Outline of Italy's Geomorphology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stories of Ancient Rome Unit 4 Reader Skills Strand Grade 3
Grade 3 Core Knowledge Language Arts® • Skills Strand Ancient Rome Ancient Stories of of Stories Unit 4 Reader 4 Unit Stories of Ancient Rome Unit 4 Reader Skills Strand GraDE 3 Core Knowledge Language Arts® Creative Commons Licensing This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution — You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation made available through licensing under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial — You may not use this work for commercial purposes. Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/ Copyright © 2013 Core Knowledge Foundation www.coreknowledge.org All Rights Reserved. Core Knowledge Language Arts, Listening & Learning, and Tell It Again! are trademarks of the Core Knowledge Foundation. Trademarks and trade names are shown in this book strictly for illustrative and educational purposes and are the property of their respective owners. -
And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation. -
Minerals-09-00767-V2.Pdf
minerals Article Geochemical Features and Geological Processes Timescale of the Achaean TTG Complexes of the Ingozero Massif and the Pechenga Frame (NE Baltic Shield) Elena Nitkina * , Nikolay Kozlov, Natalia Kozlova and Tatiana Kaulina Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia; [email protected] (N.K.); [email protected] (N.K.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +79-0213-745-78 Received: 1 November 2019; Accepted: 6 December 2019; Published: 10 December 2019 Abstract: This article provides a geological review and results of the structural, metamorphic, and geochronological studies of the Pechenga frame outcrops located in the NW part of the Central-Kola terrain and the Ingozero massif outcrops situated in the northeastern part of the Belomorian mobile belt of the Kola Region (NW Baltic Shield). As a result of the work, the deformation scales and ages of the geological processes at the Neo-Archaean–Paleoproterozoic stage of the area’s development were compiled, and the reference rocks were dated. The petrochemical and geochemical characteristics of the Ingozero rocks are similar to those of tonalite–trondhjemite–granodiorite (TTG) complexes established on other Archaean shields. The isotope U–Pb dating of individual zircon grains from the biotite gneisses provided the oldest age for magmatic protolith of the Ingozero gneisses, which is 3149 46 Ma. Sm–Nd model ages showed that the gneisses protolite initial melt formed at 3.1–2.8 Ga. ± Ages of metamorphic processes were determined by using isotope U–Pb dating ID TIMS (isotope dilution thermal ionization mass spectrometry): Biotite gneisses—2697 9 Ma; amphibole–biotite ± gneisses—2725 2 Ma and 2667 7 Ma; and biotite–amphibole gneisses 2727 5 Ma. -
Mesozoic Central Atlantic and Ligurian Tethys1
42. RIFTING AND EARLY DRIFTING: MESOZOIC CENTRAL ATLANTIC AND LIGURIAN TETHYS1 Marcel Lemoine, Institut Dolomieu, 38031 Grenoble Cedex, France ABSTRACT The Leg 76 discovery of Callovian sediments lying above the oldest Atlantic oceanic crust allows us to more closely compare the Central Atlantic with the Mesozoic Ligurian Tethys. As a matter of fact, during the Late Jurassic and Ear- ly Cretaceous, both the young Central Atlantic Ocean and the Ligurian Tethys were segments of the Mesozoic Tethys Ocean lying between Laurasia and Gondwana and linked by the Gibraltar-Maghreb-Sicilia transform zone. If we as- sume that the Apulian-Adriatic continental bloc (or Adria) was then a northern promontory of Africa, then the predrift and early drift evolutions of both these oceanic segments must have been roughly the same: their kinematic evolution was governed by the east-west left-lateral motion of Gondwana (including Africa and Adria) relative to Laurasia (in- cluding North America, Iberia, and Europe), at least before the middle Cretaceous (=100 Ma). By the middle Cretaceous, opening of the North Atlantic Ocean led to a drastic change of the relative motions between Africa-Adria and Europe-Iberia. From this time on, closure of the Ligurian segment of the Tethys began, whereas the Central Atlan- tic went on spreading. In fact, field data from the Alps, Corsica, and the Apennines show evidence of a Triassic-Jurassic-Early Cretaceous paleotectonic evolution rather comparable with that of the Central Atlantic. Rifting may have been started during the Triassic (at least the late Triassic) but reached its climax in the Liassic. -
The Mediterranean Region—A Geological Primer
160 Article by William Cavazza1 and Forese Carlo Wezel2 The Mediterranean region—a geological primer 1 Dept. of Earth and Geoenvironmental Sciences, Univ. of Bologna, Italy. [email protected] 2 Institute of Environmental Dynamics, University of Urbino, Italy. [email protected] The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional Introduction notion that the Alpine-Himalayan mountain ranges Many important ideas and influential geological models have been originated from the closure of a single, albeit complex, developed based on research undertaken in the Mediterranean oceanic domain—the Tethys. Instead, the present-day region. For example, the Alps are the most studied orogen in the geological configuration of the Mediterranean region is world, their structure has been elucidated in great detail for the most part and has served as an orogenic model applied to other collisional the result of the creation and ensuing consumption of orogens. Ophiolites and olistostromes were defined and studied for two major oceanic basins—the Paleotethys and the the first time in this region. The Mediterranean Sea has possibly the Neotethys—and of additional smaller oceanic basins highest density of DSDP/ODP sites in the world, and extensive within an overall regime of prolonged interaction research on its Messinian deposits and on their on-land counterparts has provided a spectacular example for the generation of widespread between the Eurasian and the African-Arabian plates. basinal evaporites. Other portions of this region are less well under- In greater detail, there is still some debate about exactly stood and are now the focus of much international attention. -
1 TITLE: World Map of De Noha DATE: 1414 AUTHOR: Pirrus De
World Map of de Noha #239 TITLE: World Map of de Noha DATE: 1414 AUTHOR: Pirrus de Noha DESCRIPTION: Claudius Ptolemy worked in Alexandria in the early and mid-second century A.D. and we know of him only through his writings on a variety of scientific subjects. Among these is the work known from the Arabic version of its title as the Almagest, which catalogues over a thousand stars, defining the position of each and explaining how to construct a celestial globe. His Geographia can be seen as a logical sequel. It gives the latitude and longitude of places, ideally from astronomical observation, as a basis for drawing maps of individual regions and of the whole world, and discusses possible ways of projecting the curved surface of the world on to the flat surface of a map. Ptolemy saw the world as a complete sphere, but the inhabited area as only a part of it, stretching south some 16 degrees beyond the Equator, north to about the Arctic Circle, east a little beyond Malaya, and bounded on the west by the Atlantic. Although his lists locate places by their geographical coordinates it is clear that these did not all come from immediate observation but were worked out from whatever information was available, such as accounts of journeys giving distances from one place to another; this means that their appearance of great accuracy is often spurious. The oldest surviving manuscript of Ptolemy’s Greek text was copied more than a thousand years after he wrote; it dates from the late 12th or early 13th century. -
Evidence for Ancient Lithospheric Deformation in the East European
Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol To cite this version: Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol. Evidence for ancient lithospheric defor- mation in the East European Craton based on mantle seismic anisotropy and crustal magnetics. Tectonophysics, Elsevier, 2010, 481 (1-4), pp.16-28. 10.1016/j.tecto.2009.01.010. hal-00475647 HAL Id: hal-00475647 https://hal.archives-ouvertes.fr/hal-00475647 Submitted on 27 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wüstefeld ⁎,1, Götz Bokelmann 2, Guilhem Barruol 2 Université Montpellier II, CNRS, Geosciences Montpellier, 34095 Montpellier, France article info abstract Article history: We present new shear wave splitting measurements performed at 16 stations on the East European Craton, Received 28 May 2008 and discuss their implications in terms of upper mantle anisotropy for this geophysically poorly known Accepted 6 January 2009 region. Previous investigations of mantle anisotropy in Central Europe have shown fast directions aligning Available online 19 January 2009 smoothly with the craton's margin and various suggestions have been proposed to explain their origin such as asthenospheric flow or lithospheric frozen in deformation. -
Human Landscapes in Classical Antiquity
Leicester-Nottingham Studies in Ancient Society Volume 6 HUMAN LANDSCAPES IN CLASSICAL ANTIQUITY HUMAN LANDSCAPES IN CLASSICAL ANTIQUITY Environment and Culture Edited by GRAHAM SHIPLEY and JOHN SALMON London and New York First published 1996 by Routledge 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 This edition published in the Taylor & Francis e-Library, 2003. Routledge is an International Thomson Publishing company Selection and editorial matter © 1996 Graham Shipley and John Salmon Individual chapters © 1996 the contributors All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data Human landscapes in classical antiquity: environment and culture/ edited by John Salmon and Graham Shipley. p. cm—(Leicester-Nottingham studies in ancient society: v. 6) Includes bibliographical references and index. ISBN 0-415-10755-5 1. Greece—Civilization. 2. Rome—Civilization 3. Ecology— Greece—History. 4. Ecology—Rome—History. 5. Human ecology—Greece—History. 6. Human ecology—Rome—History. 7. Landscape—Greece—History. 8. Landscape—Rome—History. -
Facsimile Del Frontespizio Della Tesi Di Dottorato
Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN Biodiversità del Evoluzione Ciclo XXVI Settore Concorsuale di afferenza: 05/B1 - Zoologia e Antropologia Settore Scientifico disciplinare: BIO/08 - Antropologia THE GENETIC HISTORY OF ITALIANS: NEW INSIGHTS FROM UNIPARENTALLY-INHERITED MARKERS Presentata da Stefania Sarno Coordinatore Dottorato Relatore Prof.ssa Barbara Mantovani Prof. Davide Pettener Esame Finale – Anno 2014 Table of contents Table of contents GENERAL INTRODUCTION AND THESIS RATIONAL 1 1. Reconstructing human evolutionary history through genetic tools 2 2. A multi-level analysis approach in the study of the Italian population history and 3 genetic structure: from macro- to micro-geographic perspectives 3. Work outline 5 PART 1 - The genetic history and population structure of Italy: 11 a macro-geographic overview from the uniparental markers 1.1 Introduction 13 1.1.1 Pre-historical and historical population dynamics 14 1.1.1.1 Palaeolithic occupation and post-glacial re-expansions 14 1.1.1.2 Main migration patterns associated to the Neolithic transition 20 1.1.1.3 Population dynamics in historical times 29 1.1.2 A genetic overview on the Italian variability 34 1.1.2.1 Classical genetic markers 34 1.1.2.2 Uniparental molecular markers 38 1.1.2.3 Genome-wide based studies 42 1.2 Specific aims of the studies 45 1.3 Results and discussion 49 Article 1: 51 Boattini A, Martinez-Cruz B, Sarno S, Harmant C, Useli A, Sanz P, Yang-Yao D, Manry J, Ciani G, Luiselli D, Quintana-Murci L, Comas D, Pettener D, Genographic Consortium (2013) Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata. -
Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)
Georgia State University ScholarWorks @ Georgia State University Geosciences Theses Department of Geosciences 4-27-2010 Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy) Jennifer M. Dickie Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/geosciences_theses Part of the Geography Commons, and the Geology Commons Recommended Citation Dickie, Jennifer M., "Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/geosciences_theses/23 This Thesis is brought to you for free and open access by the Department of Geosciences at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Geosciences Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. MINERALOGICAL AND GEOCHEMICAL INDICATORS OF SUBAERIAL WEATHERING IN THE POZZOLANE ROSSE IGNIMBRITE (ALBAN HILLS VOLCANIC DISTRICT, ITALY) by JENNIFER M. DICKIE Under the direction of Dr. Daniel Deocampo ABSTRACT The Pozzolane Rosse ignimbrite [PR] (457±4 ka) in the Alban Hills Volcanic District, Rome, Italy was exposed ~ 40 ka prior to a subsequent volcanic event which coverd it entirely. XRF, XRD, and clay separation results from PR samples from INGV and CA1 boreholes and Castel di Leva quarry show evidence of paleopedogenesis. All locations display loss of base cations, loss of K is consistent with XRD datat showing dissolution or alteration of leucite to analcime. Accumulation of Al and high L.O.I. support XRD evidence of 1:1 clay species at upper depth. -
The Internal Northern Apennines, the Northern Tyrrhenian Sea and the Sardinia-Corsica Block
Special Volume of the Italian Geological Society for the IGC 32 Florence-2004 THE INTERNAL NORTHERN APENNINES, THE NORTHERN TYRRHENIAN SEA AND THE SARDINIA-CORSICA BLOCK CARMIGNANI L., CONTI P., CORNAMUSINI G., MECCHERI M. Centro di Geotecnologie, Università di Siena, via Vetri Vecchi 34, 52027 –Valdarno (Arezzo), Italy Dipartimento di Scienze della Terra, Università di Siena, via Latrina 8, 53100 – Siena, Italy. ABSTRACT: In this paper we review the evolution of the internal 2. The Eastern Corsica-Northern Apennines system area of the Northern Apennines, northern Tyrrhenian Sea and originated as an accretionary wedge, produced by the Sardinia-Corsica block, focusing on the post-collisional subduction of the Apulia microplate under the evolution. The discussion follows the Author’s point of view, Sardinia-Corsica massif during the Late Eocene-Early but for the reader interested in a deeper knowledge of the geology of the area many in text citations are added and a Miocene.. At the same time tectonic units, with mostly comprehensive reference list is presented. African (top-NE in present-day coordinates) transport We first shortly introduce the stratigraphy of the area, in the direction, developed in the Apennines, while framework of the geodynamic evolution of the western margin European (top-W) transport direction is observed in of the Apulia microplate, the adjacent Ligurian ocean and the Corsica (PRINCIPI & TREVES, 1984; TREVES, 1984; European Sardinia-Corsica microplate. After a general overview CARMIGNANI et alii, 1995). In this model the Balearic of the nappe structure resulting from collisional tectonics is (or Algero-Provençal) basin and the Tyrrhenian Sea presented for the whole area. -
The Vesuvius and the Other Volcanoes of Central Italy
Geological Field Trips Società Geologica Italiana 2017 Vol. 9 (1.1) I SPRA Dipartimento per il SERVIZSERVIZIOIO GGEOLOGICOEOLOGICO D’ITALIAD’ITALIA Organo Cartografico dello Stato (legge n°68 del 2-2-1960) ISSN: 2038-4947 The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference - Florence, 2013 DOI: 10.3301/GFT.2017.01 The Vesuvius and the other volcanoes of Central Italy R. Avanzinelli - R. Cioni - S. Conticelli - G. Giordano - R. Isaia - M. Mattei - L. Melluso - R. Sulpizio GFT - Geological Field Trips geological fieldtrips2017-9(1.1) Periodico semestrale del Servizio Geologico d'Italia - ISPRA e della Società Geologica Italiana Geol.F.Trips, Vol.9 No.1.1 (2017), 158 pp., 107 figs. (DOI 10.3301/GFT.2017.01) The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference, 2013 Riccardo Avanzinelli1, Raffaello Cioni1, Sandro Conticelli1, Guido Giordano2, Roberto Isaia3, Massimo Mattei2, Leone Melluso4, Roberto Sulpizio5 1. Università degli Studi di Firenze 2. Università degli Studi di Roma 3 3. Istituto Nazionale di Geofisica e Vulcanologia 4. Università degli Studi di Napoli “Federico II” 5. Università degli Studi di Bari Corresponding Authors e-mail addresses: [email protected] - [email protected] Responsible Director Claudio Campobasso (ISPRA-Roma) Editorial Board Editor in Chief M. Balini, G. Barrocu, C. Bartolini, 2 Gloria Ciarapica (SGI-Perugia) D. Bernoulli, F. Calamita, B. Capaccioni, Editorial Responsible W. Cavazza, F.L. Chiocci, Maria Letizia Pampaloni (ISPRA-Roma) R. Compagnoni, D. Cosentino, S. Critelli, G.V. Dal Piaz, C. D'Ambrogi, Technical Editor publishing group Mauro Roma (ISPRA-Roma) P. Di Stefano, C.