Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance
Total Page:16
File Type:pdf, Size:1020Kb
INTERFACIAL STUDY OF COPPER ELECTRODEPOSITION WITH THE ELECTROCHEMICAL QUARTZ CRYSTAL MICROBALANCE Oscar Ulises Ojeda Mota, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2005 APPROVED: Oliver M. R. Chyan, Major Professor Teresa D. Golden, Committee Member Ruthanne D. Thomas, Chair of the Department of Chemistry Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Ojeda Mota, Oscar Ulises, Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM), Master of Science (Analytical Chemistry), May 2005, 113 pp., 4 tables, 45 figures, reference list, 139 references. The electrochemical quartz crystal microbalance (EQCM) has been proven an effective mean of monitoring up to nano-scale mass changes related to electrode potential variations at its surface. The principles of operation are based on the converse piezoelectric response of quartz crystals to mass variations on the crystal surface. In this work, principles and operations of the EQCM and piezo-electrodes are discussed. A conductive oxide, ruthenium oxide (RuO2) is a promising material to be used as a diffusion barrier for metal interconnects. Characterization of copper underpotential deposition (UPD) on ruthenium and RuO2 electrodes by means of electrochemical methods and other spectroscopic methods is presented. Copper electrodeposition in platinum and ruthenium substrates is investigated at pH values higher than zero. In pH=5 solutions, the rise in local pH caused by the reduction of oxygen leads to the formation of a precipitate, characterized as posnjakite or basic copper sulfate by means of X-ray electron spectroscopy and X-ray diffraction. The mechanism of formation is studied by means of the EQCM, presenting this technique as a powerful in-situ sensing device. Copyright 2005 by Oscar Ulises Ojeda Mota ii ACKNOWLEDGMENTS I would like to express my earnest appreciation and acknowledgements to all the people that had helped me in completing this goal. To Dr. Oliver M.R. Chyan who’s many teachings and example I will carry through the rest of my life, thanks for your dedication. My special acknowledgments go to Dr. Teresa Golden and Dr. Mohamed El-Bouanani, from whom I obtained invaluable patience and knowledge when discussing and learning about their fields of specialization. The financial support form the Welch Foundation and UNT Faculty Research Grant is greatly appreciated. I am grateful for the support of my fellow group members, Yibin Zhang, Long Huang and Praveen Reddy, especially to Dr. Tiruchirapalli Arunagiri and Dr. Raymond Chan, pillars of the group, whose enthusiasm and constructive discussions helped in the arrival of the work here presented. The help from the support staff and many graduate and undergraduate students in the chemistry department is highly appreciated. I would like to extend my thanks to Dr. Oscar Mendoza and Dr. Miguel Angel Valenzuela, whose encouragement was paramount to the continuation of my academic formation. To Dr. Manuel Quevedo, Dr. Rosa Amelia Orozco and Dr. Alejando Hernández, who showed me the value of good friendship at all times. Most importantly to my parents, Miguel and Norma, who sparked my interest in science, and supported my decisions with confidence thought the years, and Sarah Flores; my gratitude goes to you, for giving me understanding, love and support, since we started this plan together. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS .....................................................................................iii LIST OF TABLES ...............................................................................................vi LIST OF FIGURES ............................................................................................vii Chapters 1 INTRODUCTION ..................................................................................... 1 1.1 Piezoelectricity .............................................................................. 1 1.2 The Electrochemical Quartz Crystal Microbalance (EQCM) ......... 5 1.2.1 Frequency-Mass Correlation .............................................. 6 1.2.2 The Equivalent Circuit ...................................................... 11 1.2.3 Applications of the EQCM ................................................ 12 1.3 Electrode Shot Preparation ......................................................... 14 1.4 Electrochemistry Fundamentals.................................................. 19 1.5 X-Ray Photoelectron Spectroscopy ............................................ 25 1.6 Conclusions ................................................................................ 27 1.7 References.................................................................................. 28 2 COPPER UNDERPOTENTIAL DEPOSITION ON RUTHENIUM AND RUTHENIUM OXIDE ............................................................................. 33 2.1 Introduction ................................................................................. 33 2.2 Experimental ............................................................................... 35 2.3 Results and Discussion............................................................... 37 2.3.1 Copper Deposition on Ruthenium .................................... 37 2.3.2 Copper Deposition on Ruthenium Oxide .......................... 46 2.4 Ongoing Research ...................................................................... 53 2.4 Conclusion .................................................................................. 57 2.5 References.................................................................................. 58 3 FORMATION OF BASIC COPPER SULFATES .................................... 62 3.1 Introduction ................................................................................. 62 3.2 Experimental ............................................................................... 64 iv 3.3 Results and Discussion............................................................... 68 3.3.1 Characterization of the Process at Different Stages......... 74 3.3.2 Effect of the Oxygen Reduction Reaction......................... 81 3.3.3 Mechanism of Formation.................................................. 86 3.3.4 Mass Dumping ................................................................. 93 3.4 Conclusion .................................................................................. 93 3.5 References.................................................................................. 95 REFERENCE LIST......................................................................................... 101 v LIST OF TABLES Page 1-1 Applications of the earlier piezoelectric devices....................................... 4 2-1 Thermodynamic parameters for Cu UPD on ruthenium......................... 44 2-2 Thermodynamic parameters for Cu deposition on ruthenium oxide....... 49 3-1 Mass change efficiencies at anodic peaks “A1” and “A2” ...................... 88 vi LIST OF FIGURES Page 1-1 A quartz crystal ........................................................................................ 3 1-2 AT type quartz cut.................................................................................... 5 1-3 Employed EQCM setup ........................................................................... 7 1-4 Oscillating crystal................................................................................... 10 1-5 Equivalent circuit of the oscillating crystal.............................................. 11 1-6 Mold to make an electrode..................................................................... 15 1-7 Soldering the shot and copper wire ....................................................... 16 1-8 Pouring the epoxy into the mold ............................................................ 17 1-9 Steel puck with unpolished electrode..................................................... 18 1-10 Lapping fixture with unpolished electrode inside.................................... 19 1-11 Cyclic voltammetry potential-time profile................................................ 23 1-12 Potential-time profile of a CA experiment............................................... 24 1-13 Photoelectron emission in an XPS analyzer .......................................... 26 2-1 Inter-grain boundary diffusion prevention by the use of RuOx............... 35 2-2 Ru EQCM electrode in background electrolyte...................................... 38 2-3 Ru electrode in background electrolyte.................................................. 39 2-4 XRD pattern of a Ru electrode............................................................... 40 2-5 CV response of a Ru shot in a 2 mM CuSO4 solution + 0.5 M H2SO4.... 41 2-6 Potential region of peak “A1” obtained in a 2 mM CuSO4+0.5M H2SO4 solution on a Ru electrode ..................................................................... 42 2-7 CV of ruthenium electrode in a higher copper concentration solution.... 45 2-8 Underpotential deposition of Copper from a 10 mM CuSO4+0.5M H2SO4 solution on a Ru electrode ..................................................................... 46 2-9 A) Ru surface, B) The oxidized Ru surface (both 5x)............................. 47 vii 2-10 Background of oxidized Ru substrate in 0.5 MH2SO4 solution ............... 48 2-11 Ruthenium Oxide CV response in a 2 mM CuSO4+0.5MH2SO4 solution ..............................................................................................................