<<

August 20-28,2004 Florence -

Field Trip Guide Book - B05 32 Volume n°1-fromPR01toB15 Associate Leaders:F.A. Decandia,M.Tongiorgi Leader: E.Pandeli NORTHERN APENNINES HISTORY OFTHE THROUGH THE500MA THE BASEMENT Pre-Congress GEOLOGICAL CONGRESS nd INTERNATIONAL B05 The scientific content of this guide is under the total responsibility of the Authors

Published by: APAT – Italian Agency for the Environmental Protection and Technical Services - Via Vitaliano Brancati, 48 - 00144 Roma - Italy

Series Editors: Luca Guerrieri, Irene Rischia and Leonello Serva (APAT, Roma)

English Desk-copy Editors: Paul Mazza (Università di Firenze), Jessica Ann Thonn (Università di Firenze), Nathalie Marléne Adams (Università di Firenze), Miriam Friedman (Università di Firenze), Kate Eadie (Freelance indipendent professional)

Field Trip Committee: Leonello Serva (APAT, Roma), Alessandro Michetti (Università dell’Insubria, Como), Giulio Pavia (Università di Torino), Raffaele Pignone (Servizio Geologico Regione Emilia-Romagna, Bologna) and Riccardo Polino (CNR, Torino)

Acknowledgments: The 32nd IGC Organizing Committee is grateful to Roberto Pompili and Elisa Brustia (APAT, Roma) for their collaboration in editing.

Graphic project: Full snc - Firenze

Layout and press: Lito Terrazzi srl - Firenze Volume n° 1 - from PR01 to B15

32nd INTERNATIONAL GEOLOGICAL CONGRESS

THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORY OF THE NORTHERN APENNINES

AUTHORS: E. Pandeli (Department of Earth Sciences, University of Florence and CNR-Institute of Earth Sciences and Earth Resources, Florence Section - Italy) F.A. Decandia (Department of Earth Sciences, University of Siena - Italy) M. Tongiorgi (Department of Earth Sciences, University of Pisa - Italy)

Florence - Italy August 20-28, 2004

Pre-Congress B05

THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Leader: E. Pandeli Associate Leaders: F.A. Decandia, M. Tongiorgi

Introduction Dinner and overnight stay in Siena (a visit to Campo represents a unique area as the Paleozoic Square and the Cathedral is also included). basement and the overlying, mostly siliciclastic, The third day will be spent visiting the Variscan pre- syn-rift sediments (“Verrucano”) are exposed along fl ysch and fl ysch deposits and the overlying marine the whole Apennine Chain (Vai and Martini, 2001). fossiliferous rocks in the Farma Valley As a whole, these continental-to-marine sedimentary (Monticiano area, South of Siena). Dinner and overnight successions and volcanic rocks record a lengthy stay in Grosseto (visit to the Cathedral Square). geological time interval which includes the Eo- On the fourth day, our last day, we will visit the Caledonian (Middle ) and the Variscan Upper Permian-Lower marine siliciclastics orogenic events (Early-Middle ), the (Mt. Argentario Sandstones) and their Verrucano post-Variscan extension (Late Carboniferous-Early cover in the Mt. Argentario Promontory. Return to Permian) and the Alpine rifting (Late Permian- Florence in the afternoon. Triassic). In the -Middle times, Useful additional maps and guidebooks: these rocks also experienced the polyphased Alpine - Apuan : Sheets 96 (Massa) and 104 (Pisa) tectono-. of the Geological Map of Italy at 1:100.000 During the fi eld trip we will visit the Paleozoic- scale, Geological Survey of Italy; Carmignani L. type-successions of the Apuan Alps, the (1984)-Carta geologico-strutturale del Complesso Pisani Mountains, Iano, the Monticiano-Roccastrada Metamorfi co delle Alpi Apuane (1:25.000 scale, Foglio Ridge and the Mt. Argentario Promontory. The fi eld nord), Litografi a Artistica Cartografi ca, Firenze; trip stops will allow us to reconstruct the tectono- Carmignani L. et alii (1993) – Tettonica distensiva del sedimentary evolution of the southern part of the Complesso Metamorfi co delle Alpi Apuane, Guida all’ Variscan chain, as well as that of the Triassic rifting in escursione, Università di Siena; Carmignani L. et alii this Adriatic sector of Gondwanaland. The itinerary is (2000)–Carta Geologica del Parco delle Alpi Apuane interesting also from a touristic point of view because (1:50.000 scale), S.E.L.C.A., Firenze. it crosses typical Tuscan landscapes (the Versilia - Pisani Mountains: Sheets 104 (Pisa) and 105 coast, the lower Arno Valley, the Chianti and Siena (Lucca) of the Geological Map of Italy at 1:100.000 hills, and Maremma) as well as artistic towns (Pisa, scale, Geological Survey of Italy; Rau A. & Tongiorgi S.Gimignano, and Siena). A logistical summary of the M. (1974)–Carta Geologica dei Monti Pisani a fi eld trip follows (starting from Florence): sud-est della Valle del Guappero (1:25.000 scale), The subject of the fi rst day will be the Paleozoic- Litografi a Artistica Cartografi ca, Firenze. Triassic successions of the Apuan Alps in the - Iano: Sheet 112 (Volterra) of the Geological Map Levigliani-Mt. Corchia area (SE of Massa), where a of Italy at 1:100.000 scale, Geological Survey of typical Upper Cambrian-Silurian/Devonian section Italy; Costantini et alii (1991)–Carta Geologica di of the Tuscan basement is well exposed and is Iano (Prov. di Firenze) (1:5.000 scale), S.E.L.C.A., unconformably overlain by the basal siliciclastics Firenze; (Verrucano) and carbonates of the Alpine sedimentary - Farma Valley (Monticiano-Roccastrada Ridge): cycle. Impressive “natural” geological cross-sections Sheet 120 (Siena) of the Geological Map of Italy at 1: of the Apuan metamorphic core and views onto the 100.000 scale, Geological Survey of Italy; famous marble quarries represent points of additional - Mt. Argentario Promontory: Sheet 135 (Orbetello) interest for this fi eld trip. Dinner and overnight stay of the Geological Map of Italy at 1:100.000 scale, will be in Pisa (with a visit to “the Square of Miracles” Geological Survey of Italy; Gianniello et alii where the Leaning Tower is). (1964)–Carta Geologica del Monte Argentario e del PRO1 to B15 n° 1 - from Volume The second day will focus on the Paleozoic-Carnian Promontorio del Franco (Isola del Giglio), Litografi a successions of the Pisani Mountains (Northwest of Artistica Cartografi ca, Firenze. Pisa) and Iano (North of Volterra) where peculiar sections of late-/post-Variscan (Upper Carboniferous- Regional geological setting Permian) continental-to- marine sedimentary cycles F.A. Decandia & E. Pandeli and the overlying “classic” Verrucano type-successions The Northern Apennine chain (Figure 1) developed are exposed. View of S.Gimignano, a medieval town. after the closure of the Ligurian Ocean (a narrow arm

3 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli experienced theEo-Caledonianand Variscan of thecontinentalcrust,whichhadpreviously This began duringthe Anisian withtheextension Pre-collisional stage process was accompaniedbymagmatism. (i.e. eastern)zones,respectively. The extensional developed intheinner(i.e.western)andouter in whichextensional andshortening processes processes developed; and3)apost-collisionalstage stage inwhichcompressionalandmetamorphic depositional processesweredominant;2)acollisional main stages:1)apre-collisionalstageinwhichthe of theNorthern Apennines canbedivided intothree 2001, andreferencestherein). The geologicalhistory Oligocene-Aquitanian interval (Vai andMartini, (i.e. Adria microplate)continentalmargins during the the European(i.e.Corsica-Sardiniablock)and African of theJurassic Tethys) andthesubsequentcollisionof Figure 1-Geologicalsketch map(A)andsection(B)oftheNorthern Apennines (afterElter&Pandeli, 1996). area, southofSiena(Cocozza occur withinthe Triassic Verrucano oftheFarma clasts, derived fromacarbonateplatform,which and Lazzarotto,1980);c)thepinklimestone succession outcroppingatMt. Argentario (Decandia therein); b)partoftheCalaPiatticarbonatic the endofLadinian,eastern margin ofthe (Passeri, 1985;Martini (NW of Apuan Alps) whichincludesalkalinebasalts carbonatic sedimentarycycle ofPuntaBianca-Massa are representedby:a)thelower siliciclastic and faults. The Anisian- transgressive deposits a tectonicdepression(s)boundedbyextensional NE trending epicontinentalbasinwhichoccupied over the Variscan mainlandsgave risetoaSW- of the Alpine sedimentarycycle. The transgression marine transgression,whichmarked thebeginning and referencestherein),withthesubsequentfi orogenies andmagmatism(Pandeli et alii , 1986andreferences et alii, et alii 1975). At , 1994, rst THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

emerged and regional extensional - The Sub-Ligurian Domain. This occupies the processes produced new, wide, sedimentary basins transitional area between the Ligurian Domain and in which the siliciclastic fl uvial and coastal deposits the Tuscan Domain, and is characterized by pelagic of the Verrucano Group accumulated (Tongiorgi et ?Upper /-Oligocene, shaly- alii, 1977; Costantini et alii, 1987/88; Pandeli, 2002). calcareous-arenaceous successions. Locally-reworked mafi c volcanics were also found - The Tuscan Domain. This consists of continental (Costantini et alii, 1991). During the Late Triassic sequences which can be associated to two different (Norian), evaporitic basins and sabkas formed, and paleogeographic sectors: their anhydritic dolomitic sediments passed laterally 1) the intemal Tuscan Domain, represented by the to carbonate platform deposits (Grezzoni dolostones) non-metamorphic to very low-grade metamorphic (Ciarapica and Passeri, 1998, and references therein). formations of the Tuscan Nappe. Starting from the This paleoenvironmental boundary marks the limit oldest formation, they are: Upper Triassic evaporates between the internal and the external part of the (Burano Anhydrites) and carbonates (e.g. the Tuscan Domain. During the Rhaetian, epireic basinal Mt.Cetona Fm.), Lower shallow-water and (La Spezia Fm.) and shallow marine (the Mt.Cetona pelagic carbonates (e.g. Calcare Massiccio), Upper Fm.), carbonatic and marly-carbonatic deposits spread Liassic- Lower Cretaceous pelagic mainly calcareous- all over the Tuscan-Umbrian Domain (Ciarapica and siliceous (e.g. Rosso Ammonitico, Calcare Selcifero, Passeri, 1998). Diaspri, Maiolica) sequence, an Lower Cretaceous- Analysis of the Trias- successions Oligocene mostly pelitic unit (Scaglia Toscana), and reveals the development of a large Bahamas-type a Upper Oligocene-Lower Miocene arenaceous fl ysch carbonate platform during the Hettangian. With the (the Macigno Fm.). development of normal fault at the end of the Late 2) the external Tuscan Domain, represented by Lias, the carbonate platform drowned below the the low-grade metamorphic successions of the photic zone (Fazzuoli et alii, 1985 and 1994, and Tuscan Metamorphic Complex, such as cover references therein). The subsidence of the carbonate formations of Late Carboniferous-Permian age and platform created pelagic and hemipelagic sedimentary of Mesozoic-Tertiary age (with the latter being basins controlled by normal synsedimentary faults, similar to the formations of the Tuscan Nappe) that where marly-calcareous, calcareous-siliceous and unconformably overlay older Palaeozoic rocks of siliceous deposited (Fazzuoli et alii, 1985, 1994). the Variscan basement. The Triassic “Verrucano” During the Late Jurassic, the Ligurian oceanic basin, siliciclastics (e.g. the typical white-pink - whose boundaries were represented by the African pebble metaconglomerates named “anageniti”) are (i.e. Adria) and European (i.e. Corsica-) also included in this Complex. continental margins, opened up (Decandia and Elter, The outermost part of the Tuscan Domain (the 1969, 1972; Abbate et alii, 1986, 1994a). Moreover, Cervarola-Falterona Unit) consists of non- in the Late Jurassic the tectonic subsidence ended, metamorphic Cretaceous-Tertiary, pelagic shales and thermal subsidence started, causing a deepening and carbonates which underlie a mainly siliciclastic of the seafl oor, which subsequently led to a relatively turbiditic succession , Oligocene to middle Miocene uniform deposition in both the continental margin and in age (Mt. Falterona and Mt. Cervarola Sandstones). oceanic domains. These domains, in which deposition - The Umbrian-Marchean Domain. This consists occurred throughout the Cretaceous and continued of continental margin deposits made up of Triassic during the Tertiary, will be described, starting from “Verrucano” (reached by boreholes), Upper Triassic the innermost of the orogenic chain (i.e. the western evaporites, Lower Jurassic-Eocene carbonates, an Northern Apennines) and moving towards the most Eocene-Miocene carbonatic-pelitic sequence and external (i.e. eastwards): a UpperMiocene arenaceous fl ysch (the Marnoso

- The Ligurian Domain. The successions of the Arenacea Fm.). This domain occupies the external PRO1 to B15 n° 1 - from Volume Ligurian oceanic area consist of , while zones of the Northern Apennines as far as the present the pelagic sedimentary cover of the Diaspri Fm. foredeep (). (Malm), the Calcari a Calpionelle and Calcari a Starting during Late Cretaceous, the Ligurian basin Palombini Fms. (Upper Jurassic-Lower Cretaceous), experienced compressional movements (Principi and and Cretaceous-Tertiary siliciclastic (e.g. Arenarie Treves, 1984; Abbate et alii, 1994a and references del Gottero Fm) and/or calcareous-marly (i.e. therein) . These movements ended during the middle Helminthoid Flysch). Eocene with the closure of the oceanic Ligurian basin

5 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli references therein). Northern :Bortolotti Umbrian-Marchean Units Nappe Units proceeding downwards (Figs.1and2):1)Ligurian characterized bythefollowing tectonicunits, The structureoftheNorthern Apennines is sedimentation inthe Tuscan Domain. 1984) (Figure1). This event ledtotheinterruptionof oceanic accretionarywedge:Principi& Treves, the LateCretaceous-Eocenetimeinterval (Ligurian Ligurian units,whichhadalreadypiledupduring margin unitswereoverthrust from thewestby Complex). Duringthecollision,continental in thegreenshistsfacies (i.e.the Tuscan Metamorphic also affected byapolyphasetectono-metamorphism reference therein). The deepestoftheseunitswere nappe complex (CarmignaniandKligfi continental margin domainswerestacked inathrust- and thestratigraphicunitsbelongingtovarious Continental crustwas involved inthecollision, of thecollision Adria andEuropeanplates. the Apennine chainwas formedasaconsequence During theOligocene-Aquitaniantimeinterval, Collisional stage the “ LT metamorphismofthe Alpine ophiolites(e.g. the Europeanmargin andwithdevelopment ofHP- through thesubductionofoceaniccrustunderneath The Tuscan MetamorphicComplex innermost partoftheCervarola-Falterona Unit.4) succession”) and,farther totheeast,onto (producing theso-called“doublingof Tuscan superposed ontothe Tuscan MetamorphicComplex the Upper Triassic evaporites andwas tectonically detached fromitsunderlyingoriginalbasementalong the Apennine foreland(Bertini 1996) thatisconsideredthePaleozoic basementof Variscan gneisscomplex (ElterandPandeli, 1990and bearing micaschistswhichtectonicallyoverlay a Triassic evaporite slicesandpre-Alpine garnet- fi of Southern Tuscany (attheLarderellogeothermal - Mt. Argentario Promontory). Inthesubsurface – IanoMonticiano-RoccastradaRidge-Mt.Leoni Mid-Tuscan Ridge(Apuan Alps -PisaniMountains successions, mainlyexposed alongtheso-called by theepimetamorphicPalaeozoic-Oligocene Umbrian-Marchean sedimentary cover was detached belt whichwas formedwhenthe Triassic- eld), deepboreholesshow thatthisunitinclude Schistes Lustrés” . 2) The Sub-Ligurianunit , whose Triassic-Tertiary cover successionwas of Alpine Corsicaandofthe occurinafold-and-thrust et alii . 3) The Tuscan et alii , 1991).5) The eld, 1990,and , represented , 2001,and characterises Southern Tuscany (120mW/m Upper Triassicevaporites. from theunderlyingbasement,mainlyalong b) thehighheatfl Tuscany; (Calcagnile andPanza, 1981)incoastal km) andlithospheric(about30thicknesses led to:a)thepresentreducedcrustal(about22 respectively (Figure3). These extensional episodes and theLate Tortonian-Quaternary intervals, which occurredintheBurdigalian-Early Tortonian tectonic depressionsformedduringbothepisodes, identifi area, wheretwo extensional episodeshave been tectonics in Tuscany andintheNorthern Tyrrhenian tectonic unitsweregreatlymodifi The geometricalrelationshipsbetweenthestacked Post-collisional stage oten ucn ad h Nrhr Trhna Sea Tyrrhenian Northern the and Tuscany Southern the anatectic-to-sub-crustalmagmatismthataffected average, with localpeaksofupto1000mW/m ed. Clasticsedimentationoccurredinsidethe and tectonicunitsoftheNorthern Apennines (after Figure 2-Relationshipsbetween thestratigraphic o (Baldi ow Carmignani etalii,1994a) et alii ed byextensional , 1994)that 2 2 ); c) on THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Figure 3 - Sketch map showing the main structural features of the Northern Apennines chain. Encircled numbers: 1 = the Magra Basin; 2 = the Serchio Basin; 3 = the Volterra Basin; 4 = the Elsa Basin: 5 = the Florence Basin; 6 = the Mugello Basin; 7 = the Siena Basin; 8 = the Valdarno Basin; 9 = the Valdichiana Basin; 10 = the Val di Tevere Basin. (after Carmignani et alii, 1994a). during the Late Miocene- time period The “serie ridotta” phenomenon results from staircase (Serri et alii, 1993). Moreover, in the later stages normal faults, the main fl ats of which are located at the magmatic events generated the typical - the base of, or within, the Ligurid units, and at the Quaternary hydrothermal mineralizations and base of, or within, the Upper Triassic evaporite level. geothermal vents (i.e. the Larderello-Travale and Mt. These fl ats are linked by ramps which cut through the Amiata geothermal fi elds, see location in Figure 3) carbonatic and terrigenous sequences of the Tuscan of Southern Tuscany and of the . Nappe (Figure 4). The evident eastward younging of the onset of the Other secondary fl ats can be found in less competent sedimentary basins and of the magmatism is coupled beds of the Ligurids and of the Tuscan Nappe. with the progressive advance of the Apenninic In southern Tuscany, the Upper Triassic evaporite orogenic front to the foreland (Elter et alii, 1975). level is the main detachment horizon. It separates an - First extensional episode (Burdigalian-Early upper plate, made up of the Ligurids and the Tuscan Tortonian) Nappe, from a lower one constituted by the Tuscan The highest structural units (the Ligurids) may lie Metamorphic Complex. The Ligurids and Tuscan locally on the lowest structural unit (i.e. the Triassic Nappe are affected by brittle deformation, whereas evaporites or the Tuscan Metamorphic Complex). In the Tuscan Metamorphic Complex presents ductile or the , this peculiar structural setting semi-ductile deformation. of Southern Tuscany is known as the “serie ridotta” The extension continued after exhumation of the PRO1 to B15 n° 1 - from Volume phenomenon (Lavecchia et alii, 1984; Bertini et alii, metamorphic complex. Brittle extensional tectonics, 1991; Decandia et alii, 1993; Elter and Sandrelli, in fact, greatly affected the metamorphic complex, 1994, and references therein). The omission of causing the superimposing of the Ligurids onto stratigraphic sequences is the most common tectonic the Upper Triassic evaporites, or directly onto the feature to the south of the Livorno-Sillaro Line Paleozoic phyllites (Figure4). A stretching value (location in Figure3), as suggested by a large number greater than 120% has been calculated (Bertini et alii, of geothermal and mining boreholes (Figure 4). 1991) by reconstructing both the original extent of

7 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli - Verrucano elements. the Tuscan Nappecarbonaticsequence and thatofthe extensional episodes(afterCarmignanietalii,1995). The arrows indicatethesenseofdisplacementduringfi 6- Jurassic limestones;7-UpperTriassic evaporates.8-TheTuscan MetamorphicComplex; 9-normal faults. 3- UpperOligocenearenaceousfl Symbols: 1-MioceneandPlioceneclasticsediments;2-Ligurianunits(middleJurassic-Eocene). TheTuscan Nappe: Figure 4-Cross-sectionthroughtheareaaffected bythe“serieridotta”phenomenon(theLarderellogeothermalarea);. estimated atabout6-7%(Bertini stretching causedinthissecondextensional event is is thealready-mentionedLivorno-Sillaro Line. The 1983; Liotta,1991),themostsignifi SW-NE-orientated transfer zones(Bartolini The maintectonicdepressionsaredissectedby (Bossio from theUpper Tortonian untiltheQuaternary (Figure3) sediments weredepositedinthegraben-typedepressions extensional event. Continental, lagoonandmarine graben-type structuresweregeneratedduringthissecond faults orientatedfromNNW-SSE toN-S.Horst-and This episodeischaracterizedbyhigh-anglenormal Quaternary) Second extensionalepisode et alii , 1993;MartiniandSagri,1993). ysch; 4-Cretaceous-Oligocenemarlsandpelagiclimestones;5-UpperJurassic cherts; et aIii, (Late Tortonian- cant ofwhich 1991). et alii, rst (whitearrows) andthesecond(black arrows) - of thechain. delineate themaindiagenetic-metamorphicfeatures and 1997,referencestherein),hasenabledusto metamorphic Complex (Franceschelli of thesyn-metamorphic Al-silicates inthe Tuscan 1994) withinthenappesoftectonicpileand (Cerrina Feroni alii, of therefl a seriesofstudiesbasedontheregional distribution metamorphic evolution ofthechain.Onlyrecently attention hasbeenpaidtothe Alpine diagenetic- with stratigraphyandtectonicevolution, but little Most ofthestudiesongeology Tuscany deal northern apennines Metamorphism inthe Degree ofcoalifi 1980) andoftheillitecrystallinity(IC)values ectance oforganic matter(Reutter et alii, cation andillitecrystallinity 1983; Franceschelli et alii, et alii, 1986 et THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Figure 5 - AFM (Al, Fe, Mg) facies series for different outcrops and wells of the Verrucano. 1) the Massa Unit; 2) Main Verrucano outcrops of Monticiano-Roccastrada Unit; 3) the Apuan (“Autochthon”) Unit; 4) boreholes; 5) the front of the Tuscan Nappe; 6) the front of the Cervarola-Falterona Unit (modifi ed from Franceschelli et alii, 1989). PRO1 to B15 n° 1 - from Volume

The refl ectance of organic matter and of IC within Nappe, and epizonal metamorphism for the Tuscan the tectonic units of the Northern Apennines show Metamorphic Complex. Within each tectonic unit, an an overall trend, with increasing values moving eastwardly-decreasing trend of these values towards downwards in the nappe pile. This indicates diagenetic the Umbrian-Marchean area was also observed conditions for the Ligurids, diagenetic/anchizonal (Reutter et alii, 1980; Franceschelli et alii, 1994). to anchizonal/ epizonal conditions for the Tuscan - Syn-metamorphic Al-silicates. At the regional scale,

9 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli 12Ma respectively (Kligfi D3 inthe Apuan Alps metamorphiccoreis27Maand In Southern Tuscany, K-Ar and 1990; Corsi (Boccaletti in the Tuscan MetamorphicComplex rocks D2), followed bya D3 weakfolding,areidentifi two low-grade tectono-metamorphicevents (D1and lsland (19.68±0.5Ma:Deino obtained onlyfortheRioMarinacalcschistonElba Franceschelli (25 and16Ma:Brunet Verrucano rocksontheMt. Argentario Promontory °C); d) stability limitofthekyanite+quartz pairing(420-450 limit ofsudoite+quartz(360-380°C)andthelower in thetemperaturerangeboundedbyupperstability phyllite+chlorite+chloritoid: °C, accordingtoFransolet&Schreyer, 1984);c) stability limitofthesudoite+quartzpairing(360-380 limit ofkaolinite+quartz(280-330°C)andtheupper indicates temperaturesboundedbytheupperstability b) alii, of kaolinite+quartz(Monte. Amiata wells,Pandeli have beenestimated:a) stability fi Based onthemostrecentdeterminationsofP-T Verrucano oftheNorthern Apennines (Figure6). zonation and AFM mineralfacies seriesofthe Triassic that provide abetterdefi rocks ledustoidentifyseveral mineralassemblages Further mineralogicalinvestigations ofthe Verrucano the progrademetamorphismof Al-rich peliticsystems. chlorite, whichconstituteanew AFM facies seriesfor chlorite-chloritoid-pyrophyllite andkyanite- chloritoid- diagnostic assemblagessudoite-chloritoid-pyrophyllite, a regional scaleandproposed AFM diagramswiththe model ofthemetamorphism Verrucano rocksat calibration areintherangeof 7-9kb;thisis3-4 calculated usingtheMassonne&Schreyer (1984) from albiteorchlorite-bearingassemblages.Pressure approximated bythehighestSicontentofmuscovite it isassumedthatthemaximumphengitecontent been foundinthePisaniMountains;otherareas in Al-poor limitingassemblageswhichhave only the phengitecontentofamuscovite-celadonite series was determinedbyFranceschelli peaked duringtheD1event inthe Verrucano rocks The maximumpressureunderwhichmetamorphism indicates atemperatureabove 420-450°C. pyrophyllite+sudoite+chloritoid: 1988a) indicatestemperaturesbelow 280-330°C; +quartz eld ofsudoite,thefollowing temperatures 40 et alii Ar/ et alii et alii 39 Ar radiometricageforD1andD2- , 2001,andreferencestherein). The , 1983;CarmignaniandKligfi (1986 and1989)constructeda 40 the presenceofkyanite+quartz Ar/ et alii kaolinite+quartz: eld nition ofthemetamorphic 39 Ar radiometricageswere , 2000). this assemblageisstable et alii, et alii et alii , 1992)andforthe 1986). this assemblage (1986) using the presence able pyro eld, et dei Marmi Y et alii the low-medium pressureassemblages(Franceschelli of re-equilibration(D2event) withthedevelopment of The highpressurestagewas followed byalaterstage is indicative ofpressureinexcess of7kb. alii Monticiano-Roccastrada ridge/Mt.Leoni(Giorgetti (Theye Mt. Argentario found inquartzsegregations ofthe Verrucano of calibration. Moreover, magnesiocarpholitewas kb higherthanthatobtainedusing Velde’s (1965) 1994; andreferencestherein).In the Apuan area,most 1990; Carmignani Kliegfi and (Carmignani Northern Apennines of thestratigraphicandstructuralevolution ofthe The Apuan Alps have akey roleinthereconstruction summary. The geologyofthe Apuan Alps: anintroductory Tavolini Quarry(Mt.Corchia). beyond thechapel,wewalk alongtheuphilltrackto m1149) withalittlechapel. A few hundredmetres after, thewindingroadreachesapass(Passo diCroce, the rightleadingtoPiandiLago-Fociomboli. Shortly About 300mafterLevigliani, wetake theroadon Levigliani. Florence (highway A11) E.Pandeli Unit the Apuan The Lower Paleozoic successionsof Field tripitinerary fi the Messinian-Quaternarymagmatism(e.g.Larderello contact metamorphismandhydrothermalismdueto the Tuscan MetamorphicComplex alsoendured In southern Tuscany andinthe Tuscan Archipelago, 2002) radiometricages. (Del Moro 1994; ElterandPandeli, 1996),andbyabout285-Ma Promontory: Theye in carpholite-freesamples(e.g.Mt. Argentario 1998), asindicatedbytheoccurrenceofsudoite+quartz Pandeli, 1990;Conti barrovian-type mineralogicalassociations(Elterand given byrelicsofpre-Alpineschistosityand Paleozoic rocksoftheNorthern Apennines ismainly The evidence of Variscan metamorphisminthe eld: Pandeli Viareggio (highway A12) , 1998). According totheseauthorsthisoccurrence , 1997;Giorgetti et alii Y et alii Querceta , 1982)and330-Ma(Molli , 1994,andreferencestherein). et alii, et alii DAY 1 et alii et alii Y Y et alii 1997) . , 1994b;Fazzuoli Lucca(highway A11/12) Seravezza , 1991a;Pandeli Y , 1998;Jolivet Versilia exit ,1997) andofthe Y Ruosina Y etalii et alii et alii et alii Forte eld, et Y , , , , THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05 Volume n° 1 - from PRO1 to B15 n° 1 - from Volume

Figure 6 - Geological sketch map and sections of the Apuan Alps metamorphic core (after Carmignani et al., 1994b). The star indicates the area of the Stops 1.1 to 1.7. of the geological elements peculiar to the Apennine of the Adriatic continental paleomargin (Tuscan chain are present in a relatively narrow area (Figure Units) during the Oligocene Europe (Corsica- 6): a) the tectonic stack of nappes, formed by the Sardinia)- Adria collision; b) the tectonic doubling piling up of the Oceanic Units (Ligurids) onto those of the Tuscan succession due to the superposition of

11 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli brM= Carbonaticmetabreccias,Mv= ”venato” marble,MA=”arabescato” cr=pinkishmarble multicoloured phyllites, Vr= Verrucano, Gr=Grezzoni,mM=Megalodon-bearingmarbles, BrS=Seravezza Breccias, Schists, L=GraphiticPhyllites,Do=Orthoceras-bearingDolostones,Ma=Metasandstones,Quartzitesandfl Figure 7-StopsalongtheTavolini Quarryroad.FI=Lower QuartzitesandPhyllites,Ps=Porhyroids andPorphyritic The deepest Apuan Unit Carmignani (Carmignani, 1984;CarmignaniandKligfi consisting ofseveral epi-metamorphicunits(Figure6) Complex isanantiformalstack-like tectonicpile From astructuralpointofview, the Apuan Metamorphic outcrops ofthe Tuscan metamorphicsuccessions. Alps isalsorepresentedbyitswideandcontinuous Pleistocene age,totheeast. A peculiarity ofthe Apuan west, andtheGarfagnana-Val diSerchiobasinofPlio- to-Pleistocene Val diMagra-Versilia basin,tothe high-angle normalfault systems:theUpperMiocene- c) thepost-orogenicextensional basinsboundedby Metamorphic Units(ApuanComplex); the non-metamorphic Tuscan Nappeontothe Tuscan b) Norian-Hettangianplatformcarbonates(e.g.the Fm.) depositsofcontinentaltocoastalenvironment; (Verrucano) andcarbonate-siliclastic(the Vinca bottom totop):a)?UpperLadinian–Carniansiliciclastic sedimentary cover. The latterismadeupof(from et alii Devonian age(Conti consists ofaPaleozoic basementofLateCambrian– , 1994withrefs.)andanoverlying Alpine et alii , 1994bandreferencestherein): et alii (“Apuan Autochthon“) , 1991a,1991b;Pandeli eld, 1990; eld, “Grezzoni” and“Pseudomacigno)thePanie by acomplicatepilingofLower Paleozoic rocks, underlies theStazzemaslices(mainlyrepresented In thesoutheasternandsouthernareas, Apuan Unit (Verrucano Group: Tongiorgi “classic” Verrucano sequenceofthePisaniMountains latter werecorrelatedbyMartini Paleozoic basementandthe Verrucano redbeds. These Bianca successioninMartini Ladinian age(cfr. Icycle orabortedriftingofthePunta sedimentary cycle andwithin-platebasaltsof Anisian- Massa Unit To thewest, Apuan Unitisoverthrust bythe Oligocene siliciclasticturbidites(“Pseudomacigno”). sericitici varicolori”) passingupward toMiddle–Upper to Oligocenepelagicpelitesandcarbonates(“Scisti Sinemurian toEarlyCretaceousage;d) selcifero conammoniti”,“Calcescisti”,“Diaspri”)of carbonate tosiliceouspelagicsediments(“Calcare and overlying paleosols(“Scistiacloritoide”);c) breccias withlateriticmatrix(“BreccediSeravezza”) “Marmi ss.” Fm.)locallyincludingmarbledolomitic Grezzoni Fm.,the“Marmidolomitici” whichincludesacontinental-to-marine et alii et alii et alii , 1986)betweenthe , 1977). (1986) withthe = THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

2000) and compared to that of the North American Metamorphic Core complexes (Coli, 1989; Carmignani and Kligfi eld, 1990). It is generally assumed that two main Alpine tectono-metamorphic stages in the facies can be distinguished: a) D1 syn- collisional stage (27 Ma radiometric age: Kligfi eld et alii, 1986) during which the NE-vergent antiformal- stack of units was completed; b) D2 extensional stage (12-14 Ma: Kligfi eld et alii, 1986), isostatic uplift and tectonic unroofi ng of the over-thickened tectonic pile activated low-angle detachments and centrifugal, in part syn-metamorphic,folding. The Mio-Pliocene uplift of the Apuan core is attested to by the blastesis of post-tectonic muscovite at 8 Ma (Kligfi eld et alii, 1986) and by 6-2 Ma apatite fi ssion tracks data (Abbate et alii, 1994b). During the Pliocene, the fi nal exhumation of the Apuan Metamorphic Complex took place, as documented by the presence of metamorphic clasts in the Val di Magra and Garfagnana basins. In spite of the rarity of fossils, the pre-Triassic succession of the Apuan Alps was reconstructed mainly by its close lithological-petrographical similarities with the well-known fossiliferous Lower Cambrian-to-Devonian successions of Central Sardinia (Conti et alii, 1991a). Most of the Paleozoic formations of the Apuan Alps crop out along the Tavolini Quarry track (Figs. 7 and 8), beginning from the geometrically deepest and probably older units. Stop 1.1: View of the Apuan Alps’ metamorphic inlier and outcrops of Lower Quartzites and Phyllites (?Upper Cambrian-?Lower Ordovician). The Lower Quartzite and Phyllite Fm. is made up of sericitic-chloritic phyllites, quartzitic phyllites and metasiltstones, dark grey to greenish-grey and black (organic matter-rich levels) in colour, with decimetric to metric intercalations of greenish-grey quartzose Figure 8 - Stratigraphic column of the Paleozoic metasandstone and metagreywackes, generally fi ne- succession of the Apuan Alps to medium-grained. These unfossiliferous lithotypes, (redrawn from Conti et alii, 1991a). referable to basinal siliciclastic turbidites, locally show yellowish/brown alterations (due to the oxidation of Unit (a tectonic slice complex including Paleozoic ), silicizations and syn- and post-tectonic quartz rocks, Verrucano and Norian-to-Oligocene cover veins. At places, intercalations of greenish, within-plate formations: Pandeli et alii, 2003). According to metabasalts (Valle del Giardino metabasites) occur. PRO1 to B15 n° 1 - from Volume Carmignani et alii (1994b) both the Stazzema slices and the Panie Unit can be directly attributed to the Stop 1.2: structure of the Apuan Unit. Structural features of the In the last thirty years, the complex deformation and pre-Carboniferous Tuscan units. metamorphic evolution of the Apuan Metamorphic The structural framework of the Lower Quartzite and inlier has been defi ned (Boccaletti et alii, 1983; Phyllite Fm., which is similar to that of the other pre- Carmignani and Kligfi eld, 1990; Molli and Meccheri, Carboniferous units of Tuscany, is here well-exposed

13 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli black quartzosemetapelites. A few tensofmetres quartz porphyroclastswithlocalintercalationsof metasandstones, characterizedbyabundant, magmatic to-dark grey blastoporphyritic(micro-augen) volcanic-rich sediments,consistoffoliatedgrey- These rocks,interpretedasvolcaniclastics and/or Porphyritic Schists(?MiddleOrdovician). Stop 1.3: Quartzite andPhylliteFm.atthemesoscale. Figure 9-Tectono-metamorphic framework oftheLower foliation (relicsof Variscan schistosity:Conti kinks canbealsodistinguished,aswellapre-S1 crenulation cleavage --S2.Subsequent weakfoldsand locally chevron-type folds,withassociatedspaced is deformedintometric-to-decametric,close-to-tight, strongly affects thismainlyphylliticunit. The schistosity Mesozoic cover rocks:see Verrucano lateron),which millimetric-spaced schistosity--S1(thesameasthe (Figure 9).Itconsistsofamain Alpine continuousto unconformity (Eo-CaledonianEvent). which arerelatedtothe“Sardinian”or“Sarrabese” contact ismarked bypolymicticmetaconglomerates units cropsout.Inotherplacesinthe Apuan Alps, this with theoverlying metavolcanic/m Close tothesharprightcurve at1261ma.s.l.,thecontact 1991a; Pandeli et alii , 1994)intheS1lithons. etavolcaniclastic et alii , this lastunitiswellexposed. far asabendtowards theleftat1301m a.s.l.,where Lower Quartzite andPhylliteFm.Porphyroidsas The roadcontinuesalongthecontactbetween coarse-grained metavolcanics (Porphyroids). a vertical-lateral passagetothickmassive bedsof after andabove theroadbend,thisformationshows ?Ordovician siliciclastics. vertically pass(anoverturned limbofthefold)to At theentrancetotunnel,Silurianrocks phyllites ofStop1.6). previous stopandtheMetasandstones, quartzites and made upofOrdovician rocks(thePorphyroidsofthe core ofan Alpine (or?Variscan) foldwhoselimbsare The Graphiticphyllitesandlyditesarehereatthe nodular limestone). marine formationsarealsopresent(e.g.Retignanored but insurroundingareas(e.g.Levigliani) Devonian these rocksrepresenttheyoungestPaleozoic unit, associated withtheseblackphyllites.Inthissection, Silurian age:Bagnoliand Tongiorgi, 1980)are a sharpchromaticchangeintherocks. overlying Silurianrocksiseasilyrecognizabledueto A few tensofmetresahead,thepassageto dikes”: Conti metabasites have alsobeenidentifi volcanites. Localcalc-alkaline(mainlyintrusive) can beconsideredthesub-aerialreworking ofsuch Sardinia. Inthisframework, thePorphyriticSchists with thecalc-alkalinemagmaticrocksofCentral sodic-potassic rhyoliteswhichwereprobablycoeval be alsorecognized. The Porphyroidsprotolithsare size. RareintercalationsofPorphyriticSchistscan acidic plagioclase)porphyroclasts,upto1cmin locally sub-idiomorphic,quartzandfeldspar(mostly characterized byaugentexture madeupofmagmatic, massive beds,upto3minthickness,whichare These consistofgrey towhitish,coarse-grained Porphyroids (?MiddleOrdovician). Stop 1.4: dolostones (Orthoceras-bearing About 50mbelow theroad,blacktogrey crystalline and syn-tectonicquartzveins arealsotypicalfeatures. distinguishable. Wide yellowish/ ochrealterations quartzitic intercalations(lydianstones)arealso Some strongly–folded,centimetrictodecimetric, phyllites includingabundant organic matterpigment. This unitconsistsofblackphyllitesandquartzose Graphitic phyllites andlydianstones(Silurian). Stop 1.5: et alii , 1988). ed (“sub-alkaline ed ofLate THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Stop 1.6: The geology of the Pisani Mountains: Metasandstones,quartzites and phyllites an introductory summary (?Upper Ordovician). E. Pandeli & M.Tongiorgi The outcrop is made up of dark grey phyllites The Pisani Mountains are a wide inlier of the Tuscan and metasiltstones which alternate with fine- Metamorphic Complex. This inlier is geographically to coarse-grained quartzose metasandstone interposed between those of the Apuan Alps and beds, grey in colour and up to 1,5 m-thick. Iano, along the Mid-Tuscan Ridge. From a tectonic The sandstones include Fe-carbonates. These point of view the Pisani Mountains’ metamorphic metasiliciclastics are considered to be coastal- core is formed by the superposition of two low- to-shallow marine deposits correlatable to the grade metamorphic units: the Mt. Serra Unit and Caradocian transgressive deposits of the Central the overlying S.Maria del Giudice Unit (Figure Sardinia succession. 10A) (Rau & Tongiorgi, 1974). Other minor thrusts A few tens of metres after the tunnel, under a steep are present in the Mt. Serra Unit (e.g. the Buti-Tre cliff, these lithologies are geometrically overlain by a Colli overthrust). Both Units consist of siliciclastic decametric body of grey and green phyllites, with rare Palaeozoic successions which are unconformably grey to grey-pink quartzitic intercalations of unknown overlain by an Alpine “cover” (Figure 10B). The age (?Triassic). Somewhat ahead, an erosional surface latter includes the continental to littoral facies of the with overlying metaconglomeratic rocks crops out. Middle/Upper Triassic Verrucano, Norian-Hettangian shallow marine carbonates (Grezzoni, Marmi), Stop 1.7: pelagic carbonatic-siliceous sediments of Liassic- Verrucano (Triassic). EarlyCretaceous age (e.g. Cherty Limestones). This mainly consists of grey-violet to greenish, Tertiary terrigenous deposits (Scisti Sericitici polymictic quartzose metaparaconglomerates (the Varicolori and Pseudomacigno) are present only in so-called “Anageniti”), with mostly sub-angular/ the S.Maria del Giudice Unit. In some peripherical sub-rounded, up to 30-cm-sized clasts (white-pink areas of the Pisani Mountains inlier (e.g. Caprona quartz clasts prevail over siliciclastic, volcanic and to the SW, Ripafratta to the NW), the metamorphic carbonatic ones). Erosional surfaces and trough cross- formations are tectonically overlain by the non- bedding are also distinguishable. The decimetric metamorphic/anchimetamorphic Tuscan Nappe to metric beds generally grade upward into pebbly (from the Calcare Cavernoso/Triassic carbonates to quartzites (locally including caliche-like ankeritic the Oligocene Macigno turbidites) which frequently concretions), and are arranged into fi ning-upward show tectonic laminations. The tectonic stack is cycles. Greenish-grey pelitic intercalations rarely bordered by Quaternary fl uvial and lacustrine-marshy occur. These rocks can be interpreted as syn-rift, deposits which, at depth, generally rest on Pliocene braided to low-sinuosity river sediments in a semi-arid marine successions (e.g. Pisa plain). climate, and correlatable to the basal fl uvial deposits As to the Paleozoic-Carnian stratigraphic succession of the ?Upper Ladinian-Carnian Verrucano-type of the Pisani Mountains, the following units can be succession in the Pisani Mountains (see Stop 2.1). distinguished (from bottom to top) (Figure 11): The succession continues with the gradual transition - Buti Banded Quartzites and Phyllites (?Ordovician). (alternating phyllites, impure carbonates and These are grey, generally medium- to fi ne-grained, carbonate breccias of the Carnian Vinca Formation) to quartz-albite metasandstones alternated with grey- the overlying Norian carbonate platform deposits (the violet and greenish-grey phyllites and metasiltstones Grezzoni Formation). which include typical, millimetric -rich bands. These unfossiliferous rocks, containing Walk back to the bus and then continue the trip to relics of Variscan schistosity (Sudetic event of the Levigliani Y Seravezza Y Forte dei Marmi Y Versilia Variscan Orogeny), are correlated to the Caradocian PRO1 to B15 n° 1 - from Volume entrance (highway A12) Y Migliarino exit Y Pisa. transgressive deposits of Central Sardinia (Pandeli et alii, 1994, and references therein). The 275±12 DAY 2 Ma Rb/Sr (whole rock) isochron data obtained by The Upper Paleozoic and Triassic successions of Borsi et alii (1968) on these metasiliciclastics can the Pisani Mountains and Iano be interpreted as the cooling age for the Permian Pisa Y Cascina Y Bientina Y Cascine Y Buti Y Pisani magmatism. Mountains panoramic road.

15 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli - S.LorenzoSchists Tongiorgi, 1974). The basalunconformityisrelatedto environment inahumidintertropicalclimate(Rau& as thesedimentaryframework, suggestalacustrine debris, pelecypods, insectsandostracods)aswell formation. The fossiliferouscontent(abundant plant quartz clasts,areintercalatedintheupperpartof Metaconglomerates, includingabundant whitish stratifi matter-rich phyllitesandmetasiltstones, andwell- Autunian). These consistof grey toblack,organic Rau andTongiorgi, 1974andTongiorgi etalii,1977). Figure 10- A) Tectonic scketch ofthePisaniMountains;B)Geological sketch mapoftheSerraMt.Unit(redrawnfrom ed, grey quartziticmetasandstonebeds. (?Westphalian D/Stephanian- - Asciano BrecciasandConglomerates the Asturian event ofthe Variscan Orogeny. matrix oftenprevails over theclasts.Intercalations minor quartzpebbles. The hematite-rich,phyllitic Banded QuartziteandPhyllite-like lithotypes)and quartzites andmetasandstones(includingtheButi rounded andaregenerallyrepresentedbyphyllites, maturity. The clasts,infact, areangulartosub- characterized byalow textural andcompositional massive and polymicticmetaruditeswhichare These redbedsaremadeupofpoorly-bedded, (?Permian). THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

of polymictic metasandstone and violet phyllites can chain.” (Carosi et alii, 1995). be locally present. These unfossiliferous deposits represent continental fanglomerates in a sub-arid About 6 km from Buti, along the winding panoramic climate (Rau & Tongiorgi, 1974) and are linked to the road, we stop after a sharp left curve under a cliff. mid-Permian Saalian tectonic event which allowed for a hearty reworking of the Variscan landscape Stop 2.1: (Bagnoli et alii, 1979; Pandeli et alii, 1994; Pandeli, The basal unconformity of the Alpine sedimentary 2002, and references therein). cycle (Figure 12). The Triassic siliciclastic Verrucano Group is separated The cliff is made up of the basal Coarse-grained from the described Paleozoic formation by a large Anagenites Member of the Verruca Fm. (the hiatus, and represents the syn-rift basal sediments of Verrucano Group,) which unconformably rests, at the the Alpine cycle, deposited in a sub-arid environment cartographic scale, on Paleozoic units. (Rau & Tongiorgi, 1974; Cassinis et alii, 1979). The Along the road we see an outcrop of multi-folded approximately 700-m-thick terrigenous succession is Buti Banded Quartzites and Phyllites (?Ordovician) divided into two formations: the Verruca Fm. and the (BBQ in Figure 12). It consists of dominant grey Mt. Serra Quartzites (Figs. 10B and 11). metapelites with local decimetric (up to about 1 - The Verruca Formation (?Upper Ladinian-Carnian). m thick) metasandstone beds. The phyllites and It consists of an alluvial sequence ranging from basal metasiltstones typically show a sub-millimetric to braided (“Coarse-Grained Anagenites Member”) to millimetric banding of hematite-rich levels. This middle-/high-sinuosity meandering stream (“Violet Schists” and “Fine-Grained Anagenites” Members) deposits. - Mt. Serra Quartzites (Carnian). These include basal shelf deposits (shelf, lagoon and tidal fl at facies: “Green Schists” Member). These deposits yielded Carnian pelecypods, casts of asteroids and ophiuroids, and a few tetrapod footprints. The overlying “Green Quartzites” Member represents the spread of coarser sediments onto the shallow shelf, muddy facies, which preludes, upsection, to a prograding deltaic sequence, evolving from delta front to distributary channels facies (“White-Pink Quartzites” Member), topped by deltaic fl ood plain and bay deposits (“Violet Banded Quartzites” Member). The latter are characterized by abundant tetrapod footprints. In the Pisani Mountains, the Norian carbonate platform facies (Grezzoni) directly rest on the Carnian siliciclastics. The structural evolution of the Pisani Mountains metamorphic complex mainly consists of at least two coaxial folding events (D1 and D2). According to Carosi et alii (1995), D1 is syn-metamorphic in the Greenschists facies (producing the continuous S1 schistosity), whereas, along the spaced crenulations associated with the D2 folds, the blastesis of white PRO1 to B15 n° 1 - from Volume mica can rarely be observed. The authors related the NE-vergent D1 folding to the collisional stage, and the D2 folding (characterized by NE and W to SW vergence in restricted areas) to the uplift of the metamorphic tectonic stack due to “…syn-collisional Figure 11 - Stratigraphic column of the Paleozoic- extensional tectonics in an active orogenic wedge or Carnian succession of the Pisani Mountains (redrawn to a post-collisional extensional collapse of the whole from Rau and Tongiorgi, 1974).

17 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli Conglomerates Variscan rocks. These redbeds(AscianoBrecciasand in Figure12),whichunconformablyoverlie the low-mature redbeds,about5-6minthickness(ABC we canobserve anoutcropofpoorly-bedded and anagenitic cliff. While walking towards thecliff, We godown tothecurve andtake thepathto Variscan Orogeny (theSudeticevent). alii ± quartzalteredbiotite)withinS1whichConti intrafoliar schistosityrelics(Se=muscovite ±oxides of anoldertectono-metamorphicevent isshown by Moreover, atthemicroscopicscale,evidence surface andspacedfractureorzonalcrenulations. open-to-close D3foldswithasub-horizontalaxial a fi ±sericite). These ductilestructuresaredeformedby zonal crenulationcleavage (C2/S2=oxides;locally axial surface, andbyamillimetric/centimetric-spaced trending axes, byagenerallyeasternplungeofthe to isoclinal,D2folds,characterizedbyNNW-SSE in thisoutcrop.S1isdeformedintometric,tight subdivisions. The D1foldsarenotdistinguishable albite ±calcite)whichisparalleltothelithologic schistosity =sericite+quartzoxides±chlorite banding underlinesthemainfoliation(S1continuous AP2 and AP3=axial planesofthe Alpine folds. CGA=Coarse-grained anagenites(baseofthe Verrucano Group);d=detritalcovers; S1,C2andC3=Alpinefoliations; Figure 12-Sketch ofStop2.1.BBQ=Buti QuartzitesandPhyllites; ABC=Asciano BrecciasandConglomerates; local metasiltstoneintercalations alsooccur. phyllitic clastsinagrey-violet metapeliticmatrix; and metasandstoneswithdominantquartzitic nal, sub-coaxial,foldingevent whichproduced (1991)andPandeli ) arepolymicticmetaconglomerates et alii (1994)referredtothe et parking area(ontheright)at topoftheanagenitic About 2kmgoingupthepanoramicroad,wereacha which occurredduringtheHoloceneperiglacialevents. phyllosilicates withinthematrixofanagenites, repeated wet/dryandfreezing/thawing cycles) ofthe a strongweathering(saltassociatedwith related themtomicroclimaticvariations whichfavour weathered areasatametricscale).Martini(1978) outcrop istheso-called“tafoni”(cavernous A peculiarmorphologicalfeatureofthisanagenite Tongiorgi, 1974). source areafromthepresenteasternquarters(Rau& quartzite, tourmalinites). Their imbricationsreveal a prevail over thesilicaticlithics(e.g.redporphyries, clasts arecentimetricinsize(max12cm)andlargely metasandstone intercalations. The white-pinkquartz massive metaconglomerateswithlocal,coarse of lenticular, trough-stratifi The Coarse-Grained Anagenites Memberofthe deform S1/S2)isclearlyrecognizable. (where thelaterfoldswithsub-horizontalcleavages compared totheunderlying Asciano-like deposits (weakly imprintedbyfoldingsandfoliations) deformation behaviour ofthecompetentanagenites Figure 12)iswellexposed. Locally, thedifferent Anagenites Memberofthe Verruca Fm:CGAin erosional contactofthe Verrucano (Coarse-Grained We reachthebaseofcliff wherethebasalsharp Verruca Fm ., whosethicknessexceeds 60m,consists ed bedsofmatureand THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

cliff (with a view of the meandering alluvial plain of sandstone, and shale with laminations at the base and the Arno river). ripple cross-laminations at the top, lenticular thin The top of the Coarse-Grained Anagenites (here and wide channel fi lls, wavy and lenticular bedding, rich in volcanic lithics) shows some thinning- and shallow-water turbidites and storm layers. Locally, fi ning-upwards cycles, which mark the contact with gypsum crystal casts occur in more restricted facies. the overlying, mainly pelitic, locally caliche-bearing, Marine fossils (mostly pelecypods, but also asteroids fl ood plain member (the “Violet Schists” Member) and ophiuroids casts) are present in oligotypic exposed along the road. assemblages of restricted environments on rippled 2 km ahead, we arrive at a crossroad (there’s a bedding planes, and as shell beds in thin channel restaurant on the left), turn to the right, towards Mt. fi lls; burrows, some of which are U-shaped, are also Serra. Three km later, in the Mt. Serra parking lot, present. The depositional environment corresponds to we’ll take the road to Santallago for about 1 km, up a shallow shelf (tidal fl at and local lagoons) subjected until we reach a straight section of the road with a to strong tides and occasional, perhaps seasonal, tabernacle. storms and, possibly, to a littoral marsh linked to a delta system. Stop 2.2: Triassic meandering stream deposits. We come back to the Mt. Serra parking lot and The road marks the contact between the Coarse- head down to Calci. About 1 km before the Calci- Grained Anagenites (below the road) and the Buti crossroad (fantastic bas-reliefs on the rocks) overlying Violet Schists (above the road). The Violet a peculiar decametric body of green, well-sorted Schists Member is made up of massive, dark violet quartzite, characterized by bi-sensorial planar cross- phyllite and metasiltstones with local intercalations bedding is here intercalated between the Fine-Grained of lenticular, decimetric, quartzitic beds and rare, Anagenites and the overlying Green Schists. After a metric, cross-stratifi ed quartzitic bodies (below the left curve, the landscape opens onto the Pisa plain, tabernacle), pink-grey in colour. characterized by the wide meanders of the Arno River. Walking back to Mt. Serra, we cross the vertical On the last buttress of the Pisani Mountains, the peak transition to the Fine-Grained Anagenites Member, of the quartzitic and anagenitic Mt. Verruca (on the characterized by typical point-bar cyclic deposits. top, there are the ruins of a XIII century Pisan castle) About 100m ahead, at least four fi ning-upward inspired Savi’s (1832) term “Verrucano”. Some point-bar cycles are well exposed. They consist Holocene periglacial debris landslides (“sassaie”) of metric to decametric alternations of quartzitic- are recognizable on the fl anks of the mountains. metaconglomeratic bodies (including planar to 4 km ahead, we stop at a tabernacle (outcrops of trough, cross-bedded structures, erosional surfaces, GreenSchists) close to the entrance of a countryside and ripple marks) and violet metapelites. resort area (Agriturismo Podere S.Caterina) and continue walking along the road. We go back to the tabernacle and continue by car (about 1.5 km) along the previous road, as far as Stop 2.4: the “4 Venti” restaurant (Fine-Grained Anagenites Triassic upper shelf and deltaic deposits. outcrops). Here, we leave the car; taking the barred After a short distance, the rippled pelitic-quartzitic trail on the left, and then the ascending trail on the alternations of the Green Schists turn into the right; a few hundreds of metres ahead, one can observe mainly quartzitic beds of the Green Quartzites the transition between the Fine-Grained Anagenites Member (a 40 cm-thick metaconglomeratic horizon and the overlying shelf deposits (the Green Schists marks the passage). This member is composed of Member of the Mt. Serra Quartzite). nonfossiliferous, fi ne- to medium-grained, well-

sorted quartz sandstone, medium to thick bedded. A PRO1 to B15 n° 1 - from Volume Stop 2.3: small amount of greenish shaly matrix is scattered The basal Triassic shelf deposits. throughout; it also concentrates in very thin laminae. The Green Schists Member consists of alternating The top of the layers shows ripple marks covered by green (sericitic, chloritic), often quartzose, phyllites thin, shaly drapes. Omnipresent, large-scale, slightly- and fi ne-grained quartz micaceous sandstone. inclined laminae and traces of old accretionary The main sedimentological features are cm to dm surfaces are frequently cut by thin (25 cm) planar fi ning-upward sequences of medium- to fi ne-grained cross beddings that dip steeply upslope. The Green

19 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli White-Pink QuartziteMember trail, ontheright)gradualtransitiontodeltaic Some tensofmetresahead(nearthebaseasteep born sandreworked bymarineagents. Banded QuartzitesMember phyllites graduallyprevail upsection(the Violet- of very fi been alsofoundlocally. Closelyspacedalternations commonly observed; castsofhalite crystalshave (e.g. groove casts)andmudcrackstructurescanbe little mudpebbles).Currentripples,currentcasts and local,coarse-grainederosionalbases(including frequently show plane-paralleltoinclinedlaminae, quartzitic beds,centimetrictoabout1minthickness, violet, rarelygreenishphyllites/metasiltstones. The millimetric todecimetricintercalationsofdark consists ofwellbedded,grey-violet quartziteswith The topofthe White-Pink QuartzitesMember of theMtSerra.Quartzites. The Triassic deltaicfl Stop 2.5: mayrepresentthefi Quartzites that migratedlandward superimposed. The Green side, they hadsecondary, longitudinalsandridges local purplecolours).Frequently, ontheir seaward occasionally becomeexposed andoxidized(see wereformedinasystemofbarsthat Quartzites Banded QuartzitesMember. the White-Pink QuartzitesMemberandthe Violet- quarry. Herewecanseethevertical passagefrom curve, whereaminorpathway leadstoanabandoned walk briefl as thelastcountryhouseinPolle Valley; then,we chapel ontheleft)andcontinueafew minutesasfar to theright,towards Agnano; wecrossthevillage(a The excursion continuestoCalci,andthen,turning upward bars,andtidaldistributary channels). complex (delta-frontsheetsands,localcoarsening- Quartzites areinterpretedasasubmerged deltaic bases andchannel-fi conglomerates) beds,oftencharacterizedbyerosional part ofthegraded,coarsersandstone(uptosandy are sometimesreworked asmud-pebblesinthelower greenish-grey shaleinterlayersarepresent;these bedding andpartinglineations.Occasionallythin sandstone characterizedbyplane-paralleltomassive mature andnonfossiliferous,light-pinkishgrey quartz deposits consistsoffi Carnian-?Early Noriantetrapods (Rauand Tongiorgi, casts ofraindrops,footprintsandtrailssmall,Late ne-grained quartzites/metasiltstonesand y alongasteep,widetrailuntilsharp ne- tocoarse-grained,texturally l sqecs Te White-Pink The sequences. ll ood plaindepositsatthetop ). Ripples,mudcracks, rst majorinputofdelta- cropsout. These latter Costantini successions oftheIanoinlier(Mazzanti,1961; The Stephanian-Carnian,lowgrade metamorphic E. Pandeli, F. Sandrelli&M. Aldinucci. The geologyofIano:anintroductory summary church. the beginning oftheuphilltrailtowards thePietrina stop ataparkingareabeforethevillageofPalagio, at on thetraillefttowards California-Palagio; we We crossthevillageofIanoandcometo Torri, staying Castelfalfi /S.Vivaldo/Iano Agnano/Calci/Cascina/Ponsacco/Capannoli/ The tripcontinues: (Tongiorgi the fi of distributary channels. The lackofplantdebrisand fl 1974) arecommon. These rocksareconsideredtobe with Apennine-trending axes; D axes; with Apennine-trending (S folding events: D Carnian successionwas involved inthree Alpine Triassic evaporites atthelimbs. The Stephanian- with Carboniferousmetasedimentsatthecoreand as an Alpine, NE-vergent recumbentfold(D1event), an oldcoalexploratory wellallow ustodefi From astructuralpointofview, thedatacomingfrom rest above the Tuscan andtheLigurianunits. marine depositsofthe Val d’Erabasinunconformably Unit. Toward thewest,neoautochthonousPliocene Argille aPalombini, bothincludedintheOphiolitic withbasalticdikes andtheLower Cretaceous oceanic units),whichconsistoftheUpperJurassic tectonic pileismadeupofLigurids(Western Tethys Regional GeologicalSetting). The upperpartofthe called the BuranoFm.andvacuolar carbonatebreccias which consistsonlyofthe Triassic evaporites of overlain bythenon-metamorphic Tuscan Nappe, The Ianometamorphicsuccessionistectonically Monticiano-Roccastrada Unit(Costantini and 14)representsthenorthernmostoutcropof and spacedcrenulationcleavage (C folds, coaxialwithD 1987/88; Bertini which arerelatedtolateopenfolds. D ood plain-baydeposits,includingcrevasse-splays 3 1 isrepresentedbyfracturecleavages andkinks, /So) associatedwithNE-facing isoclinalfolds nding ofhalitecastssuggestasemi-aridclimate Calcare Cavernoso et alii et alii , 1977). et alii , 1998;Pandeli, 1998)(Figs.13 1 producedthemainschistosity 1 , 1991). ones,but withSW-vergences (“serieridotta”,see 2 is defi 2 ); ned by close by ned ne Iano ne et alii , THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Carboniferous metasediments of Iano. The contact with the overlying ?Permian (exposed farther to the east from to the stop) is everywhere sharp, and likely corresponds to an unconformity surface (Saalian tectonic event).

We take the uphill path to la Pietrina. On the left of the trail, the tectonic contact (high angle normal fault) between altered Ligurian gabbros and Iano Schists and Sandstones is well exposed in a quarry. We continue up the trail a few tens of metres and reach coarse-grained red beds. Stop 2.7: Torri Breccias and Conglomerates (Permian?) These are amalgamated, lenticular or irregularly- bedded, reddish polymictic metarudites, with rare intercalations of grey-violet lithic metasandstone and phyllite. These metarudites are characterized by the abundance of multicoloured (violet, grey-green and yellowish) quartzitic and phyllitic clasts. The violet to gray-yellowish metapelitic matrix commonly prevails over the clasts. The clast size is generally centimetric (5-15 cm., max 40x30x10 cm), but cobbles and small boulders are locally present in the upper part of the beds. Roundness and sphericity are generally low. Figure 13 - Geological map of Iano (redrawn from Costantini et alii, 1998 and Pandeli, 1998) with the location of Stops 2.6 to 2.11. We walk back a few tens of metres and reach a creek. Stop 2.6: Iano Schists and Sandstones (Stephanian). Well-stratifi ed, commonly parallel- to cross- laminated (local bi-polar cross-laminations) gray quartzose metasandstones are alternated with organic matter-rich metasiltstones and phyllites. In the lower part of the outcrop, a metric metapelitic horizon is characterized by millimetric to centimetric, lenticular to wavy, beds of fi ne-grained metasandstone. The pelitic lithotypes include debris of Stephanian plants (Vai and Francavilla, 1974 cum bibl.) and coal. Rare neritic fossils (crinoids, pelecypods and probably brachiopods: Savi and Meneghini, 1950) were found in metasandstones during the exploitation PRO1 to B15 n° 1 - from Volume of an old -cinnabar mine close to Torri. In the areas south of Palagio, massive quartzose metaconglomerates and metasandstones (Borro delle Penere conglomerate and sandstone) prevail in the lower part of this at least 70-80 m-thick formation. Figure 14 - Stratigraphic column of the Carboniferous- The sedimentological features and the fossiliferous Carnian succession of the Iano inlier (redrawn from content suggest a deltaic-neritic environment for the Costantini et alii, 1998).

21 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli locally identifi clasts ofpurplishintraformationalmetapelitescanbe cm inthelower partofthisunit),but pluri-decimetric clasts, andtheirsizeisgenerallyupto7cm(max.20 clasts aremostlymadeupofpinktowhitequartz characterized bywell-exposed erosionalbases. The beds, generallyafew metersthick(max 6-7m),and trough cross-bedded,quartzosemetaconglomeratic These aremassive orpoorly-graded,frequently the Verrucano Group, ?UpperLadinian-Carnian) Pietrina anagenites(lower memberof Stop 2.9: see Cassinis “Verrucano Lombardo”-“Val GardenaSandstones”: Saxonian to Thuringian “SestoConglomerate”,andthe Sakmarian toLower Saxonianacidicvolcanites, the conglomerate” andthe“PonteGardenaConglomerate”- and theDolomites(i.e.Lower Permian“Basal dated PermianSouth Alpine successionsofLombardy compositional similaritieswiththewell-known and age, becauseitsstratigraphicandlithological- del Fregione Siltstonesis,probably, ofPermian and Conglomerates-IanoPorphyricSchistsBorro The barrensuccessionformedbythe Torri Breccias porphyric schistsandthe Verrucano anagenites. del Fregione Siltstones)isinterposedbetweentheIano rich quartziticmetasandstoneandfanglomerates (Borro and phyllites,withlensesofpurplish,acidicvolcanic- fl Pietrina cliff), afew-metres-thick (max7m)horizonof In otheroutcropsoftheIanoarea(e.g.atbase the overlying Verrucano anagenitesisexposed. contact atthecartographicscale:seeFigure13)with A littleahead,thesharpcontact(unconformable volcanites (ignimbritesorpyroclastic fl textures suggestthattheserockswereoriginallyacidic relics ofeutaxitictextures) andthelackofsedimentary clasts ofvitrophyric/porphyriticrhyolitesandpumices, acidic volcanic components(e.g.embajedquartz, quartzites ofabout50m-thick. The abundance of Massive, greenish-grey toyellowish phyllitic Iano Porphyritic Schists(Permian?) Stop 2.8: fan deposits. Pisani Mountainsandcanbeinterpretedasalluvial to the Asciano BrecciasandConglomeratesofthe The Torri Breccias andConglomeratesaresimilar levels areintercalatedintheupperpartofunit. areas (Pandeli, 1998).Someacidicmetavolcaniclastic The imbricationoftheclastssuggestseasternsource uvial, caliche-bearing,reddish-violetmetasiltstones et alii ed. Clastsare phyllitesandquartzites, , 1998cumbibliography). ows). (upper memberofthe Verrucano) isrecognizable. Poggio deiCipressinimicroanagenitesandphyllites vertical passagefromthePietrinaanagenitesto narrow valley ofthePenerestream.Here,gradual Limestones). We gobehindthechurchinfrontof sands andbioclasticlimestones(Amphistegina was built oncementedmiddlePliocene,yellowish alabaster (=Messinianmicrocrystallinegypsum)art, This town, whichisfamous allover theworld forits of Volterra dominatestheEraandCecinavalleys. to thesouth,ontopofahill,Etruscantown Lower-Middle Pliocene,grey-blue clays.Looking marine sedimentswhicharemostlyrepresentedby of theErabasinfi panoramic terracewecanseeawonderful view cliff madeofthe Verrucano anagenites.Fromthe a littlechurchbuilt atthetopofanimpressive and turntotheright,towards thePietrinaSanctuary, In afew minutes,wereachaplainwithcrossroad alii Formation: Rauand Tongiorgi, 1974; Tongiorgi Verrucathe of (“Coarse-grained Anagenite” Verrucano type-sequenceinthePisaniMountains deposits) justlike thecorrespondingbasalunitof unit isrelatedtoafl westward dispersal(Pandeli, 1998). This 75m-thick paleocurrents (imbricationoftheclasts)pointtoa locally show pressure-solutionboundaries. The to theclasts,whicharegenerallywell-packed and microconglomeratic matrixisgenerallysubordinate is generallymedium. The coarse,arenaceous- but sub-rounded/roundedclastsprevail; thesphericity also present. The roundnessoftheclastsisvariable, exhalative phoenomena:Cavarretta aggregates relatedtoPermianlate-magmatic Porphyries”); tourmalinolites(quartz-tourmaline rhyolites andrecrystallizedpumices(“PermianRed purple toblackishmicroquartzites,low-alkali bedding andfi is similartothePietrinaanagenites.Epsiloncross- of thePietrinaruins). The compositionoftheclasts plurimetric inthickness(agoodoutcropiseastward violet-greenish phyllites,whichlocallycanbe metasandstones, alternatingwithcaliche-bearing, graded quartziticmetaconglomeratesand This member, 60mthick,isformedbyfrequently- ?Upper Ladinian-Carnian). and phyllites (uppermemberof the Verrucano, Poggio deiCipressini microanagenites Stop 2.10: , 1977). ning- andthinning-upward cycles are uvial environment (braidedriver lled bytheneoautochthonous, et alii , 1992)are et THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

locally present. These metasediments are attributable whereas they exhibit remarkable differences in their to meandering stream deposits, and correspond basal Paleozoic sequences (Costantini et alii, 1987/ to those of the middle-upper part of the Verruca 88; Lazzarotto et alii, 2003). formation in the Pisani Mountains (“Violet Schists” In particular: and “Fine-grained Anagenites”: Rau and Tongiorgi, - the Iano Sub-unit (see Stops 2.6-2.11); 1974; Tongiorgi et alii, 1977). - the Mt. Quoio-Montagnola Senese Sub-unit includes severals formations, from the Carboniferous We come back to the plain with the crossroad and to the Cenomanian, which are described from oldest keep going straight along the trail for several metres, to youngest: reaching an outcrop of yellowish vacuolar rocks. 1) The Risanguigno Fm. This is made up of blackish- gray graphitic phyllite intercalated with green Stop 2.11: metasandstone, quartzitic phyllite and dolostone The Tocchi Formation (Carnian) beds. At its base, lydian stone and radiolarian chert This formation is formed by grey and greenish form a discontinuous level, a few meters thick. This phyllites alternating with yellowish-ochre, often formation has been attributed to the Lower Devonian brecciated, impure carbonate beds. Here the outcrop on the basis of two conodont-bearing samples presents its typical vacuolar carbonate breccias, including phyllitic clasts (Breccia di Tocchi Auctt.). The lithotypes of the Tocchi Formation are related to siliciclastic-carbonate shelf sediments which represent the onset of the Mesozoic carbonate platform sedimentation in the Northern Apennines.

The trip continues: Iano Y S.Vivaldo Y il Castagno Y S.Gimignano Y Colle Val d’Elsa Y Monteriggioni Y Siena. DAY 3 The Middle Carboniferous Variscan Flysch and post-Variscan siliciclastics F.A. Decandia, A. Lazzarotto, E. Pandeli, F. Sandrelli & M. Aldinucci

Siena (road n. 223 to Grosseto) Y Ponte a Macereto Y S.Lorenzo a Merse Y Tocchi crossroad. A few hundred metres ahead, we take the road to Iesa, on the left. From Iesa, a downhill trail takes us to the Farma river and Contrada Carpineta (190 m a.s.l.).

The geology of the Monticiano-Roccastrada Ridge: an introductory summary The Monticiano–Roccastrada Unit belongs to the Tuscan Metamorphic Complex, and extends from Iano, in the north, to Mt. Argentario, in the south. Between Iano and Mt. Leoni, near Grosseto, three tectonic sub- PRO1 to B15 n° 1 - from Volume units can be distinguished, from the top to the bottom of the tectonic pile (Lazzarotto et alii, 2003) (Figs. 15 and 16): 1) the innermost Iano Sub-unit, 2) the Mt. Quoio-Montagnola Senese Sub-unit, 3) the Mt. Leoni-Farma Sub-unit. Figure 15 - Tectonic sketch map of the Iano-Monticiano- These Sub-units show a general lithological Roccastrada-Mt. Leoni structural high (Monticiano uniformity in the Verrucano Group successions, Roccastrada Unit)(redrawn from Lazzarotto et alii, 2003).

23 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli Leoni area(redrawnfromLazzarotto etalii,2003). Roccastrada sub-unitsintheMonticiano-Farma-Mt. Figure 16-Relationshipsbetween theMonticiano- show acoarsetopoorly-defi well-sorted andthinlybedded,but sometimes to metasiltiticinterbeds. The quartzitesaregenerally (pebbles are1-2upto15cminsize)andphyllitic quartzites withquartzosemetaconglomeratelenses 3) The (Costantini briefl The Verrucano Groupconsistsofthreeformations, Verrucano Group The formations ofthe formation. Early Triassic ageforthisprobablyshallow-marine (Lazzarotto black graphiticphyllite.Recentpalynologicalstudies quartzitic metasandstonewithintercalatedgrey and and blackgraphiticphyllite;c)grey andwhitish with microconglomeratelevels), metaconglomerate coarse-grained quartziticmetasandstone(sometimes grey metarenaceousmatrix;b)alternating,lenticular, pebbles) andgrey andyellow-orange carbonate,ina and minorclastsofblackgraphiticphyllite(mud- meters thick,withpebblesofwhiteandblackquartz, heterometric metaconglomerate,morethenten from thebottomthisformationismadeupof:a) Unconformably lyingontheRisanguignoFormation, 2) (Bagnoli and Tongiorgi, 1980). purple andgreenmetaquartzarenite. The matrixis with clastsofwhiteandpinkquartz,whitish, several metersthick,ofpolygenicmetaconglomerate metasiltite, withlenticularbedsfromone-halfto 4) The ?Lower-Middle Triassic. unfossiliferous formationcanbeattributed tothe y describedherefromoldesttoyoungest The Poggio alCarpinosandstoneFm. Monte QuoioFm. Civitella MarittimaFm et alii et alii , 1987/88): , 2003)pointtoaLatePermian- . Purplemetasandstoneand nd stratifi ned . Greentolightgrey cto. This cation. The Verrucano Groupisoverlain by: intercalated. and minorgray-greenmetasiltitephyllites are even rareblackquartz.Intheselithologies,purple metaquartzitic matrixandpebblesofwhite,pink (“microanagenite” Auct.) witha white-pink pink metaquartzareniteandmetaconglomerate 5) The area. been foundinsomecarbonatepebblestheFarma was regarded byGianniniandLazzarotto(1970) Lower Lias.Intheupper, well-beddedportion,which Montagnola SeneseMarblesFm.isattributed tothe and “Calacata”(Micheluccini to thetypescommerciallyindicatedas“Broccatello” breccia levels alsooccur, whichlocallycorrespond calcschists. IntheMontagnolaSeneseMarblesFm. marbles, reddishsericite-chloriteschistsand they arewell-beddedwithalternating yellowish grey, pinkandyellow marbles.Intheupperportion 8) Rhaetian interval (GianniniandLazzarotto,1970). Middle Triassic(Cocozza Permian (Engelbrecht a purplemetaquartzite.LateCarboniferous/Early to theCarnian(Cocozza ”. This formationhasbeenattributed was stillburied, duringtectonicepisodesrelatedtothe of “localdissolutionanhydritewhenthe Tocchi Fm. metamorphism, anditsbrecciatexture istheproduct (1980), thisformationexperienced anepizonal di Tocchi”, 1947). According toCostantini a yellowish carbonatematrix(Signorini’s “Breccia and brecciaswithcarbonatephyllite clastsin and dolostonesalternatingwithsericiteschists, sericite andchloriteschists,well-beddedlimestones 6) The include former areparticularilysignifi together with Algae andPelecypod fragments. The thin section,Formaminifera associationsarefound dolostones, dolomiticlimestonesandlimestones.In bedded formation,consistingoflocallybrecciated 7) which aredescribedfromoldesttoyoungest: This groupismadeupofthefollowing formations, Montagnola SeneseGroup Over the Tocchi Fm.liesthe 1976; Costantini the Montagnola SeneseMarbles. the Grezzoni Fm. Anageniti MinuteFm. Triasina hantken, Tocchi Fm. et alii This isaweaklytomarkedly . This formationconsistsof , 1980). et alii et alii attributed totheNorian- et alii , 1989)and?Early- , 1975; Azzaro Yellowish orwhitish- cant becausethey et alii , 1975)fossilshave These arewhite, , 1981). The et alii et alii , THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

as equivalent to the Rosso Ammonitico Fm., Early of grey metasiltite and black, graphyte-rich phyllite, Liassic Ammonite fauna was found by Fucini (1903; siltitic-carbonatic/limonitic nodules, containing 1908). Late Visean-Early Namurian fossils (Redini, 1941; 9) Formations above the Montagnola Senese Marbles. Cocozza, 1965; Pasini, 1978b, 1980a, 1980b, 1981). These are well-bedded calcareous-silicic-pelitic 11) the Farma Formation. Alternating turbiditic formations which grade laterally one into the other metasandstone and dark grey phyllite, locally with (Giannini & Lazzarotto, 1970). Several formations a carbonatic megabreccia including lydian stone can be distinguished: the Gallena Formation, pebbles and Late Moscovian fossils (Cocozza, 1965; consisting of cherty limestones and megabreccias Pasini, 1978a, 1980a). with marble elements, Early Liassic in age; the 12) the Sant’Antonio Formation. Dark fossiliferous Pietralata Formation, made up of reddish-purple and limestone and dolomitic limestones. It underlies the pale green schists and sericite-carbonate schists; the Spirifer-bearing Schist Fm. and is separated from it by Poggio all’Aquila Formation, consisting of silicic a paleosol horizon, Early Moscovian in age (Cocozza, schists, silicic limestones and . 1965; Pasini, 1978a, 1980b). All the formations of this group were attributed to 13) the Scisti a Spirifer Formation. Dark grey, black the Cenomanian by Giannini and Lazzarotto (1970), and green quartzose phyllite of Late Moscovian- who fi rst reported the occurrence of Rotalipora ?Early Cantabrian age (Pasini, 1981). appenninica, Praeglobotruncana delroensis and 14) the Poggio alle Pigne Quartzites Fm. This is Praeglobotruncana stephani. In the Pietralata-like made up of grey to grey-greenish quartzites and metasediments outcropping in the Fontalcinaldo area minor polymictic metaconglomerates with thin, grey (west of the Monticiano-Roccastrada Ridge), Tertiary to black phyllitic interbeds (Aldinucci et alii, 2001). foraminifers have also been found (Pandeli et alii, The quartzites includes Late Permian brachiopods. 1988b). This formation is stratigraphically overlain by the - the Mt. Leoni-Farma Sub-unit includes several Verrucano metasediments (the Civitella Marittima formations from the Carboniferous (Figure 16 and Fm.). Figure 17) to the Carnian. These are described from oldest to youngest: Over this succession lies 10) the Carpineta Formation. This formation consists

Figure 17 - lnferred paleotectonic-stratigraphic relationships between the main Carboniferous units outcropping within the Alpine Mid-Tuscan High, south of the Montagnola Senese (Monticiano- Roccastrada Ridge) Not in scale. 3 (after Cocozza et alii, 1987) – the Carpineta Formation (Upper Visean or Lower Namurian to Moscovian), 4~ the Farma Formation (Upper Bashkirian to Moscovian), 5 - St. Antonio limestone (Lower Moscovian),

5a - proximal deposits of limestone clasts, 5b . Upper Bashkirian to Lower Moscovian olistoliths within the Carpineta PRO1 to B15 n° 1 - from Volume Formation, 5c- Upper Bashkirian to Moscovian olistostromes and olistoliths within the Farma Formation, 6 - Spirifer shales (upper Moscovian), I - emersion disconformity with palaeosol horizon, f - syn-sedimentary faults. Segments AB and CD refer to the southern and northern sequence, respectively. Segment BC represents a tentative inference. Basinal depressions housed the Farma turbidites whose supply was largely independent of the closer, basinal rise where pelitic material was settling down. The slope was activated by synsedimentary block faulting, probably during the Bashkirian, which is the earliest age represented in the olistostromes and olistoliths supplied from the St. Antonio carbonate platform. Recession of this Carboniferous carbonate platform area over time, and consistent diachronism of the fault scarps, may suggest a slightly younger age for the Farma olistoliths compared to those in the Carpineta Formation.

25 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli attributable toanolistostrome.Similarcarbonate occur. This bedrepresents acohesive debrisfl clasts, upto1minsize,apeliticmatrix, to 4mthick,includingsiliciclasticandcarbonatic lower partoftheformationaparaconglomerate, up and pillow structurescanbelocallyobserved. Inthe attitude ofthesuccession.Moreover, fl the Bouma-typesequences,pointtoanoverturned tool marksandloadcasts),which,coupledwith characterised bysolemarks(groove casts,fl The decimetric(upto80cmthick)bedsare containing crinoidandplantdebris. black, -richphylliticintercalations,locally type sequences(Tab/e, Ta/de and Ta-e) and,with fi It consistsofdark-gray, gradedandmedium-to (Middle-Upper Carboniferous). the Farma Formation Stop 3.2: (Costantini low greenschistfacies, andalaterweakfolding metamorphic events (phasesD1andD2)inthe Roccastrada Unit.Itunderwenttwo Alpine tectono- Leoni-Farma sub-unitofthetectonicMonticiano- the ContradaCarpinetaareabelongstoMt. The stratigraphicsuccessioncroppingoutin 190m a.s.l.-ContradaCarpineta The Paleozoic-Triassic successionofthe Stop 3.1: T banks oftheFarma River. We arrive atwellstratifi area (Figs.18and19). the structuralframework oftheContradaCarpineta overturned limbofthemainfoldthatcharacterises are oftenwellpreserved. All thestopsareon affected theprimarysedimentarystructures,which mentioned tectono-metamorphicevents scarcely in themorecompetentones.However theabove- less competentlithologiesandafracturecleavage defi is associatedwiththeNE-facing isoclinalfold.D2is slightly-inclined comparedtothebedding(S0),which produced themainschistosity(S1),fromparallelto 1986; Corsi River. We now cometothealluvialplainofFarma Senese Sub-unit) “Verrucano Group”intheMt.Quoio-Montagnola ne-grained metasandstoneshowing Bouma- HE ned byaspacedcrenulationcleavage (C2)inthe V ERRUCANO et alii et alii G , 2001).InthisareatheD1phase , 1987/88;Franceschelli ROUP A ed metasandstonesonthe ND T OCCHI F M ae ball, ame, . ute casts, ( S et alii ee the ow ow , the river. Continue afew tensofmetrestowards theeastalong southern Alps and centralEurope. (e.g. Hochwipfelfl turbiditic sedimentation,similartotheCulmfacies us toconsiderthisformationas Variscan syn-tectonic 1980a, 1980b). The sedimentological featuresallow Moscovian age:Cocozza,1965;Pasini, 1978a, Fusulinids ofMiddle-LateCarbonifeorusage(Late containing Foraminifera, Algae, Conodontsand Sant’Antonio Limestone)andmetacalcarenites megabreccias (known asLower Moscovian Carpineta area(modifi MQ=Mt.Quoio Fm.,Cv=CivitellaPP=Poggio alle Pigne Quartzites,Fa=Farma Fm.,Ca=Carpineta a=tectonic contact,b=normalfault,c=unconformity Figure 19-Geologicalcross-sectioninFigure 18. Figure 18-GeologicalmapofPoggio allePigne- at=alluvial terraces, Am=Anageniti minuteFm., surface, d=fossiliferous site,e=type-section, 1=facing ofbedding,2=reversed bedding, ysch intheCarnian Alps) ofthe ed fromCostantinietalii,1987/88). 3=attitude ofbedding. THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Stop 3.3: show a similar composition consisting of sub-rounded, the Carpineta Formation white quartz clasts (up to 2 cm) and sub-angular lithic (Upper Visean-Lower Namurian). clasts (phyllite, metasiltstone/fi ne-grained quartzite The Carpineta Formation: dark-gray metasiltite and ). and black-gray graphite-rich phyllite with siltitic- The Poggio alle Pigne quartzite contains a monotypic carbonatic nodules. The Carpineta Formation also assemblage of Strophalosiacean brachiopods, contains carbonatic olistoliths, including crinoids, represented by well-preserved molds of shells whose algae and foraminifera. Brachiopods, bivalves, features are similar to those of Tschernyschewia archaeodicidae and plant debris occur within the typica, which occurred in the Late Permian of Armenia (Aldinucci et alii, 2001). silty/shaly lithotypes. The brachiopods suggest a Late On the basis of the occurrence of brachiopods, a Visean to Early Namurian age (Pasini and Winkler neritic depositional enviroment, probably not far from Prins, 1981), as well as the archaeodicidae and the the coast, can be suggested. bivalves found in the sandy-silty layers (Pasini, The overlying unfossiliferous Civitella M.ma 1978b and 1980b). This age is in agreement with a Formation, the oldest unit of the Verrucano Group in Late Bashkirian to Early Moscovian age (Pasini, 1978a and 1980a) obtained from the Foraminifera found in the limestones. Nevertheless the geometric position of the Carpineta Formation on top of the Farma Formation (Figs. 18 and 19) may suggest that a pre-Alpine deformative event (Asturian event?) was responsible for the present attitude of the two units. In this hypothesis the Upper Visean-Lower Namurian Carpineta Formation might represent the marine pre- fl ysch sedimentation.

Cross the river and continue 150 m east along the bank Stop 3.4: Poggio alle Pigne quartzite (Upper Permian) and the Civitella Formation (Lower Triassic). The Poggio alle Pigne quartzite is stratigraphically interposed between the Civitella Formation (the Verrucano Group), at the top, and the Carpineta Formation, at the bottom (Figs. 18, 19 and 20). The lower contact is not exposed, but at the cartographic scale, a probably unconformable erosional surface separates the Poggio alle Pigne quartzite from the underlying, previously-deformed, Carpineta Formation. The contact with the overlaying metaconglomerates of the Civitella Formation is clearly erosional. The Poggio alle Pigne quartzite (Figure 20) is composed of two fi ning-upward sequences, whose total thickness is about 4 m: the lower one consists of a basal polygenic, fi ne-grained PRO1 to B15 n° 1 - from Volume metaconglomerate followed by medium-to fi ne- grained, well sorted quartz-metasandstone with grey to black metapelite and rare phyllitic interbeds; the upper sequence starts above an erosional surface with a lenticular, polygenic, fi ne-grained metaconglomerate followed by medium- to fi ne-grained, well-sorted, quartz-metasandstone. Both metaconglomerate beds Figure 20 - Stratigraphic column of Stop 3.4.

27 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli introductory summary The geologyoftheMt. Argentario Promontory: an isle (“l’Isolotto”). Argentario panoramicroad,stopping infrontofthe We gothroughPortoErcoleandreachtheMt. Albinia Grosseto Spina and A. S. Cirilli,F. A. Decandia, A. Lazzarotto Argentario Promontory The Permian-Triassic successionsoftheMt. Iesa sediments (Aldinucci shelf-lagoon environment, periodicallyfedbyalluvial basal lithofacies, suggeststheupwards transitiontoa metasandstones, bothgraduallyreplacingthecoarser well-sorted, cross-toplanar-laminated quartzic metapelite associatedwithpale-green,very lenticular- towavy-bedded metasandstoneand Civitella Formation, ofmetrictodecametric, occurrence, inthemiddleandupperpartof by rapiddischarge variations. Nevertheless, the deposition inshallow-braided streams,characterised to hyperconcentratedfl outcrop. The attribution ofthemetaconglomerates metapelite bedcharacterisestheupperpartof et alii more diluited,suspendedtailofthefl which thepebblymetasandstonerepresented mass-fl took placeduringfl the metaconglomeratessuggestthattheirdeposition parallel lamination. The sedimentologicalfeaturesof decimetric pebblymetasandstone,locallywith quartzose matrix;they rapidlygradetoacentimetric- minor amountsofcoarsesand-topelite-sized structureless tocrudelynormal-graded,andcontain to metricmetaconglomeratesarepoorly-sorted, pink quartz,andbysiliciclasticlithics. The decimetric centimetric clastsofwhitequartzwithsubordinate lithofacies aremostlymadeupofmillimetricto and cappedbyathinmetapelitebed. The ruditic sequences, commonlymarked byerosionalsurface These lithofacies arearrangedinfi with minorintercalationsofquartziticmetasandstones. bedded, clast-supportedquartz-metaconglomerates consists ofamalgamated,lenticulartoirregularly- southern Tuscany(Costantini Y roadn.223towards Grosseto ow, probablyhyperconcentratedfl , 2003). A massive, purple,caliche-bearing Y Giannellatombolo Y roadn.1,the“Aurelia”, towards Rome ash-fl et alii DAY 4 ow probablysuggesttheir ood events, consistingof , 2003). Y PortoErcole et alii Y , 1987),mainly Grosseto ow (Aldinucci ow ning-upward os in ows, Y cleavages.fi The In thinsection,violetandgreenphyllitesshow two locally thisfabric hasthefeatureofashearingsurface set. an asymmetricalcrenulationcleavage, theS3foliation: plainfoliation,whichdipseast,is deformedby axial secondary foliationswithintheminorfolds. The with therelationshipsbetweenitsbeddingand Formation’s overall westward-facing isconsistent folds withrelatedplanardeformationfabric (S2). The On itsrightlimbwecanobserve minorasymmetrical Lazzarotto (1981),faces west. 22). This anticline,fi and Verrucano Groupareobservable (Figs.21and anticline inwhichtheMonte Argentario sandstones The excursion includestheFortino Stellaoverturned (Ricci,1968;Elter&Pandeli, 2002). and highpressure/low temperaturemetamorphosed Unit madeupofcalc-schists,crystallinelimestones age betweenEarlyandLate Triassic; 4)CalaGrande up ofcrystallinedolostonesandlimestonesrangingin “Calcare Cavernoso”; 3)the CalaPiattiUnit,made Nappe, representedhereonlybytheUpper Triassic Permian toMiddle-Upper Triassic; 2)the Tuscan Roccastrada Unit,representedhereonlybytheUpper tectonic units(frombottomtotop):1)theMonticiano- Lazzarotto (1980)have identifi In theMonte Argentario Promontory, Decandiaand to theeasternlimb. from thewesternlimb,gothroughcore,andcome Proceeding fromwesttoeastwe’ll crosstheanticline into astrainsleepcleavage inthevioletphyllites. spaced fracturecleavage, passingmorphologically The secondfoliation(S2)transposesS1andisa the moderatetostrongorientationofphyllosilicates. parallel tothebedding,isaslatycleavage defi Figure 21-Stops ontheMt. Argentario Promontory. rst foliation (S1),generallyorientated rst describedbyDecandiaand ed thefollowing ned by ned THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

deeply alterated micaschist, are occasionally present. The matrix consists of metasiltstones to medium- grained metasandstones. Components of the matrix are quartz-grains (both monocrystalline and polycrystalline), organic matter-rich clay, abundant muscovite, and minor . The total estimated thickness is about 30m. AGE - The only available biostratigraphic data Figure 22 - Geological cross-section in Figure 21. The Tuscan Nappe: Cv- Calcare cavernoso; comes from the microfl oral content found in the the Monticiano-Roccastrada Unit: Vr- the Anageniti Mt. Argentario sandstones (see Figure 24). The minute Fm., CF- the Civitella Fm., palynological assemblage contains different elements: MAF- the Mt. Argentario Ss. Fm. cavate sporomorphs, such as Kraeuselisporites cuspidus Balme, Lundbladispora sp. cf. L. communis Ouyang & Li and Densoisporites sp. (Figure 24 l); We’ll go down the stairs to the beach. acavate trilete sporomorphs such as Punctatisporites Stop 4.1: fungosus Balme (Figure 24 b), Punctatisporites Mt Argentario Sandstones sp. (Figure 24 a), Tigrisporites playfordii de Jersey & Hamilton (Figure 24 i), Leiotriletes adnatus Despite tectonic deformation, an attempt to (Kosanke) Potonié & Kremp (Figure 24 g), reconstruct the stratigraphic succession based on Lycopodiaciedites sp., Latosporites sp. (Figs. 24 c and fi eld observations and facies analyses (sedimentary d), and Calamospora sp. (Figure 24 j). Dictyotriletes facies, petrofacies and palynofacies) has been made. bireticulatus (Ibrahim) Smith & Butterworth (Figure Outcrops have been sampled in the southeastern 24 e), the monosaccite Cordaitina cf. C. shiensiensis sector of the promontory, on the western limb of the Ouyang & Norris (Figure 24 k) and Cordaitina Fortino Stella anticline, and at the seaside. vulgaris Utting (Figure 24 h), Inaperturopollenites nebulosus Balme (Figure 24 n), Scabratisporites Stratigraphy - The Mt. Argentario sandstones cryptogranulatus Ouyang & Norris (Figure 24 f), prevalently consist of low-grade metasiltstones, Cycadopites sp. (Figure 24 o), Maculatasporites metasandstones and metaparaconglomerates, all sp. and Laevigatosporites sp. are rarely present as arranged into a coarsening and thickening upwards well as the bisaccates such as Alisporites auritus sequence, schematised as follows (Figure 23): Ouyang & Li and Sulcatisporites sp. (Figure 24 p). - Unit A: consisting of dark metasiltstones rich in quartz Marine elements are mostly represented by acritarchs grains and muscovite intercalated with occasionally (Veryhachium spp.) (Figs. 24 r, s and t) which have cross- and plane-laminated metasandstones. been recorded only at the base of the Mt. Argentario Metasandstones are predominantly fi ne- to medium- sandstones. grained, matrix-supported metasandstones and, less The palynological assemblage led us to date the commonly, dark-reddish metaquartzarenites. The Mt. Argentario sandstones in a Late Permian-Early matrix of metasandstones mostly consists of quartz Triassic time interval. grains, clay and micas, which are usually parallel to the plain laminations and, locally, to the cleavage. Depositional environment – The Mt. Argentario Very few (albite plagioclase) have been sandstones have been associated with a paralic recorded in the upper part of this unit. The estimated environment (Lazzarotto et alii, 1964; Gasperi & thickness is about 60m. Gelmini, 1973). More recent studies (Cirilli et alii, - Unit B: predominantly composed of fi ne to 2002) support and confi rm this hypothesis, adding medium,coarser-grained metaquartzarenites, occasionally new constraints to the depositional environment:

intercalated with thin metasiltstones and fi ne- to medium- PRO1 to B15 n° 1 - from Volume Sedimentary, petrographic and organic facies grained, matrix-supported metasandstones. The estimated associations are indicative of a delta system thickness is about 40m. dominated by fl uvial processes. - Unit C: consisting of coarsening-upwards beds (from 10m to 15m thick) composed of medium- to coarser- Stop 4.2: graded, matrix-supported metasandstones at the base, The Verrucano Group grading upwards to coarser metasandstones up to The Mt. Argentario sandstones are overlain by the quartz-lithic metaparaconglomerates. Lithics, mainly Verrucano Group, which consists of:

29 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli beds (afterCirillietalii,2001). laminations, 10)cross-lamination,11)normallygraded mature metaquartzarenites,8)purpleschists, 9)plane metaparaconglomerates, 7)texturallyandchemically matrix-supported metasandstones,6)quartz-lithic metaquartzarenites, 5)mediumtocoarse-grainedgraded mataquartzarenites, 4)mediumtocoarse-grained supported metasandstones,3)fi 1) metasiltstones,2)fi Argentario SandstoneFm.andofthe Verrucano Group. Figure 23-Schematic stratigraphiclogoftheMt. ne- tomedium-grainedmatrix- ne- tomedium-grained type oforganic matterchangesacrossthisboundary. the baseofgreenmetasiltstones. Also, theamountand changes, theboundaryhasbeententatively locatedat evidence, andbasedonlyonlithologicalfacies Verrucano Groupproblematic.Lackingbiostratigraphic between theMt. Argentario sandstonesandthe Tectonic deformationmakes locatingtheboundary grains, muscovite andclay, overlie thisinterval. purple schistsandmetasiltstonescontainingquartz and clayminerals. About 2m-thick,thin-bedded grained matrixconsistingofmicas,silt-gradedquartz monocrystalline quartzgrainsembeddedinafi Matrix-supported metasandstonesmainlycontain monocrystalline quartzgrainsandraremicas. metasandstones. Metaquartzarenitesconsistof with occasionalalternationofmatrix-supported texturally andchemicallymaturemetaquartzarenites, a basalinterval (about10mthick)composedof - The could beattributed to?Lower-Middle Triassic. and minormuscovite. This unfossiliferousformation defi bedded, but sometimesshow acoarsetopoorly- quartzarenites aregenerallywell-sortedandthinly with greenmetasiltitesandquartzarenites. The (pebbles are1-2upto15cminsize)intercalated quartzites andphyllites;quartzosemetaconglomerate - The Marittima Fm.. Quartzose metaconglomerateoftheCivitella Stop 4.2c: 25b). is shallower thanthatintheoverturned limbs(Figure steeper thanthebeddinginuprightlimbs,but it bedding-foliation relationships. The S2foliationis asymmetry ofminorfolds,isconsistentwiththe developed.vergence,westwarddefi The The secondaryS2foliationispenetrative andwell in alternatingmetasandstonesandmetapelites. The Civitella MarittimaFm.shows parasiticfolds Stop 4.2b: the secondaryfoliation(Figure25a). anticline. Inthisoutcropthebeddingdipssteeperthan in thewestern,overturned limboftheFortino Stella (S2) inalternatingmetasandstonesandmetapelites Civitella MarittimaFmshows asecondaryfoliation The greentolightgrey quartzitesandphyllitesof Stop 4.2a: nd stratifi ned Civitella MarittimaFm Anageniti MinuteFm.pp. cation. They containquartzgrains . Greentolightgrey , characterised by ned bythe ne- THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Stop 4.2d: The Anageniti Minute Fm. This outcrop consists of alternating metaconglomerates, metasandstones and metapelites (Figure 25c). The former contain abundant clasts of mostly white-pink quartz (anageniti). Stop 4.2e: The Anageniti Minute Fm. (Figure 25d). The normal faults in the lower metaconglomerate bed are sealed by the overlying quartzitic-pelitic sediments. This is good evidence of synsedimentary extensional tectonics, characterized by a normal fault which developed during the Triassic. The stratigraphic and structural data of the Tuscan Paleozoic successions are summarized in Figure 26. PortoErcole Y Giannella tombolo Y road n.1, the “Aurelia”, to Grosseto Y road n. 223 to Siena Y Siena (highway to Florence) Y Florence Acknowledgements The authors thank Prof. Ernesto Abbate (University of Florence) for reviewing and improving the manuscript. Figure 24 - Palynomorphs from the Mt. Argentario Sandstone Fm. a) Punctatisporites sp., b) Punctatisporites References cited fungosus, c)d) Latosporites sp., e) Dictyotriletes bireticulatus, f) Scabratisporites cryptogranulatus, Abbate, E., Bortolotti, V., Conti, M., Marcucci, M., g) Leiotriletes adnatus, h) Cordaitina vulgaris, Passerini, P., Principi G. and Treves, B. (1986). i) Tigrisporites playfordii, j) Calamospora sp, Apennines and Alps Ophiolites and the evolution of the k) Cordaitina sp. cf. C. shiensiensis, l) Densoisporites sp., Westhern Tethys. Mem. Soc. Geol. It. 31, 23-44. m) undetermined smooth spore, n) Inaperturopollenites Abbate, E., Bortolotti, V., Passerini, P., Principi, G. nebulosus, o) Cycadopites sp., p) Sulcatisporites sp., and Treves, B. (1994a). Oceanisation processes and q) Botryococcus sp., r)s)t) Veryhachium spp (acritarchs). All magnifi cations are 1200x, except for r), s) and t), sedimentary evolution of the Northern Apennine which are 1400x (after Cirilli et alii, 2001). ophiolite suite: a discussion. Mem. Soc. Geol. It. 48,

Figure 25 - Stops of the Verrucano Group. a) Stop 4.2a: the Civitella M.ma Fm. the western limb of the Fortino Stella anticline; b) Stop 4.2b: the Civitella M.ma Fm. deformed into parasitic folds linked to the Fortino Stella anticline; c) Stop 4.2d: load casts at the base of a metaconglomerate bed

of the Anageniti Minute Fm.; PRO1 to B15 n° 1 - from Volume d) Stop 4.2e: possibly syn- sedimentary normal faults in the metasiliciclastics of the Anageniti Minute Fm.. (see also text for explanations).

31 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli fossiliferous Silurian(Mt.Corchia)andDevonian Bagnoli, G.and Tongiorgi, M.(1980).New Riedel Company, Dordrecht-Holland,. and SouthEurope”(H.Falke, Ed.),pp.181-195.D. (Italy). Formations ofSouthern Tuscariy andNorthernLatium and petrographyofthe Verrucano andPaleozoic G., Gelmini,R.andLazzarotto, A. (1976).Geology Azzaro, E.,Cocozza, T., DiSabatino,B.,Gasperi, Italy). formation (Verrucano Group,Southern Tuscany- stratigraphic signifi Sedimentological features,depositionalsettinoand Aldinucci, M.,Sandrelli,F. andPandeli, E.(2003). Civ. Sc.Nat.,Brescia, Southern Tuscany). the Farma Valley (Monticano-RoccastradaRidge, A. (2001). A Permianmarinesedimentaryrecordin Aldinucci, M.,Sandrelli,F., Pandeli, E.andGandin, Mem. Soc.Geol.It recent rapiddenudationinNorthern Apennines, Italy. and Quercioli,C.(1994b).Fission-trackdatings Abbate, E.,Balestrieri,M.L.,Bigazzi,G.,Norelli,P. 117-136. basement throughthePaleozoic (afterElter&Pandeli, 1996). Figure 26-Stratigraphicandstructuralfeatures ofthe Tuscan Boll. Soc.Geol.It. In “TheContinentalPermianinCentral, West, . 48,579-585. cance oftheCivitella Marittima “Natura Bresciana” Ann. Mus. Monogr. N.25,163-168. , Vol. Spec.n.2,37-48. delle conoscenzeeproblematiche. Rapolano Terme (Toscana meridionale):statoattuale (1991). StrutturageologicatraiMontidiCampigliae A., Liotta,D.,Pandeli, E.,Sandrelli,F. and Toro B. F.A., DiFilippo,M.,Dini,I.,Elter, F.M., Lazzarotto, Bertini, G.,Cameli,G.M.,Costantini, A., Decandia, Soc. Geol.lt Appennino Settentrionale.Noteillustrative. F. andSandrelli,F. (1983).Cartaneotettonicadell’ G., Rau, A., Vercese, P.L., Castaldini,O.,Francavilla, Marchetti, G.,Mazzanti,M.,Papani, G.,Pranzini, A., Federici,PR,Gasperi,G.,Lazzarotto, A., Bartolini, O.,Bernini,M.,Carloni,C.G.,Costantini, Camerti strutturali della Toscana meridionale. tra anomalietermicheedaltrielementigeofi A., Squarci,P. and Taffi Baldi, P., Bellani, S.,Ceccarelli, A., Fiordelisi, Mem. Soc.Geol.It. reconstruction ofthe Tu scan Paleozoic basement. and Tongiorgi, M.(1979). A tentative stratigraphic Bagnoli, G.,Gianelli,Puxeddu, M.,Rau, A. Soc. Geol.It. (Monticiano) Jayersinthe Tuscan Paleozoic. , Vol. Spec.1994/1,139-149. . 101,523-549. 20,301-313. 20,99-116. , L.(1994).Correlazioni St. Geol.Camerti Studi Geologici sc e sici Mem. BoIl. THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

1, 155-178. 55-74. Boccaletti, M., Capitani, S., Coli, M., Fornace, Cassinis, G., Elter, G., Rau, A. and Tongiorgi, M. G., Gosso, G., Grandini, G., Milano, P.F., Moratti, (1979). Verrucano: a tectonofacies of the Alpine- G., Nafi ssi, P. and Sani, F. (1983). Caratteristiche Mediterranean Southern Europe. Mem.Soc.Geol.It. deformative delle Alpi Apuane settentrionali. Mem 20, 135-149. Soc. Geol. It. 26, 527-534. Cassinis, G., Avanzino, M., Cortesogno, L., Borsi, S., Ferrara, G., Rau, A. and Tongiorgi, M. Dallagiovanna, G., Di Stefano, P., Gaggero, L., (1967). Determinazioni col metodo Rb/Sr delle fi lladi Gullo, M., Massari, F., Neri, C., Ronchi, A., Seno, e quarziti listate di Buti (Monti Pisani). Atti Soc. Tosc. S., Vanissi, M. and Venturini, C. (1998).- Synthetic Sc. Nat., Mem., Ser. A 73, 632-646. Upper Paleozoic correlation charts of selected Italian Bortolotti, V., Babbini, A., Corti, S., Fazzuoli, M., areas. Atti Tic. Sc. Terra, 40, 65-120. Pandeli, E. and Principi, G. (2001). The geology of Cavarretta, G., Puxeddu, M., Franceschelli, M., the central-eastern . Ofi oliti 26 (2a), 97-150. Pandeli, E. and Valori, A. (1992). Tourmalinites from Bossio, A., Costantini, A., Lazzarotto, A., Liotta, the Triassic Verrucano of the Northerm Appennines, D., Mazzanti, R., Mazzei, R., Salvatorini, G. and Italy. In “Contribution to the geology of Italy with Sandrelli, F. (1993). Rassegna delle conoscenze sulla special regard to the Paleozoic basements- A volume stratigrafi a del neoautoctono toscano. Mem. Soc. dedicated to Tommaso Cocozza” (L.Carmignani and Geol. It. 49, 17-98. F.P. Sassi, Eds.), IGCP project n.276. Newsletter 5, Brunet, C., Monié, P., Jolivet, L. and Cadet, J.-P. 335- 338. (2000). Migration of compression and extension Cerrina Feroni, A., Plesi, G., Fanelli, G., Leoni, L. in the Tyrrhenian Sea, insights from 40Ar/39Ar ages and Martinelli, P. (1983). Contributo alla conoscenza on micas along a transect from Corsica to Tuscany. dei processi metamorfi ci di grado molto basso Tectonophysics 321, 127-155. (anchimetamorfi smo) a carico della Falda Toscana Calcagnile, G. and Panza, G.F. (1981). The main nell’ area del ricoprimento apuano. Boll. Soc. Geol. characteristics of the litosphere-astenosphere system It. 102, 269-280. in Italy and surroinding regions. Pure Appl. Geophys. Ciarapica, G. and Passeri, L. (1998). Evoluzione 119: 865-879. paleogeografi ca degli Appennini. Atti Tic. Sc. Terra Carmignani, L. (1984). Carta geologico-strutturale del 40, 233-290. Complesso Metamorfi co delle Alpi Apuane. Scala 1: Cirilli, S., Decandia, F.A., Lazzarotto, A., Pandeli, 25.000, Foglio nord. Litogr. Artist. Cartogr., Firenze. E., Rettori, R., Sandrelli, F. and Spina, A. (2002). Carmignani, L. and Kligfi eld, R. (1990). Crustal Stratigraphy and depositional environment of the Mt. extension in the Northern Apennines: the transition Argentario sandstone Fm. (southern Tuscany, Italy). from compression to extension in the Alpi Apuane core Boll. Soc. Geol. It., Vol. Spec. 1 (2002), 489-498. complex. Tectonics 9, 1275-1303. Cocuzza, T.(1965). Il Carbonifero nel Gruppo Carmignani, L., Decandia, F.A., Fantozzi, P.L., Monticiano-Roccastrada. Ric. sci. 35, 1-38. Lazzarotto, A., Liotta, D. and Oggiano, G. (1994a). Cocozza, T.. Lazzarotto, A. and Pasini, M. (1975). Tertiary extensional tectonics in Tuscany (Northern Segnalazione di una fauna triassica nei conglomerato Apennines, Italy). Tectonophysics 238, 295-315. di M. Quolo (Verrucano del Torrente Farma, Toscana Carmignani, L., Fantozzi, P.L., Giglia, G., Kligfi eld, Mendionale). Riv. It. Paleont. 81, 425-436. R. and Meccheri, M. (1994b). Tectonic inversion Cocozza, T., Decandia, F.A., Lazzarotto, A., Pasini, from compression to extension: the case of the M. and Vai, G.B. (1987). The marine Carboniferous metamorphic complex and Tuscan Nappe in the sequence in Southern Tuscany: Its bearing for Apuane Alps (Northern Apennines, Italy). Mem. Soc. Hercynian paleogeography and tectofacies. In Geol. It.,48, 23-29. “Pre-Variscan and Variscan events in the Alpine- Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, Mediterranean mountain belts” (Flugel H.V. et alii, PRO1 to B15 n° 1 - from Volume P.L., Lazzarotto, A., Liotta, D. and Oggiano, G. (1995). Eds.), pp. 135- 144. Mineralia Slovaca-Monography, Relationships between the Tertiary structural evolution Alfa Bratislava. of the Sardinia-Corsica-Provençal Domain and the Coli, M. (1989). Times and mode of uplift of the Northern Apennines. Terra Nova 7, 128-137. Apuane Alps Metamorphic Complex. Atti Ticin. Sc. Carosi, R., Cerbai, N. and Montomoli, C. (1995). Terra 32, 47-56. Deformation history of the Verrucano of Pisani Mts. Conti, P., Di Pisa, A., Gattiglio, M., Meccheri, M. & (Northern Apennines, Italy). Annales Tectonicae 9, Vietti, M. (1988). Nuovi dati sulle metabasiti della

33 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli (Nota preliminare). problema delleofi Decandia, F.A. andElter, P. (1969).Rifl meridionale, Italia). F. (1998).Geologiadell’ areadiIano(Toscana Costantini, A., Elter, F.M., Pandeli, E.andSandrelli, Southern Tuscany. Triassic volcanic activity inthe Verrucano Groupof Sandrelli, F. andMemmi,I.(1991).Evidenceof Costantini, A., Decandia,F.A., Lazzarotto, A., Terra il MonteLeoni(Toscana meridionale). Monticiano Roccastrada tralaMontagnolaSenesee A. andSandrelli,F. (1987/88).L’Unità di Costantini, A., Decandia,F.A., Lazzarotto, Soc. Geol.It. paleogeografi and Turi, B.(1980).Un’ipotesiperl’interpretazione Costantini, A., Gandin, A., Mattias,P.P., Sandrelli,F. meridionale edinsulare. (Unità diMonticiano-Roccastrada)nella Toscana (2001). CaratteristrutturalidelGruppo Verrucano Corsi, B.,Elter, F.M., Pandeli, E.&Sandrelli,F. Tectonophysics Italy). (Northern Apennines, the ApuaneAlps from evolution ontheHercynian orogen:anexample The over print ofthe Alpine tectono-metamorphic Conti, P., Gattiglio,M.andMeccheri,(1991b). a review. A. (1991a).Structuralframeofthe Tuscan Paleozoic: E., Rau, A., Sandrelli,F., Tongiorgi, M.andDiPisa, Gattiglio, M.,Lazzarotto, A., Meccheri,M.,Pandeli, Conti, P., Costantini, A., Decandia,F.A., Elter, F.M., Mem., Ser. A. (Appennino Settentrionale). Valle delGiardinobasamentoPaleozoico Apuano nsultati preliminari. dell’Unità diOrtano-RioMarina(Isolad’Elba): G. (1992).Datazioni Deino, A., Keller, J.V.A., Minelli, G.andPialli, Geol. It. geologica della Toscana meridionale. La “serieridotta”nelquadrodellaevoluzione Decandia, F.A., Lazzarotto, A., andLiotta,D.(1993). meridionale). unità tettonichedelMonte Argentano (Toscana Decandia, FA. andLazzarotto, A. (1980).Le Mem. Soc.Geol.lt Levanto ela VaI Graveglia (AppenninoLigure). ofi Decandia, F.A. andElter, P. (1972).La“zona” (1), 1-9. olitifera delBracconelsettorecompreso fra 31,382-420. 49.181-191. Boll. Soc.Geol.It. ca dellaFormazione di Tocchi. 21,203-216. 95,89-103. Mem. Soc.Geol.It 191,335-346. oliti nell’Appenninosettentrionale . 11,503-530. Boll. Soc.Geol.It Atti Soc. Tosc. Sc.Nat.,Mem. Boll. Soc.Geol.It. Studi Geologici Camerti, Vol. 40 Atti Tic.Sc. Terra Ar/ 110, 523-541. 39 Atti Soc. Tosc. Sc.Nat., Ar deimetamorfi . 21,385-393. . 110,717-725. 117,187-218. Atti Tic.Sci. esoi sul essioni Mem. Soc. 42,47-58. Mem. snio 76 southern Tuscany,Italy) the Northern Apennines (Larderello geothermalfi Hercynian orogenicphasesinthebasementrocksof Elter, F.M. andPandeli, E.(1990). Alpine and Contribution Mineralogy Petrol wells intheLarderellogeothermalfi minerals attemperaturesof300°-400°Cfromdeep F. and Villa, I.M.(1982).Rb-SrandK-Arageson Del Moro, A., Puxeddu, M.,RadicatiDiBrozolo, Spec. CROP 1/lA C. A. (1989).Sudoite,a rock-formingmineralin Franceschelli, M.,Mellini,M,Memmi,I.andRicci Metamorphic Geol. metasediments fromtheNorthern Apennines, Italy. metamorphic zonationinthelow-grade Verrucano M. (1986).Regional distribution of Al silicatesand Franceschelli, M.,Leoni,L.,Memmi,I.andPuxeddu, to Tortonian. evolution ofthe Tuscan DomainsinceEarlyLiassic Considerations onthesedimentaryandstructural Fazzuoli M.,Pandeli E.andSaniF. (1994)- 30, 159-201. sull’evoluzione sedimentaria. Falda Toscana aNorddell’Arno:Considerazioni G. (1985).Leformazionigiurassico-miocenichedella Fazzuoli, M.,Ferrini,G.,Pandeli, E.andSguazzoni, Strat. M.te QuoioFm.(Verrucano Group). Tuscany, Italy)andthefi the “Verrucano s.l.” intheMonticianoarea(Southern Preliminary notesonthetectonicsandlithotypesof Engelbrecht, H.,Klemm,D.D.andPasini, M.(1988). Northern Apennines. the recent(Tortonian toPresent)evolution of the L. (1975) Tensional andcompressionalareasin Elter, P., Giglia,G., Tongiorgi, M.and Trevisan, Tic. Sc. Terra nell’evoluzione dell’AppenninoSettentrionale. nella Toscana Meridionale:nuova interpretazione Elter, F.M. andSandrelli,F. (1994).Lafase post-Nappe considerations. Italy): structural-metamorphicevolution andregional in the Argentario Promontory(Southern Tuscany, ophiolitic unitand Verrucano oftheCalaGrandearea Elter, F.M. andPandeli, E.(2002). The HP-LPmeta- Boston/London. pp. 79-90.Kluwer Academic Publishers Dordrecht/ and otherregions” (O.Oncken andC.Janssen,Eds.). Apennines (Italy).In“Basement Tectonics 11-Europe of thePaleozoic crystallinebasementoftheNorthern Elter, F.M. andPandeli, E.(1996).Structuralsetting -264. 94,361-382. 37,173-193. Mem. Soc.Geol.It Ofi oliti , 187-192. 4,309-321. Boll. Geof. Teor. Appl 27,91-102. nding offusulinidswithinthe Eclogae GeoI.Helv Mem. Soc.Geol.Ital. ogy 81,340-349. . 48,31-50. Riv. It.Paleont., ed (Italy). eld . 17,3-18. . 83,241 eld. Atti J. J. THE PALEOZOIC BASEMENT THROUGH THE 500 MA HISTORYOF THE NORTHERN APENNINES B05

Verrucano of the Northern Apennines (Italy) and Lazzarotto, A., Aldinucci, M., Cirilli, S., Costantini, the sudoite-chloritoid-pyrophyllite assembiage in A., Decandia, F.A., Pandeli, E., Sandrelli, F. and prograde metamorphism. Contrib. Mineral. Petrol. Spina, A. (2003). Stratigraphic correlations of the 101, 274-279. Upper Paleozoic-Triassic successions in southern Franceschelli, M., Pandeli, E., Puxeddu, M., Porcu, Tuscany, Italy. Boll. Soc. Geol. It., Vol. Spec. N.2 R., and Fadda, S. (1994). lillite crystallinity in (2003), in press. pelitic and marly rocks from the Northern Apennines Liotta, D.(1991). The Arbia-Val Marecchia line, (Southern Tuscany and , ltaly). N. Jb. Miner. Northern Apennines. Eclogae Geol. HeIv., 84, 413- Mh. 8, 367-384. 430. Franceschelli, M., Memmi, I., Carcangiu, G. Martini, I.P. (1978). Tafoni weathering, with examples and Gianelli, G. (1997). Prograde and retrograde from Tuscany, Italy. Z. Geomorph.N.F. 22: 44-67. chloritoid zoning in low temperature metamorphism, Martini, I.P., Rau, A. and Tongiorgi, M. (1986). Alpi Apuane, Italy. Schweiz. Mineral. Petrogr. Mitt. Syntectonic sedimentation in a Middle-Triassic rift, 77, 41-50. Northern Apennines, Italy. Sedim. Geol. 47: 191-219. Fransolet, A.-M. and Schreyer, W. (1984). Sudoite, Martini, I.P. and Sagri, M. (1993). Tectono-sedimentary di/trioctahedral chiorite: a stable iowtemperature characteristics of Late Miocene-Quaternary extensional phase in the system MgO-Al~O3-SiO~-H~O. Contrib. basins of the Northern Apennines, Italy. Earth-Science Mineral. Petrol. 86, 409-417. Reviews 34, 197-233. Fucini, A. (1903). Sopra l’età del Marmo di Siena. Massonne, H.J. and Schreyer, W. (1987). Phengite Atti Soc. Tosc. Sc. Nat. Proc. Verb. 13, 90-93. geobarometry based on the limiting assemblage with Fucini, A. (1908). Ancora sopra i Marmi di Siena e K-, , and quartz. Contrib. Mineral. sopra i calcari cavernosi ed agli scisti varicolori della Petrol. 96, 212-224. Toscana. Atti Soc. Tosc. Sc. Nat. Mem. 24, 247-243. Mazzanti, R. (1961). Geologia della zona di Gasperi, G. and Gelmini, R. (1973). Ricerche sul Montaione tra le valli dell’Era e dII’EIsa (Toscana). Verrucano. lI Verrucano del Monte Mt. Mt. Argentario BolI. Soc. Geol. It. 80, 75-105. e dei Monti dell’Uccellina in Toscana. Boll. Soc. Micheluccini, M., Moretti, A., Panti, F. and Cartei, B. Geol. It., 92, 115-150. (1981). I Marmi della Montagnola Senese. pp. 101. Giannini, E. and Lazzaretto, A. (1970). Studio Amm. Prov.le Siena. geologico della Montagnola Senese. Mem. Soc. Geol. Molli, G. and Meccheri, M. (2000). Geometrie It. 9, 451-495. di deformazione nell’ alta valle di Colonnata: un Giorgetti, G., Goffe’, B., Memmi, I. and Nieto, esempio di strutturazione polifasica e composita nelle F. (1998). Metamorphic evolution of Verrucano Alpi Apuane. Boll. Soc. Geol. It. 119, 379-394. metasediments in northern Apennines: new Molli, G., Montanini, A. and Frank, W. (2002). petrological constraints. Eur. J. Miner. 10, 177-190. MORB-derived Varisican in the northern Jolivet, L., Faccena, C., Goffe’, B., Mattei, M., Apennine Basement: The Cerreto metamorphic slices Rossetti, F., Brunet, F., Storti, F., Funicello, R., Cadet, (Tuscan-Emilian Apennine, NW Italy). Ofi oliti 27, J.P., D’Agostino, N. and Parra, T. (1998). Mid-crustal 17-30. shear zones in postorogenic extension: Example Pandeli, E. (1998). Permo-Triassic siliciclastic from the Northern Tyrrenian Sea. Jour. Geophysical sedimentation in the Northern Apennines: new data Research 103, 123-160. from the Iano metamorphic inlier (Florence). Mem. Kligfi eld, A., Hunziker, J., Dallmeyer, R.D. and Soc. Geol. It. 53, 185-206. Schamel, S. (1986). Dating of deformation phases Pandeli, E. (2002). Sedimentary-tectonic evolution using K-Ar and 40Ar/39Ar techniques: results from the of the Tuscan area (Northern Apennines, Italy) from Northern Apennines. J. Structural Geol. 8, 781 -798. Late “Autunian” to Carnian. Boll. Soc. Geol. It., Vol. Lavecchia, G., Minelli, G. and Pialli, G. (1984). Spec. 1 (2002), 251-262. PRO1 to B15 n° 1 - from Volume L’Appennino umbro-marchigiano: tettonica Pandeli, E., Puxeddu, M., Gianelli, G., Bertini, G. and distensiva ed ipotesi di sismogenesi. BoIl. Soc. Geol. Castellucci, P. (1988a). Paleozoic sequences crossed It. 103, 467-476. by deep drillings in the Monte Amiata geothermal Lazzarotto, A., Mazzanti, R., and Mazzoncini, region (Italy). BoIl. Soc. Geol. It. 107, 593-606. F. (1964). Geologia del promontorio Argentario Pandeli, E., Franceschelli, M., Puxeddu, M. and (Grosseto) e del Promontorio del Franco (Isola del Minissale, A. (1988b). Lower Tertiary age of Giglio, Grosseto). Boll. Soc. Geol. It. 83, 1-124. metasediments in the Larderello geothermal region

35 - B05 Volume n° 1 - from PRO1 to B15 B05 - B05 Leaders: E.Pandeli gruppo Monticiano-Roccastrada. Redini, R.(1941).Rinvenimento di Antrocolitico nel Mem. Soc.Geol.It. Pisani aSud-Estdellavalle delGuappero. Rau A. and Tongiorgi M.(1974).GeologiadeiMonti Soc. Geol.It. problema generaledellimite Alpi-Appennini. Appenninico comeprismadiaccrezione.Rifl Principi, G.and Treves B.(1984).IlsistemaCorso- Mem. Soc.Geol.It Passeri, L.(1985).Il Trias dell’ UnitàdiPuntaBianca. ltaly). delle PigneintheFarma vailey (Southern Tuscany, Carboniferous BrachiopodsfrorntheocalityPoggio Pasini, M.and Winkler Prins,C.F. (1981). 20, 343-346. Farma (Toscana meridionale). affi Pasini, M.(1980b).Gli Archeodiscidi dell’ Geol. It. Torrente Farma (Toscana meridionale). Pasini, M.(1980a).IFusulinididellavalle del Toscana meridionale). Formazione Carpineta(Paleozoico superioredella 1884) ePhestiacfr. attenuata(Fleming,1828)nella Pasini, M.(1978b).EdmondiaScalaris(M’Coy, Pisa. Sottopr. Energia Geotermica,Prog.Fin.Energetica, (M. Tongiorgi, Ed.),pp.35-49.C.N.R.,Rapp.Interno valley. from theUpperPateozoic outcropsoftheFarma Pasini, M.(1978a).Furtherpaleontologicalrecords stratigraphic setting. Tuscany, Italy):anew hypothesisregarding their Fornovolasco schistsofthe Apuan Alps (Northern The Pandeli, E.,Bagnoli,P. andNegri, M.(2003). Soc. Geol.It. evolution and Alpine hydrothermalprocesses. Apennines: stratigraphy, tectono-metamorphic F.M. (1994). The Paleozoic basementoftheNorthern Pandeli, E.,Gianelli,G.,Puxeddu, M.andElter, 107, 437-444. Italy). (Northern Apennines, Reutter, K.J., Teichmuller, M., Teichmuller, A. and 60, 331-334. oramento diPoggiodellePignenellavalle del Riv. tal.Paleont. In 20,323-342. “Reporton Tuscan Paleozoic Basement” 28,549-576. 48,627-654. . 30,105-114. 13,227-208. Boll. Soc.Geol.It Riv. tal.Paleont. 86,459-468. Boll. Soc.Geol.Ital Mem. Soc.Geol.It. Boll. Soc.Geol.It. ., inpress. 84,849-864. Mem. Soc. essi sul essi Mem. Mem. . nell’Appennino settentrionale. contributo aiproblemidipaleogeotermiaetettonica dei frustolivegetali nellerocceclastichecome Zanzucchi, G.(1980).Lericerchesullacarbonifi sulla geologiastratigrafi Savi, P. andMeneghini, G.(1850).Considerazioni terreni antichitoscani. Massa concernenteosservazioni geognostichesui Savi, P. (1832).LetteraalSig.GirolamoGuidonidi 75, 1-67. chimico epetrografi basica eultrabasicanellaserieafacies toscana.Studio Ricci, C.A.(1968).Leroccemetamorfi 111-126. 886-913. and naturaloccurrence. Velde, B.(1965).Phengitemicas:synthesis,stability Basins, pp.632.Kluwer Academic Publishers. Orogen: the Apennines and Adjacent Mediterranean Vai, G.B.andMartini,I.P. Eds.(2001). Anatomy ofan (Toscana). rinvenimento dipiantedelloStefaniano aIano Vai, G.B.andFrancavilla, F. (1974).Nuovo (Italy). deposits (Verrucano, Triassic) intheMontiPisani Sedimentology ofEarly-Alpine,fl Tongiorgi, M.,Rau, A. andMartini,I.P. (1977). recostruction Verrucano sequenceandsignifi high-pressure metamorphismofthemetasedimentary from theMonte Argentario (Italy):fi Brunet, C.(1997).Ferroandmagnesiocarpholite Theye, T., Reinhardt,J.,Goffe’, B.,Jolivet, L.and 65, 31-34. rilevamento nella VaI diMerse. Signorini, R.(1947).Cennipreliminarisuun 147. magmatism ofCentralItaly. lithosphere inthegenesisofNeogene-Quaternary subduction ofdelaminated Adriatic continental Geochemical andpetrologicalevidence ofthe Serri, G.,Innocenti,F. andManetti,P. (1993). 279-521. StamperiaGranducale,Firenze,. Appennini edeiCarpazi”(R.I.Murchison,Ed.),pp. “Memoria sullastrutturageologicadelle Alpi, degli Sedimentary Geology Boll. Soc.Geol.It. Eur.J.Mineral . co. Nuovo G.Letterati Atti Soc. Tosc. Se. Nat.,Mem. Am. J. Sci c dla Toscana. della ca Tectonophysics . 9,859-873. 17,311-332. 93,73-80. Mem. Sec.Geol.lt.. cance forP-Tpath uvio-marine, clastic BoII. Soc.Geol.It. . 263, rst evidence for 24,202-224. che dinatura , 223,117- cazione 21, In , Back Cover: fi eld trip itinerary FIELD TRIP MAP INTERNATIONAL GEOLOGICAL CONGRESS nd 32

Edited by APAT