show full text]
  • Constellation Program Overview
    Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable
    [Show full text]
  • The J–2X Engine Powering NASA’S Ares I Upper Stage and Ares V Earth Departure Stage
    The J–2X Engine Powering NASA’s Ares I Upper Stage and Ares V Earth Departure Stage The U.S. launch vehicles that will carry nozzle. It will weigh approximately 5,300 explorers back to the moon will be powered pounds. With 294,000 pounds of thrust, the in part by a J–2X engine that draws its engine will enable the Ares I upper stage to heritage from the Apollo-Saturn Program. place the Orion crew exploration vehicle in low-Earth orbit. The new engine, being designed and devel­ oped in support of NASA’s Constellation The J–2X is being designed by Pratt & Program, will power the upper stages of Whitney Rocketdyne of Canoga Park, Calif., both the Ares I crew launch vehicle and Ares for the Exploration Launch Projects Office at V cargo launch vehicle. NASA’s Marshall Space Flight Center in Huntsville, Ala. The J–2X builds on the The Constellation Program is responsible for legacy of the Apollo-Saturn Program and developing a new family of U.S. crew and relies on nearly a half-century of NASA launch vehicles and related systems and spaceflight experience, heritage hardware technologies for exploration of the moon, and technological advances. Mars and destinations beyond. Fueled with liquid oxygen and liquid hydro­ The J–2X will measure 185 inches long and gen, the J–2X is an evolved variation of two 120 inches in diameter at the end of its historic predecessors: the powerful J–2 upper stage engine that propelled the Apollo-era Shortly after J–2X engine cutoff, the Orion capsule will Saturn IB and Saturn V rockets to the moon in the separate from the upper stage.
    [Show full text]
  • The Advanced Cryogenic Evolved Stage (ACES)- a Low-Cost, Low-Risk Approach to Space Exploration Launch
    The Advanced Cryogenic Evolved Stage (ACES)- A Low-Cost, Low-Risk Approach to Space Exploration Launch J. F. LeBar1 and E. C. Cady2 Boeing Phantom Works, Huntington Beach CA 92647 Space exploration top-level objectives have been defined with the United States first returning to the moon as a precursor to missions to Mars and beyond. System architecture studies are being conducted to develop the overall approach and define requirements for the various system elements, both Earth-to-orbit and in-space. One way of minimizing cost and risk is through the use of proven systems and/or multiple-use elements. Use of a Delta IV second stage derivative as a long duration in-space transportation stage offers cost, reliability, and performance advantages over earth-storable propellants and/or all new stages. The Delta IV second stage mission currently is measured in hours, and the various vehicle and propellant systems have been designed for these durations. In order for the ACES to have sufficient life to be useful as an Earth Departure Stage (EDS), many systems must be modified for long duration missions. One of the highest risk subsystems is the propellant storage Thermal Control System (TCS). The ACES effort concentrated on a lower risk passive TCS, the RL10 engine, and the other subsystems. An active TCS incorporating a cryocoolers was also studied. In addition, a number of computational models were developed to aid in the subsystem studies. The high performance TCS developed under ACES was simulated within the Delta IV thermal model and long-duration mission stage performance assessed.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • The New Vision for Space Exploration
    Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar
    [Show full text]
  • Sounding Rockets 2013 Annual Report
    National Aeronautics and Space Administration NASA Sounding Rockets Annual Report 2013 The NASA Sounding Rockets Program has closed another highly successful op- erational year with the completion of 19 successful flights. As of October 2013, the program has had 100% success on 38 flights over a period of 24 months. This is an impressive accomplishment. The scientific teams, the technical and administrative sounding rocket staff, and the launch ranges are to be congratu- lated on a job well done! This year involved flights from Wallops Flight Facility (Virginia), White Sands Missile Range (New Mexico), the Kwajalein Atoll (Marshall Islands), and Poker Flat Research Range (Alaska). The Kwajalein campaign involved four rockets designed to probe the equatorial ionosphere and gain a better understanding of plasma energies and particle dynamics af- fecting the Earth. Multiple telescope missions were flown from White Sands Missile Range to study the Sun, the interstellar medium, and distant galaxies. Message from the Chief Message Flights from Wallops and Alaska have furthered our understanding of how the Phil Eberspeaker Earth and Sun interact. With every flight, NASA added to the body of scien- Chief, Sounding Rockets Program Office tific knowledge that will help unravel a host of scientific mysteries. The Sounding Rockets Program also continued to cultivate young minds by offering two university-level flight opportunities. Approximately 250 students from universities around the country had the opportunity to fly experiments aboard two-stage sounding rockets in 2013. The Sounding Rockets Program once again provided a unique teacher training workshop known as WRATS. With the knowledge obtained from this experience, teachers returned to the classroom with exciting options for enhancing their STEM curriculum.
    [Show full text]
  • Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles
    https://ntrs.nasa.gov/search.jsp?R=20080036837mSFC-9;LO 2019-08-30T05:16:33+00:00Z From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles Thomas Byrd, Deputy Manager, J-2X Upper Stage Engine Element Ares Projects Office Marshall Space Flight Center Huntsville, AL 35812 Abstract In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development ofa new launch vehicle fleet to fulfill the national goals ofreplacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable ofsupporting long-range exploration goals. The present architecture for the Constellation Program is the result ofextensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center. The vehicles selected to support those goals are the Ares I crew launch vehicle and the Ares V cargo launch vehicle, the first new human-rated launch vehicles developed by NASA in more than three decades (Figure 1). Ares I will begin its initial operating capability offlying up to six astronauts to the International Space Station (ISS) no later than 2015. Ares V is scheduled to be operational in the 2020 timeframe to support lunar missions. Figure 1. The Ares V Cargo Launch Vehicle (left) and Ares I Crew Launch Vehicle (right) will form the backbone of America's new space fleet.
    [Show full text]
  • ALTAIR - Design & Progress on the Space Launch Vehicle Design
    DOI: 10.13009/EUCASS2017-575 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) ALTAIR - Design & Progress on the Space Launch Vehicle Design Cédric Dupont*, Andrea Tromba*, Bastien Haemmerli**, Eduard Diez*** , Giulio Molinari****, Christoph Karl**** * Bertin Technologies, France – [email protected], [email protected] **NAMMO Raufoss AS, P.O. Box 162, NO-2831 Raufoss, Norway – [email protected] *** GTD Sistemas de Información S.A, Spain - [email protected] ***** ETH Zürich, Switzerland – [email protected], [email protected] Abstract ALTAIR is an innovative air-launch system consisting of a reusable unmanned aircraft carrier, an expendable launch vehicle and a cost-effective ground segment. The autonomous aircraft brings the launcher at altitude; following the release, the launcher boosts the payload to the intended orbit. This paper presents the launcher design at the project mid-term. Primary aims of the development are risk mitigation, cost savings, reliability and high performance. The project leverages collaborative engineering, design-to-cost techniques and multidisciplinary design optimization strategies. The resulting design utilizes low-cost hybrid propulsion, lightweight composite structures, innovative avionics and a smart multi-mission upper-stage to simultaneously attain all goals. 1. Introduction The market of satellite launches will drastically change in the coming decade. While being nowadays monopolised by the needs of massive and expensive satellites, requiring heavy launchers of the size of the Proton M, Delta IV or Ariane 5, it is foreseen that another product will take a large share of the global market: small satellites in the 50-150 kg range. This growth will be mainly driven by two factors.
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    AIAA 2015-4611 SPACE Conferences & Exposition 31 Aug-2 Sep 2015, Pasadena, California AIAA SPACE 2015 Conference and Exposition A Conceptual Mars Exploration Vehicle Architecture with Chemical Propulsion, Near- Term Technology, and High Modularity to Enable Near-Term Human Missions to Mars Mark G. Benton, Sr.* The Boeing Company, El Segundo, CA 90009-2919, USA [Abstract] The Mars Exploration Vehicle (MEV) Architecture was first presented in January, 2012. It describes a possible method to accomplish a long-stay conjunction class Mars surface exploration mission, for 2033 or 2035 opportunities, with a four-person crew and using chemical propulsion, existing or near-term technology, and common modular elements to minimize development costs. It utilizes a common Cryogenic Propulsion Stage (CPS) that can be configured as an Earth Departure Stage (EDS) or Mars Transfer Stage (MTS). It satisfies mission requirements using a combination of Earth orbit rendezvous, aerobraking of unmanned landers, Mars orbit rendezvous, and Mars surface rendezvous. The purpose of this paper is to present major enhancements to the architecture and provide additional design details. The MEV architecture is assembled in low Earth orbit (LEO) from subassemblies launched by Space Launch System rockets and includes a Mars Crew Transfer Vehicle (MCTV) with a crew of four, two redundant unmanned Mars Lander Transfer Vehicles (MLTVs), and four redundant Booster Refueling Vehicles which top off CPS LH2 propellants before Trans-Mars Injection (TMI). The MCTV and its assembly sequence were redesigned to reduce mechanical complexity, enhance design commonality, simplify LEO assembly, and improve mission reliability. Each MLTV utilizes one EDS and one MTS and carries three landers as payload: The Mars Personnel Lander (MPL) provides two-way transport for four crew members between low Mars orbit (LMO) and surface.
    [Show full text]
  • + Part 17: Acronyms and Abbreviations (265 Kb PDF)
    17. Acronyms and Abbreviations °C . Degrees.Celsius °F. Degrees.Fahrenheit °R . Degrees.Rankine 24/7. 24.Hours/day,.7.days/week 2–D. Two-Dimensional 3C. Command,.Control,.and.Checkout 3–D. Three-Dimensional 3–DOF . Three-Degrees.of.Freedom 6-DOF. Six-Degrees.of.Freedom A&E. Architectural.and.Engineering ACEIT. Automated.Cost-Estimating.Integrated.Tools ACES . Acceptance.and.Checkout.Evaluation.System ACP. Analytical.Consistency.Plan ACRN. Assured.Crew.Return.Vehicle ACRV. Assured.Crew.Return.Vehicle AD. Analog.to.Digital ADBS. Advanced.Docking.Berthing.System ADRA. Atlantic.Downrange.Recovery.Area AEDC. Arnold.Engineering.Development.Center AEG . Apollo.Entry.Guidance AETB. Alumina.Enhanced.Thermal.Barrier AFB .. .. .. .. .. .. .. Air.Force.Base AFE. Aero-assist.Flight.Experiment AFPG. Apollo.Final.Phase.Guidance AFRSI. Advanced.Flexible.Reusable.Surface.Insulation AFV . Anti-Flood.Valve AIAA . American.Institute.of.Aeronautics.and.Astronautics AL. Aluminum ALARA . As.Low.As.Reasonably.Achievable 17. Acronyms and Abbreviations 731 AL-Li . Aluminum-Lithium ALS. Advanced.Launch.System ALTV. Approach.and.Landing.Test.Vehicle AMS. Alpha.Magnetic.Spectrometer AMSAA. Army.Material.System.Analysis.Activity AOA . Analysis.of.Alternatives AOD. Aircraft.Operations.Division APAS . Androgynous.Peripheral.Attachment.System APS. Auxiliary.Propulsion.System APU . Auxiliary.Power.Unit APU . Auxiliary.Propulsion.Unit AR&D. Automated.Rendezvous.and.Docking. ARC . Ames.Research.Center ARF . Assembly/Remanufacturing.Facility ASE. Airborne.Support.Equipment ASI . Augmented.Space.Igniter ASTWG . Advanced.Spaceport.Technology.Working.Group ASTP. Advanced.Space.Transportation.Program AT. Alternate.Turbopump ATCO. Ambient.Temperature.Catalytic.Oxidation ATCS . Active.Thermal.Control.System ATO . Abort-To-Orbit ATP. Authority.to.Proceed ATS. Access.to.Space ATV . Automated.Transfer.Vehicles ATV .
    [Show full text]
  • Ares V Cargo Launch Vehicle
    National Aeronautics and Space Administration Constellation Program: America’s Fleet of Next-Generation Launch Vehicles The Ares V Cargo Launch Vehicle Planning and early design are under way for hard- NASA’s Constellation Program to carry human ware, propulsion systems and associated techno- explorers back to the moon, and then onward to logies for NASA’s Ares V cargo launch vehicle — the Mars and other destinations in the solar system. “heavy lifter” of America’s next-generation space fleet. The Ares V effort includes multiple hardware and Ares V will serve as NASA’s primary vessel for safe, propulsion element teams at NASA centers and facts reliable delivery of large-scale hardware to space — contractor organizations around the nation, and is from the lunar landing craft and materials for estab- led by the Ares Projects Office at NASA’s Marshall lishing a moon base, to food, fresh water and other Space Flight Center in Huntsville, Ala. These teams staples needed to extend a human presence beyond rely on nearly a half century of NASA spaceflight Earth orbit. experience and aerospace technology advances. Together, they are developing new vehicle hard- Under the goals of NASA’s exploration mission, ware and flight systems and matur ing technologies Ares V is a vital part of the cost-effective space evolved from powerful, proven Saturn rocket and transportation infrastructure being developed by space shuttle propulsion elements and knowledge. NASA Concept image of Ares V in Earth orbit. (NASA MSFC) The versatile, heavy-lifting Ares V is a two-stage, vertically- stacked launch vehicle. It can carry nearly 414,000 pounds (188 metric tons) to low-Earth orbit.
    [Show full text]