Rifting and Arc-Related Early Paleozoic Volcanism Along the North Gondwana Margin: Geochemical and Geological Evidence from Sardinia (Italy)

Total Page:16

File Type:pdf, Size:1020Kb

Rifting and Arc-Related Early Paleozoic Volcanism Along the North Gondwana Margin: Geochemical and Geological Evidence from Sardinia (Italy) Rifting and Arc-Related Early Paleozoic Volcanism along the North Gondwana Margin: Geochemical and Geological Evidence from Sardinia (Italy) Laura Gaggero,1,* Giacomo Oggiano,2 Antonio Funedda,3 and Laura Buzzi1 1. Department for the Study of Territory and Its Resources, University of Genoa, Corso Europa 26, 16132 Genoa, Italy; 2. Department of Botanics, Ecology, and Geology, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy; 3. Department of Earth Sciences, University of Cagliari, Via Trentino 51, 09127 Cagliari, Italy ABSTRACT Three series of volcanic rocks accumulated during the Cambrian to Silurian in the metasediment-dominated Variscan basement of Sardinia. They provide a record of the changing geodynamic setting of the North Gondwana margin between Upper Cambrian and earliest Silurian. A continuous Upper Cambrian–Lower Ordovician succession of felsic submarine and subaerial rocks, dominantly transitional alkaline in character (ca. 492–480 Ma), is present throughout the Variscan nappes. Trace element data, together with Nd isotope data that point to a depleted mantle source, indicate an ensialic environment. A Middle Ordovician (ca. 465 Ma) calc-alkaline bimodal suite, restricted to the ␧ Ϫ Ϫ external Variscan nappes, overlies the Sardic Unconformity. Negative Ndi values ( 3.03 to 5.75) indicate that the suite is a product of arc volcanism from a variably enriched mantle. A Late Ordovician–Early Silurian (ca. 440 Ma) volcano-sedimentary cycle consists of an alkalic mafic suite in a post-Caradocian transgressive sequence. Feeder dykes cut the pre-Sardic sequence. The alkali basalts are enriched in Nb-Ta and have Zr/Nb ratios in the range 4.20–30.90 ␧ (typical of a rift environment) and positive Ndi values that indicate a depleted mantle source. Trachyandesite lavas have trace element contents characteristic of within-plate basalt differentiates, with evidence of minor crustal con- tamination. Online enhancements: appendix figures. Introduction An exceptional geodiversity in the Earth history accompanied by a complex magmatic evolution re- has been evidenced at the Paleozoic, between the corded by a bimodal intraplate volcanism associ- two major events of continental accretion that pro- ated with terrigenous sedimentation (Etxebarria et duced Gondwana first and then Pangea (Stampfli al. 2006; Chichorro et al. 2008; Linnemann et al. et al. 2002; von Raumer and Stampfli 2008; Nance 2008), mid-ocean ridge basalt (MORB)-type mag- et al. 2010). Thus, the Paleozoic Era begins and ends matism associated with lithospheric rifting and with a similar geographic configuration, in that one oceanization (between Cambrian and Devonian; supercontinent is inferred both in the Neoprote- Murphy et al. 2008, 2011), arc magmatism during rozoic and in the Permian. Between the extremes subduction and continental collision (Middle Or- of this Wilson cycle ranging over an interval of 300 dovician; Sa´nchez-Garcı´a et al. 2003), and post- million years, the supercontinent Rodinia progres- orogenic alkalic magmatism (Upper Ordovician– sively broke up into macro-microcontinents, which Silurian boundary; Lo´ pez-Moro et al. 2007; Keppie later further fragmented, collided, and subse- et al. 2008). quently reassembled in Pangea. This process was In particular, the significance of the Paleozoic Rheic Ocean to the building of Laurussia and Gond- wana continental blocks before the Variscan- Manuscript received February 17, 2011; accepted October 19, 2011. Alleghanian-Ouachita collision has been recently * Author for correspondence; e-mail: [email protected]. emphasized and its Cambrian-Paleozoic evolution [The Journal of Geology, 2012, volume 120, p. 273–292] ᭧ 2012 by The University of Chicago. All rights reserved. 0022-1376/2012/12003-0002$15.00. DOI: 10.1086/664776 273 274 L. GAGGERO ET AL. analyzed and dissected along the western, central, southern European Variscides (Casini et al. 2010), and eastern Gondwana margins (Nance et al. 2010). and it can be divided into the following tectono- Despite the occurrence in Sardinia of an almost metamorphic zones: a foreland zone in the SW, complete cross section of the Variscan orogen, this with either very low-grade or no metamorphism; a segment has barely been included in comprehen- nappe zone in the SE and central parts of the island sive reconstructions of the precollisional history of (subdivided into external and internal nappes, with the Variscan belt, probably due to the scarcity of several stacked tectonic units), affected by low- geochronological and geochemical data on the Sar- grade metamorphism; and an inner zone in the dinian pre-Variscan basement. A set of recent U-Pb north, with medium- to high-grade metamorphism geochronological data (obtained using excimer laser (fig. 1). ablation–inductively coupled plasma mass spec- The foreland and nappe zones are also charac- trometry; Oggiano et al. 2010) provides evidence terized by a Middle Ordovician angular unconfor- that in Sardinia the precollisional volcanic activity mity (Sardic Unconformity; Carmignani et al. 2001, along the North Gondwana margin, or in related and references therein), which is also recognized in terrane assemblages, developed in at least three the Eastern Iberian Plate (Casas et al. 2010; Navidad stages, each stage being characterized by a different et al. 2010). Along the southern boundary of the geodynamic environment: (1) a Late Cambrian– inner zone, an eclogite-bearing belt is exposed, Early Ordovician episode of volcanism (ca. 492–480 which was interpreted as a suture zone (Cappelli Ma) within a stratigraphically well-constrained et al. 1992; Carmignani et al. 1994). The protolith Ma; the 2 ע Cambro-Ordovician clastic sequence, (2) Middle of the eclogite has been dated at457 Ordovician calc-alkalic activity ascribed to the high-pressure event is Devonian (Cortesogno et al. Dapingian-Sandbian on the basis of paleontology 2004; Giacomini et al. 2005; Franceschelli et al. and now dated radiometrically at ca. 465 Ma, and 2007). These eclogites have MORB signatures and (3) an uppermost Ordovician (ca. 440 Ma) volcanic are embedded within a metapelitic-metarenaceous event of alkaline affinity that is widespread in all complex hosting also homogeneous quartzite beds the tectonic units of the Sardinian Variscides. In (metacherts?), orthogneisses, and metabasite with general, however, the various tectonic units are high- to medium-P granulite metamorphic imprint characterized by wide variations in these volcanic (Franceschelli et al. 2007). The deformation, local- rocks in space, time, and volume, and this is typ- ized in low-strength shear zones, and the geometric ically combined with a lack of adequate age control association of rock bodies with different metamor- on the associated clastic sediments. Our interest, phic records point to a me´lange of rocks tectoni- therefore, was raised in obtaining more data, valid cally sampled from diverse crustal levels within a for reconstruction of the paleogeography and geo- channel flow, probably linked to the subduction of dynamic events (rifting, breakup, drifting, accre- a lower Paleozoic ocean (Cappelli et al. 1992; tion/hypercollision) related to the northern Gond- Stampfli et al. 2002; von Raumer et al. 2003). wana margin and its derived “terranes” over a time Throughout the external nappes (Carmignani et period ranging from the Cambro-Ordovician up to al. 1994), the sedimentary record and fossil content the precollisional setting that gave rise to the Var- is generally preserved, and several volcano-sedi- iscan configuration of the Mesoeuropean crust. mentary complexes are stacked in the nappe zone Moreover, the petrology of Paleozoic processes is (Di Pisa et al. 1992; Carmignani et al. 1994; fig. 2). fundamental to understanding the influence on the The Sardinia-Corsica Microplate at the Cambro- lithospheric setting until the Alpine cycle. Diverse Ordovician Boundary. In the foreland, the pre- sectors of Sardinian Variscides were therefore stud- Sardic sedimentary history is dominated by the de- ied and comparison made with adjacent paleogeo- position of epicontinental sediments (Nebida graphic areas. Group), including carbonate shelf deposits (Gon- The aim of this article is to characterize the geo- nesa Group), which are inferred to grade laterally chemical features of the volcanic rocks in order to into deeper siliciclastic sequences (Iglesias Group), constrain the source region and crustal evolution, all of which are topped by the Sardic Unconformity. as well as the nature of the geodynamic setting. The sedimentary rocks of the shelf-slope transition indicate passive continental margin conditions dur- ing the Late Cambrian–Early Ordovician (Cocozza Geological Setting 1979; Galassi and Gandin 1992; Pillola et al. 1995, Present-Day Geological Framework of Sardinia. and references therein). Only the Capo Spartivento The Sardinia-Corsica Microplate exhibits one of the orthogneiss, basement of the foreland, is referred most complete and best-preserved transects of the to this setting, although the error of the available JournalofGeology PALEOZOIC VOLCANISMS IN NORTH GONDWANA 275 Figure 1. Generalized tectonic map of the Variscan basement of Sardinia and tectonic and metamorphic zones of the Variscan basement of Sardinia (a). metamorphism (Arenarie di San Vito). The ages of ע date does not allow a clear age attribution (478 13 Ma; Delaperrie`re and Lancelot 1989). the metasedimentary deposits, based on acritarch The pre-Sardic lithostratigraphic succession of biostratigraphy,
Recommended publications
  • Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From
    feart-08-00121 May 7, 2020 Time: 11:30 # 1 ORIGINAL RESEARCH published: 08 May 2020 doi: 10.3389/feart.2020.00121 Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From Edited by: Marina Manea, Geochemical and Seismic National Autonomous University of Mexico, Mexico Tomographic Data Reviewed by: 1,2 1,2 1,2 1,2 Luca Ferrari, Sofía B. Iannelli *, Lucía Fernández Paz , Vanesa D. Litvak , Guido Gianni , Geosciences Center, National Lucas M. Fennell1,2, Javiera González3, Friedrich Lucassen4, Simone Kasemann4, Autonomous University of Mexico, Verónica Oliveros3 and Andrés Folguera1,2 Mexico 1 2 Jiashun Hu, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Estudios 3 California Institute of Technology, Andinos ‘Don Pablo Groeber’, CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento 4 United States de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile, MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany *Correspondence: Sofía B. Iannelli sofi[email protected] Since the initial proposal of the past existence of a southward-directed mid-ocean ridge–subduction interaction in the Andes during Late Cretaceous–Paleogene times, Specialty section: This article was submitted to several studies have been devoted to uncover the tectonomagmatic evidence of this Structural Geology and Tectonics, process. The collision of a spreading ridge against a subduction margin provokes a section of the journal important tectonomagmatic changes, including, between them, variations in arc-related Frontiers in Earth Science magmatic activity and in the plate-margin stress regime.
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Minerals-09-00767-V2.Pdf
    minerals Article Geochemical Features and Geological Processes Timescale of the Achaean TTG Complexes of the Ingozero Massif and the Pechenga Frame (NE Baltic Shield) Elena Nitkina * , Nikolay Kozlov, Natalia Kozlova and Tatiana Kaulina Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia; [email protected] (N.K.); [email protected] (N.K.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +79-0213-745-78 Received: 1 November 2019; Accepted: 6 December 2019; Published: 10 December 2019 Abstract: This article provides a geological review and results of the structural, metamorphic, and geochronological studies of the Pechenga frame outcrops located in the NW part of the Central-Kola terrain and the Ingozero massif outcrops situated in the northeastern part of the Belomorian mobile belt of the Kola Region (NW Baltic Shield). As a result of the work, the deformation scales and ages of the geological processes at the Neo-Archaean–Paleoproterozoic stage of the area’s development were compiled, and the reference rocks were dated. The petrochemical and geochemical characteristics of the Ingozero rocks are similar to those of tonalite–trondhjemite–granodiorite (TTG) complexes established on other Archaean shields. The isotope U–Pb dating of individual zircon grains from the biotite gneisses provided the oldest age for magmatic protolith of the Ingozero gneisses, which is 3149 46 Ma. Sm–Nd model ages showed that the gneisses protolite initial melt formed at 3.1–2.8 Ga. ± Ages of metamorphic processes were determined by using isotope U–Pb dating ID TIMS (isotope dilution thermal ionization mass spectrometry): Biotite gneisses—2697 9 Ma; amphibole–biotite ± gneisses—2725 2 Ma and 2667 7 Ma; and biotite–amphibole gneisses 2727 5 Ma.
    [Show full text]
  • Mesozoic Central Atlantic and Ligurian Tethys1
    42. RIFTING AND EARLY DRIFTING: MESOZOIC CENTRAL ATLANTIC AND LIGURIAN TETHYS1 Marcel Lemoine, Institut Dolomieu, 38031 Grenoble Cedex, France ABSTRACT The Leg 76 discovery of Callovian sediments lying above the oldest Atlantic oceanic crust allows us to more closely compare the Central Atlantic with the Mesozoic Ligurian Tethys. As a matter of fact, during the Late Jurassic and Ear- ly Cretaceous, both the young Central Atlantic Ocean and the Ligurian Tethys were segments of the Mesozoic Tethys Ocean lying between Laurasia and Gondwana and linked by the Gibraltar-Maghreb-Sicilia transform zone. If we as- sume that the Apulian-Adriatic continental bloc (or Adria) was then a northern promontory of Africa, then the predrift and early drift evolutions of both these oceanic segments must have been roughly the same: their kinematic evolution was governed by the east-west left-lateral motion of Gondwana (including Africa and Adria) relative to Laurasia (in- cluding North America, Iberia, and Europe), at least before the middle Cretaceous (=100 Ma). By the middle Cretaceous, opening of the North Atlantic Ocean led to a drastic change of the relative motions between Africa-Adria and Europe-Iberia. From this time on, closure of the Ligurian segment of the Tethys began, whereas the Central Atlan- tic went on spreading. In fact, field data from the Alps, Corsica, and the Apennines show evidence of a Triassic-Jurassic-Early Cretaceous paleotectonic evolution rather comparable with that of the Central Atlantic. Rifting may have been started during the Triassic (at least the late Triassic) but reached its climax in the Liassic.
    [Show full text]
  • Masterarbeit
    MASTERARBEIT Titel der Masterarbeit Late Cretaceous Volcaniclastic Rocks in the Pontides (NW Turkey) verfasst von Katharina Böhm BSc angestrebter akademischer Grad Master of Science (M.Sc.) Wien, 2015 Studienkennzahl lt. Studienblatt: A 066 815 Studienrichtung lt. Studienblatt: Erdwissenschaften Betreuerin / Betreuer: Ao. Univ.-Prof. Dr. Michael Wagreich Declaration ”I hereby declare that this master’s thesis was authored by myself independently, without use of other sources than indicated. I have explicitly cited all material which has been quoted either literally or by content from the used sources. Further this work was neither submitted in Austria nor abroad for any degree or examination.” Contents Declaration2 1. Introduction8 1.1. Project.................................. 9 1.1.1. Goals............................... 9 1.2. Geographical setting.......................... 10 1.3. Geological setting............................ 12 1.3.1. The Pontides........................... 14 1.3.2. The Pontides in the Cretaceous................ 18 1.3.3. Correlation with relative ages.................. 24 2. Nomenclature 28 3. Methods 29 3.1. ICP-ES and ICP-MS........................... 29 3.2. PXRD.................................. 29 3.3. Heavy mineral extraction........................ 30 4. Results 31 4.1. Mineralogy................................ 31 4.1.1. Powder X-Ray diffraction.................... 31 4.1.2. Thin sections.......................... 33 4.1.3. Mineral Extraction: Dating of minerals............. 34 4.2. Geochemistry.............................. 36 5. Interpretation of the geochemical results 37 5.1. Mobility of elements........................... 37 5.2. Alteration of minerals.......................... 39 5.3. Determining the rock type........................ 41 3 5.4. Discriminating volcanic series..................... 48 5.5. Revealing the tectonic setting...................... 52 5.6. Plotting geochemical element patterns................. 60 5.7. Summary of the geochemical classification.............. 62 6.
    [Show full text]
  • The Mediterranean Region—A Geological Primer
    160 Article by William Cavazza1 and Forese Carlo Wezel2 The Mediterranean region—a geological primer 1 Dept. of Earth and Geoenvironmental Sciences, Univ. of Bologna, Italy. [email protected] 2 Institute of Environmental Dynamics, University of Urbino, Italy. [email protected] The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional Introduction notion that the Alpine-Himalayan mountain ranges Many important ideas and influential geological models have been originated from the closure of a single, albeit complex, developed based on research undertaken in the Mediterranean oceanic domain—the Tethys. Instead, the present-day region. For example, the Alps are the most studied orogen in the geological configuration of the Mediterranean region is world, their structure has been elucidated in great detail for the most part and has served as an orogenic model applied to other collisional the result of the creation and ensuing consumption of orogens. Ophiolites and olistostromes were defined and studied for two major oceanic basins—the Paleotethys and the the first time in this region. The Mediterranean Sea has possibly the Neotethys—and of additional smaller oceanic basins highest density of DSDP/ODP sites in the world, and extensive within an overall regime of prolonged interaction research on its Messinian deposits and on their on-land counterparts has provided a spectacular example for the generation of widespread between the Eurasian and the African-Arabian plates. basinal evaporites. Other portions of this region are less well under- In greater detail, there is still some debate about exactly stood and are now the focus of much international attention.
    [Show full text]
  • The Cretaceous Igneous Rocks in Southeastern Guangxi and Their Implication for Tectonic Environment in Southwestern South China Block
    Open Geosciences 2020; 12: 518–531 Research Article Yang Liu, Nianqiao Fang*, Menglin Qiang, Lei Jia, and Chaojie Song The Cretaceous igneous rocks in southeastern Guangxi and their implication for tectonic environment in southwestern South China Block https://doi.org/10.1515/geo-2020-0160 Keywords: high-magnesian andesites 1, I-type granite 2, received January 9, 2020; accepted May 13, 2020 clastoporphyritic lava 3, Neo-Tethyan Subduction 4, Abstract: Southeastern Guangxi is located in the south- Southwestern South China Block 5 western South China Block and to the northwest of the South China Sea (SCS), with abundant records of the Cretaceous magmatism. A detailed study of igneous rocks will contribute to a better understanding of the late 1 Introduction Mesozoic tectonic environment. Zircon U–Pb dating yields ages of 93.37 ± 0.43 Ma for Yulin andesites and 107.6 ± South China Block lies between the Tethyan tectonic belt fi [ ] 1.2 Ma for Luchuan granites. Yulin andesites are hornblende and Paci c tectonic belt 1 .Itisacrucialperiodfor andesites, of which w(MgO) is between 7.72% and 8.42%, magmatic rocks and mineralization in southwestern South and Mg# is between 66.7 and 68.0, belonging to high China Block in Cretaceous, especially in the range of – [ ] magnesian andesites (HMAs) from peridotite sources. 100 90 Ma 2 . These magmatic rocks are a key to study Luchuan granites are medium- to fine-grained monzogra- the tectonic evolution in this region. More research has - nites. Monzogranites and clastoporphyritic lava are high-K been done by predecessors, including Kunlunguan bath calc-alkaline series and metaluminum to weakly peralumi- olith, Dali rock mass and Dachang dike group with nous series, which belong to the I-type granites.
    [Show full text]
  • Ammonoid Genus Argentiniceras from Kachchh (India) and Its Relevance to J Urassic/Cretaceous Boundary
    Newsl. Stratigr. Berlin · Stuttgart, 28. 3. 1991 Discovery of Lower Berriasian (Lower Creataceous) Ammonoid Genus Argentiniceras from Kachchh (India) and its Relevance to J urassic/Cretaceous Boundary by jAr KRISHNA with 1 plate, 2 figures and 4 tables Abstract. The ammonoid genus Argentiniceras SPATH 1924 (= Andesites GERTH 1925) is described and illustrated from Umia Member (Green Oolitic bed) North of Lakhapar, Western Kachchh, Gujarat. The genus Argentiniceras is a Lower Berriasian form known so far only from South America (Colombia, Peru, Chile, Argentina) and Antarctica (Alexander Island) i.e. the Andean marine fauna! province (also known as S. American or SE Pacific) and it is considered a good marker of Lower Berriasian. This is the first report of this genus from anywhere outside the Andean Province. Its discovery in Jurassic/Cretaceous passage beds helps more precise and better delineation of the Jurassic/Cretaceous boundary in Kachchh. Further, together with the earlier reports of some South American Upper Tithonian genera from India, the present discovery also strengthens the evidence of direct marine connection between Andean and Indo-East-African marine fauna! provinces near the Jurassic/Cretaceous boundary. Resume. Le genre Argentiniceras SPATH 1924 (= Andesites GERTH 1925) decouvert clans le membre Umia (couche oolithique verte) au Nord de Lakhapar (Gujarat, Ouest de l'Inde) est decrit et illustre. D'age Berriasien inferieur, il etait connu jusqu'a present uniquement du Sud de l'Amerique (Colombie, Perou, Chili, Argentine) et de l'Antarctique (Ile Alexander), c'est-a-dire de la province andine. Le genre est considere comme un bon marqueur stratigraphique du Berriasien inferieur et pour la premiere fois est cite en-dehors de la province andine, clans les couches de passage Jurassique-Cretace.
    [Show full text]
  • New Age Constraints for Early Paleogene Strata of Central Patagonia
    New age constraints for early Paleogene strata of central Patagonia, Argentina New age constraints for early Paleogene strata of central Patagonia, Argentina: Implications for the timing of South American Land Mammal Ages J. Marcelo Krause1,2,†, William C. Clyde3, Mauricio Ibañez-Mejía4,5, Mark D. Schmitz6, Timothy Barnum3, Eduardo S. Bellosi7, and Peter Wilf8 1CONICET–Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100, Trelew, Argentina 2Departamento de Geología, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial 1 s/n, 9000, Comodoro Rivadavia, Chubut, Argentina 3Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, New Hampshire 03824, USA 4Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 5Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York 14627, USA 6Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA 7CONICET–Museo Argentino de Ciencias Naturales, Ángel Gallardo 470, 1405 Buenos Aires, Argentina 8Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA ABSTRACT in our new magnetostratigraphic framework, rec ords of regional biotic responses to global we correlate the Peñas Coloradas Formation climatic events (e.g., Raigemborn et al., 2009, The Río Chico Group in the San Jorge to chrons C27n-26r (ca. 62.5 to ca. 61.6 Ma; 2014; Bellosi and González, 2010; Krause et al., Basin of central Patagonia (Argentina) pre- late Danian) and the section from the middle 2010; Dunn et al., 2015; Kohn et al., 2015; serves some of South America’s most signif- Las Flores to the uppermost Koluel-Kaike to Selkin et al., 2015).
    [Show full text]
  • Evidence for Ancient Lithospheric Deformation in the East European
    Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol To cite this version: Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol. Evidence for ancient lithospheric defor- mation in the East European Craton based on mantle seismic anisotropy and crustal magnetics. Tectonophysics, Elsevier, 2010, 481 (1-4), pp.16-28. 10.1016/j.tecto.2009.01.010. hal-00475647 HAL Id: hal-00475647 https://hal.archives-ouvertes.fr/hal-00475647 Submitted on 27 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wüstefeld ⁎,1, Götz Bokelmann 2, Guilhem Barruol 2 Université Montpellier II, CNRS, Geosciences Montpellier, 34095 Montpellier, France article info abstract Article history: We present new shear wave splitting measurements performed at 16 stations on the East European Craton, Received 28 May 2008 and discuss their implications in terms of upper mantle anisotropy for this geophysically poorly known Accepted 6 January 2009 region. Previous investigations of mantle anisotropy in Central Europe have shown fast directions aligning Available online 19 January 2009 smoothly with the craton's margin and various suggestions have been proposed to explain their origin such as asthenospheric flow or lithospheric frozen in deformation.
    [Show full text]
  • Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)
    Georgia State University ScholarWorks @ Georgia State University Geosciences Theses Department of Geosciences 4-27-2010 Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy) Jennifer M. Dickie Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/geosciences_theses Part of the Geography Commons, and the Geology Commons Recommended Citation Dickie, Jennifer M., "Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/geosciences_theses/23 This Thesis is brought to you for free and open access by the Department of Geosciences at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Geosciences Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. MINERALOGICAL AND GEOCHEMICAL INDICATORS OF SUBAERIAL WEATHERING IN THE POZZOLANE ROSSE IGNIMBRITE (ALBAN HILLS VOLCANIC DISTRICT, ITALY) by JENNIFER M. DICKIE Under the direction of Dr. Daniel Deocampo ABSTRACT The Pozzolane Rosse ignimbrite [PR] (457±4 ka) in the Alban Hills Volcanic District, Rome, Italy was exposed ~ 40 ka prior to a subsequent volcanic event which coverd it entirely. XRF, XRD, and clay separation results from PR samples from INGV and CA1 boreholes and Castel di Leva quarry show evidence of paleopedogenesis. All locations display loss of base cations, loss of K is consistent with XRD datat showing dissolution or alteration of leucite to analcime. Accumulation of Al and high L.O.I. support XRD evidence of 1:1 clay species at upper depth.
    [Show full text]
  • (Turkey) Based on New Nannoplankton Age Determinations in the Eastern Pontides: Geodynamic Implications Jean-Claude Hippolyte, C
    Stratigraphic comparisons along the Pontides (Turkey) based on new nannoplankton age determinations in the Eastern Pontides: geodynamic implications Jean-Claude Hippolyte, C. Müller, E. Sangu, N. Kaymakci To cite this version: Jean-Claude Hippolyte, C. Müller, E. Sangu, N. Kaymakci. Stratigraphic comparisons along the Pontides (Turkey) based on new nannoplankton age determinations in the Eastern Pontides: geo- dynamic implications. The Geological Society, London, Special Publications, Geological Society of London, 2017, Tectonic Evolution of the Eastern Black Sea and Caucasus., 428 (1), pp.323 - 358. 10.1144/SP428.9. hal-01708711 HAL Id: hal-01708711 https://hal.archives-ouvertes.fr/hal-01708711 Submitted on 14 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright 1 Stratigraphic comparisons along the Pontides (Turkey) based on new nannoplankton age determinations in the Eastern Pontides: geodynamic implications J-C. Hippolyte, C. Müller, E. Sangu and N. Kaymakci Hippolyte Jean-Claude * UMR-6635 CNRS - Universite Aix-Marseille III BP 80, Europole Mediterraneen de l'Arbois 13545 Aix en Provence Cedex 4, FRANCE Tel. +33 4 42 97 17 70, Fax. +33 4 42 97 16 58, e-mail: [email protected] Müller Carla PL-66-431b Santok, Ludzislawice 36, Poland Sangu Ercan Kocaeli University, Department of Geological Engineering, 41100 Kocaeli, Turkey Kaymakci Nuretdın Middle East Technical University, Department of Geological Engineering, 06800- Ankara Turkey.
    [Show full text]