Cover Page of Thesis, Project, Or Dissertation Proposal

Total Page:16

File Type:pdf, Size:1020Kb

Cover Page of Thesis, Project, Or Dissertation Proposal The Geologic History and Evolution of Italy: Highlighting the Relationship Between Geology and Culture A project submitted in partial fulfillment of the requirements for the degree of Master of Arts at George Mason University By Florence C. Katrivanos Bachelor of Arts, 2003 George Mason University Bachelor of Science, 1977 George Mason University Director: Rosemary Jann, Professor Department of English Summer Semester 2009 George Mason University Fairfax, VA Copyright 2009 Florence C. Katrivanos All Rights Reserved ii DEDICATION This is dedicated to my loving husband Harry who supported and encouraged me to indulge in my dream of becoming a geologist. Without his patience and love throughout this 10-year journey, this work would not have been possible. It is also dedicated to my two wonderful sons Michael and Stephen who inspire me to do my best as they do in pursuit of their musical careers. Finally, to Shatsee and Tiger who never failed to purr and snore throughout the late nights of work. iii ACKNOWLEDGEMENTS I wish to extend my heartfelt thanks to several individuals who have made this work possible. My husband Harry provided extraordinary loving support throughout the past ten years while I indulged my passion for geology. My two sons Michael and Stephen have encouraged, and inspired me to try my best through their own dedication to their music. Their technical assistance with computer issues has solved many a problem. My graduate committee adviser Rosemary Jann has been of invaluable assistance in many ways. She taught me how to evolve from a scientific writer to a writer of the humanities and helped me to organize my ideas. Her suggestions on a model for the work were instrumental in establishing the general framework and enabled me to get my thoughts on paper. I am grateful for her steadfast pursuit of excellence on form and format. I appreciate all the time she dedicated to the review of the manuscript and to her many insightful comments. Giuseppina Kysar Mattietti my friend and Italian trained geologist taught me Italy’s geologic history gave me insights to Italian culture. Her gentle encouragement and Italian way of simplifying the complexities of Italy’s geology complemented my way of reasoning and enabled me to understand this geologically challenging Mediterranean region. Rick Diecchio taught my first introductory geology class and several others at George Mason University. He encouraged me to do this work, and made many useful contributions to the manuscript. iv TABLE OF CONTENTS Page List of Tables……………………………………………………………………………vi List of Figures…………………………………………………………………………..vii List of Abbreviations………………………………………………………….………..xii Abstract………………………………………………………………………………..xiii Foreword…………………………………………………………………………….......1 1. Introduction……………………………………………………………………….....3 2. Chapter 1. Geologic Primer……………………………………………………......10 3. Chapter 2. A Summary of Italy’s Geologic Evolution…………………………….51 4. Chapter 3. A Slice of Central Italy – From Rome to Gran Sasso D’Italia (The Regions of Lazio and Abruzzo)……..……………………………………………..63 5. Chapter 4. A Slice Across North/Central Italy – Orvieto, the Geologic History of the Alps and Apennines, the K/T Boundary in Gubbio, Florence, Pisa and Larderello (The Regions of Tuscany, Umbria and Marche)…….…………….....108 6. Chapter 5. Northern Italy – Comparing Alps to Apennines, Lake Como, the Dolomites, Bolzano, Venice (The Regions of Lombardia, Trentino-Alto Adige, and Veneto).………………………………………………………………………164 7. Chapter 6. A Slice of Southern Italy – From Naples to the Promontorio del Gargano, Naples, Mt.Vesuvius, Pompeii, Phlegraean Fields, the New Italian Dinosaur Species (The Regions of Campania and Puglia)..………………………212 Afterword…………………………………………………………………………..274 Works Cited………………………………………………………………………..275 v LIST OF TABLES Table Page 1. Geothermal Fields in Italy Electricity Production 2005…………………………..159 2. Worldwide Geothermal Power Generation in Early 2005………….……………..160 vi LIST OF FIGURES Figure Page 1. Lace from Burano…………………………………………………………………..1 1.1 Geologic Time Scale………………………………………………………………14 1.2 Earth Cutaway……………………………………………………………………..17 1.3 Plate Tectonics……………………………………………………………………..22 1.4 Plate Tectonics……………………………………………………………………..24 1.5 Continental-Continental Convergence……………………………………………..26 1.6 Oceanic-Oceanic Plate Convergence………………………………………………27 1.7 Oceanic-Continental Plate Convergence…………………………………………...28 1.8 Divergent Plate Boundary Sequence………………………………………………29 1.9 Mid-Atlantic Ridge………………………………………………………………...30 1.10 Mid-Ocean Ridge…………………………………………………………………..30 1.11 Normal Fault……………………………………………………………………….31 1.12 Reverse Fault………………………………………………………………………32 1.13 Strike-Slip Fault……………………………………………………………………32 1.14 San Andreas Fault………………………………………………………………….33 1.15 Earthquake Along a Reverse Fault………………………………………………...33 1.16 Welded Tuff………………………………………………………………………..36 1.17 Basalt………………………………………………………………………………37 1.18 Limestone………………………………………………………………………….39 1.19 Travertine in 400 Year Old Building in Rome…………………………………….40 1.20 Map of Major Volcanoes in Italy…………………………………………………..44 1.21 How Calderas Form………………………………………………………………..45 1.22 Shield Volcano……………………………………………………………………..46 1.23 Composite Volcano………………………………………………………………...47 1.24 Cinder Cone Volcano………………………………………………………………48 1.25 Rock Cycle…………………………………………………………………………50 2.1 Digital Elevation Terrain Model of Mediterranean………………………………..52 2.2 Paleogeography of the Mediterranean Late Triassic 200 MY……………………..54 2.3 Paleogeography of the Mediterranean Late Cretaceous to Early Tertiary 100 – 56 MY……………………………………………………………………….56 2.4 Paleogeography of the Mediterranean Late Oligocene to Early Miocene 24 - 15 MY…………………………………………………………………………58 2.5 Paleogeography of the Mediterranean Late Miocene 6 MY……………………….60 3.1 Lazio and Abruzzo Regions of Italy……………………………………………….63 3.2 The Seven Hills of Rome…………………………………………………………..65 vii 3.3 Volcanic Rocks of Sabatini and Alban Hills, Rome……………………………..67 3.4 Sedimentary Environment……………………………………………………….69 3.5 Simplified Geologic and Location Map Showing Sampling Locations…………70 3.6 LANDSAT -7 Image of Rome and Environs……………………………………72 3.7 Lake Bracciano…………………………………………………………………..72 3.8 The Tiber Near Rome……………………………………………………………74 3.9 Tiber River……………………………………………………………………….75 3.10 Drainage Area of Tiber…………………………………………………………..76 3.11 Santa Maria Sopra Minerva……………………………………………………...77 3.12 Fire Department Rescues in Rome Dec. 14, 2008……………………………….78 3.13 Flooded Banks of Tiber in Rome – Dec. 2008…………………………………..78 3.14 Author Drinking From a Fountain at the Vatican………………………………..80 3.15 Karst Terrain in Gran Sasso D’Italia……………………………………………..81 3.16 Temple of Antonius and Faustina, Forum………………………………………..84 3.17 Close up of Temple of Antonius and Faustina Column………………………….84 3.18 Travertine on Outer Wall of Colosseum, Rome………………………………….85 3.19 Roman Colosseum………………………………………………………………..87 3.20 Trevi Fountain……………………………………………………………………88 3.21 The Appian Way………………………………………………………………….89 3.22 Life on the Appian Way…………………………………………………………..90 3.23 Close Up of Basalt and Wheel Tracks on the Appian Way, Rome……………….91 3.24 The Appian Way, Rome…………………………………………………………..92 3.25 Columnar Basalt…………………………………………………………………..94 3.26 Via Appia………………………………………………………………………….94 3.27 Gran Sasso D’Italia, Campo Imperatore…………………………………………..96 3.28 Wild Horses Licking Salt, Campo Imperatore…………………………………….97 3.29 Sketch Map of Gran Sasso Thrust System in the Geological Setting of Central Apennines………………………………………………………………………...100 3.30 Shaded Relief Map of Gran Sasso and Surrounding Areas………………………101 3.31 Epicenters of Instrumental Earthquakes Recorded From 1980-1996 by the Istituto Nazionale di Geofisica e Vulcanologia…………………………………..103 3.32 Earthquake Location in L’Aquila Italy…………………………………………...107 4.1 Tuscany, Umbria and Marche Regions of Italy…………………………………...108 4.2 City of Orvieto…………………………………………………………………….110 4.3 Orvieto Cliff……………………………………………………………………….111 4.4 Geological Schematic of the Orvieto Cliff………………………………………...112 4.5 Schematic Evolution of Orvieto During the Quaternary…………………………..114 4.6 Mechanisms of Instability of Orvieto Rock………………………………………..116 4.7 Strengthening Scheme of Orvieto Rock…………………………………………..117 4.8 Orvieto Cathedral ………………………………………………………………….118 4.9 Orvieto Cathedral Stained Glass-Travertine Window……………………………..119 4.10 Close Up of Orvieto’s Travertine Window………………………………………..119 4.11 Pigeon Holes in Orvieto Underground……………………………………………122 viii 4.12 Aerial View of Lago Trasimeno………………………………………………..124 4.13 Adria and the Adriatic Promontory Converging Northward Towards Europe…128 4.14 The South Side of the Bottaccione Gorge………………………………………129 4.15 KT Boundary and Scaglia rossa Limestone, Gubbio……………………………136 4.16 Tuscan Hillside………………………………………………………………….137 4.17 Façade of Florence’s Duomo…………………………………………………....140 4.18 Detail Design of Florence’s Duomo…………………………………………….141 4.19 Dome of Florence’s Duomo…………………………………………………….142 4.20 Rocks of Florence’s Duomo…………………………………………………….143 4.21 David (Michelangelo)…………………………………………………………...145 4.22 Carrara Quarry…………………………………………………………………..146 4.23 The Pieta…………………………………………………………………………147 4.24 Leaning Tower of Pisa…………………………………………………………..148 4.25 Geological Map of Pisa Area……………………………………………………149 4.26 Geologic Map of Pisa Area………………………………………………………150 4.27 Soil Profile Beneath the Tower…………………………………………………..151 4.28 Proposed Method of Inducing Subsidence by Soil Extraction…………………..152 4.29 Geothermal Reservoir……………………………………………………………154 4.30 First Geothermal
Recommended publications
  • Zoran Gavrilovic(**)
    DOI: 10.4408/IJEGE.2015-01.O-02 APPLICATION OF AN IMPROVED VERSION OF THE EROSION POTENTIAL METHOD IN ALPINE AREAS Luca Milanesi(*), Marco Pilotti(*), aLberto CleriCi(*) & Zoran GavriloviC(**) (*)Università degli Studi di Brescia - DICATAM - Via Branze, 43 - 25123 Brescia, Italy E-mail: [email protected] - [email protected] - [email protected] (**)Institute for the Development of Water Resources “Jaroslav Černi” - Jaroslava Černog, 80 - 11226 Beograd, Serbia - E-mail: [email protected] la valutazione dei processi erosivi e delle loro conseguenze riveste un ruolo fondamentale nella corretta gestione del territorio; gli ambiti d’interesse sono relativi alla fruibilità del suolo, inteso come risorsa ambientale ed economica, all’assetto idrogeologico e, non da ultimo, alle interazioni con numerose opere di ingegneria tra cui spiccano gli invasi ed i manufatti di derivazione. Per queste ragioni si rivelano di grande interesse applicativo le metodologie per la stima del contributo solido di un bacino idrografco ad oppor- tune scale spaziali e temporali. nel presente contributo si considera un modello empirico, il Metodo dell’erosione Potenziale (GavriLovic, 1988), che fornisce indi- cazioni a scala annua sul volume di suolo eroso e trasportato alla sezione di chiusura di un bacino. si propone una revisione organica di alcuni dei suoi criteri di parametrizzazione e delle modalità di implementazione. in particolare, al fne di garantire maggiore semplicità ed oggettività alla fase di stima dei valori dei parametri sul bacino, si è inteso riconsiderare le modalità di classifcazione dell’uso del suolo e delle caratteristiche geomeccaniche dei terreni e delle rocce tramite schemi largamente diffusi nella comunità scientifca (e.g., Corine 2000 per la descrizione degli usi del suolo).
    [Show full text]
  • Abruzzo: Europe’S 2 Greenest Region
    en_ambiente&natura:Layout 1 3-09-2008 12:33 Pagina 1 Abruzzo: Europe’s 2 greenest region Gran Sasso e Monti della Laga 6 National Park 12 Majella National Park Abruzzo, Lazio e Molise 20 National Park Sirente-Velino 26 Regional Park Regional Reserves and 30 Oases en_ambiente&natura:Layout 1 3-09-2008 12:33 Pagina 2 ABRUZZO In Abruzzo nature is a protected resource. With a third of its territory set aside as Park, the region not only holds a cultural and civil record for protection of the environment, but also stands as the biggest nature area in Europe: the real green heart of the Mediterranean. en_ambiente&natura:Layout 1 3-09-2008 12:33 Pagina 3 ABRUZZO ITALY 3 Europe’s greenest region In Abruzzo, a third of the territory is set aside in protected areas: three National Parks, a Regional Park and more than 30 Nature Reserves. A visionary and tough decision by those who have made the environment their resource and will project Abruzzo into a major and leading role in “green tourism”. Overall most of this legacy – but not all – is to be found in the mountains, where the landscapes and ecosystems change according to altitude, shifting from typically Mediterranean milieus to outright alpine scenarios, with mugo pine groves and high-altitude steppe. Of all the Apennine regions, Abruzzo is distinctive for its prevalently mountainous nature, with two thirds of its territory found at over 750 metres in altitude.This is due to the unique way that the Apennine develops in its central section, where it continues to proceed along the peninsula’s
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Minerals-09-00767-V2.Pdf
    minerals Article Geochemical Features and Geological Processes Timescale of the Achaean TTG Complexes of the Ingozero Massif and the Pechenga Frame (NE Baltic Shield) Elena Nitkina * , Nikolay Kozlov, Natalia Kozlova and Tatiana Kaulina Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia; [email protected] (N.K.); [email protected] (N.K.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +79-0213-745-78 Received: 1 November 2019; Accepted: 6 December 2019; Published: 10 December 2019 Abstract: This article provides a geological review and results of the structural, metamorphic, and geochronological studies of the Pechenga frame outcrops located in the NW part of the Central-Kola terrain and the Ingozero massif outcrops situated in the northeastern part of the Belomorian mobile belt of the Kola Region (NW Baltic Shield). As a result of the work, the deformation scales and ages of the geological processes at the Neo-Archaean–Paleoproterozoic stage of the area’s development were compiled, and the reference rocks were dated. The petrochemical and geochemical characteristics of the Ingozero rocks are similar to those of tonalite–trondhjemite–granodiorite (TTG) complexes established on other Archaean shields. The isotope U–Pb dating of individual zircon grains from the biotite gneisses provided the oldest age for magmatic protolith of the Ingozero gneisses, which is 3149 46 Ma. Sm–Nd model ages showed that the gneisses protolite initial melt formed at 3.1–2.8 Ga. ± Ages of metamorphic processes were determined by using isotope U–Pb dating ID TIMS (isotope dilution thermal ionization mass spectrometry): Biotite gneisses—2697 9 Ma; amphibole–biotite ± gneisses—2725 2 Ma and 2667 7 Ma; and biotite–amphibole gneisses 2727 5 Ma.
    [Show full text]
  • Mesozoic Central Atlantic and Ligurian Tethys1
    42. RIFTING AND EARLY DRIFTING: MESOZOIC CENTRAL ATLANTIC AND LIGURIAN TETHYS1 Marcel Lemoine, Institut Dolomieu, 38031 Grenoble Cedex, France ABSTRACT The Leg 76 discovery of Callovian sediments lying above the oldest Atlantic oceanic crust allows us to more closely compare the Central Atlantic with the Mesozoic Ligurian Tethys. As a matter of fact, during the Late Jurassic and Ear- ly Cretaceous, both the young Central Atlantic Ocean and the Ligurian Tethys were segments of the Mesozoic Tethys Ocean lying between Laurasia and Gondwana and linked by the Gibraltar-Maghreb-Sicilia transform zone. If we as- sume that the Apulian-Adriatic continental bloc (or Adria) was then a northern promontory of Africa, then the predrift and early drift evolutions of both these oceanic segments must have been roughly the same: their kinematic evolution was governed by the east-west left-lateral motion of Gondwana (including Africa and Adria) relative to Laurasia (in- cluding North America, Iberia, and Europe), at least before the middle Cretaceous (=100 Ma). By the middle Cretaceous, opening of the North Atlantic Ocean led to a drastic change of the relative motions between Africa-Adria and Europe-Iberia. From this time on, closure of the Ligurian segment of the Tethys began, whereas the Central Atlan- tic went on spreading. In fact, field data from the Alps, Corsica, and the Apennines show evidence of a Triassic-Jurassic-Early Cretaceous paleotectonic evolution rather comparable with that of the Central Atlantic. Rifting may have been started during the Triassic (at least the late Triassic) but reached its climax in the Liassic.
    [Show full text]
  • Bollettino Ufficiale Serie Ordinaria N. 31
    Bollettino Ufficiale – 85 – Serie Ordinaria n. 31 - Giovedì 30 luglio 2020 D.g.r. 28 luglio 2020 - n. XI/3426 • riteneva che un’azione di controllo del Cormorano, presen- Autorizzazione al controllo selettivo del Cormorano te in alcune aree chiave per la conservazione di specie itti- (phalacrocorax carbo sinensis) nel periodo compreso tra il che, potesse essere considerata rafforzativa di azioni di altra 1° ottobre 2020 ed il 15 marzo 2021, ai sensi dell’art. 9, comma natura condotte ai fini di tutela di queste specie ittiche; 1, lett. a), della dir. 2009/147/CE, degli artt. 19 e 19 bis della l. 157/92 e dell’art. 41 della l.r. 26/93 • individuava i termini temporali per il primo anno di applica- zione del controllo; LA GIUNTA REGIONALE • indicava il numero di capi abbattibili, che non dovevano Vista la direttiva comunitaria 2009/147/CE concernente la superare il 10% del totale dei cormorani censiti durante gli conservazione degli uccelli selvatici e in particolare l’art. 9, com- IWC; ma 1, lettera a), che consente agli Stati membri di derogare al • dava specifiche indicazioni tecniche in merito alle modalità divieto di cui agli artt. 5, 6, 7 e 8 della stessa direttiva, allo scopo, con cui effettuare gli abbattimenti, prevedendo anche un tra gli altri, di prevenire gravi danni alle colture, al bestiame, ai monitoraggio degli effetti degli interventi sui popolamenti boschi, alla pesca e alle acque; ittici delle zone interessate dalle specie target di conserva- Vista la legge 11 febbraio 1992, n.157 «Norme per la protezio- zione; ne della fauna selvatica omeoterma e per il prelievo venatorio» • sanciva la necessità di inviare annualmente una rendicon- ed, in particolare, l’articolo 19 che prevede che le regioni, per la tazione all’Istituto, prevedendo la possibilità di inviare, con- tutela delle produzioni zoo-agro-forestali ed ittiche, provvedano testualmente, una richiesta di parere per l’anno successi- al controllo delle specie di fauna selvatica anche nelle zone vie- vo, stabilendo che al termine dei cinque anni, si sarebbe tate alla caccia, nonché l’art.
    [Show full text]
  • Rifugio Campo Imperatore + Center for Ecotourism and Cultural Creativity
    CAMPO IMPERATORE Center for Ecotourism + Cultural Creativity ANALYSIS, RESEARCH AND DESIGN FOR THE REQUALIFICATION OF NEGLECTED SPACES Prepared by Elsa G. De Leon ENVIRONMENT LOCATION Parco Nazionale del Gran Sasso e Monti della Laga Provincia di Terramo Urbino Provincia Marche di Pescara Abruzzo Campo L’Aquila Provincia Imperatore Lazio di Chieti Roma Campo Imperatore Parco Nazionale della Parco Nazionale Provincia Majella dell’Aquila d’Abruzzo ABRUZZO - ITALY. Italian Region. PROVINCIA DELL’AQUILA. Abruzzo Province. GRAN SASSO. National Park. CAMPO IMPERATORE. Alpine meadow. ASCOLIPICENO CULTURAL + VALUES SAN GIACOMO L’ecomuseo di Valle Castellana Ripe Valle Castellana Lago di CEPPO Campotosto L’ecomuseo di Lago di Valle Castellana Campotosto TERAMO AMATRICE CAMPOTOSTO PIETRACAMELA ISOLA DEL GRAN SASSO Arsita Prati di Tivo S. Pietro CAMPO IMPERATORE Museo del Camoscio Orto Botanico Appenninico di San Colombo FONTE VETICA FONTE CERRETO Farindola Arischia Assergi LAGO RACOLLO S. Stefano di Sessanio L’AQUILA Barisciano Calascio PARCO NAZIONALE L’Aquila Centro GRAN SASSO E MONTI DELLA LAGA Visite Fiume Tirino Bussi sul Tirino Historic Center km 0 1 2 3 4 5 km ENVIRONMENTAL + CULTURAL VALUES 150.000 3 5 44 HECTARES REGIONS PROVINCES MUNICIPALITIES BIODIVERSITY AGRO-BIODIVERSITY 51 In danger flora Cereals Solina, Farro Rosso 59 Spontaneous Orchids Legumes Lentils of Santo Stefano di Sessanio 2 Carnivorous plants Vegetables Red Potato Aromatic Plants Tansy, Customary 2364 Register Plants Fruit Trees Apples, figs, Mediterranean hack berry, almonds
    [Show full text]
  • Sources and Resources/ Fuentes Y Recursos
    ST. FRANCIS AND THE AMERICAS/ SAN FRANCISCO Y LAS AMÉRICAS: Sources and Resources/ Fuentes y Recursos Compiled by Gary Francisco Keller 1 Table of Contents Sources and Resources/Fuentes y Recursos .................................................. 6 CONTROLLABLE PRIMARY DIGITAL RESOURCES 6 Multimedia Compilation of Digital and Traditional Resources ........................ 11 PRIMARY RESOURCES 11 Multimedia Digital Resources ..................................................................... 13 AGGREGATORS OF CONTROLLABLE DIGITAL RESOURCES 13 ARCHIVES WORLDWIDE 13 Controllable Primary Digital Resources 15 European 15 Mexicano (Nahuatl) Related 16 Codices 16 Devotional Materials 20 Legal Documents 20 Maps 21 Various 22 Maya Related 22 Codices 22 Miscellanies 23 Mixtec Related 23 Otomi Related 24 Zapotec Related 24 Other Mesoamerican 24 Latin American, Colonial (EUROPEAN LANGUAGES) 25 PRIMARY RESOURCES IN PRINTED FORM 25 European 25 Colonial Latin American (GENERAL) 26 Codices 26 2 Historical Documents 26 Various 37 Mexicano (Nahautl) Related 38 Codices 38 Lienzo de Tlaxcala 44 Other Lienzos, Mapas, Tiras and Related 45 Linguistic Works 46 Literary Documents 46 Maps 47 Maya Related 48 Mixtec Related 56 Otomí Related 58 (SPREAD OUT NORTH OF MEXICO CITY, ALSO HIDALGO CLOSELY ASSOCIATED WITH THE OTOMÍ) Tarasco Related 59 (CLOSELY ASSOCIATED WITH MICHOACÁN. CAPITAL: TZINTZUNRZAN, LANGUAGE: PURÉPECHA) Zapotec Related 61 Other Mesoamerican 61 Latin American, Colonial (EUROPEAN LANGUAGES) 61 FRANCISCAN AND GENERAL CHRISTIAN DISCOURSE IN NATIVE
    [Show full text]
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • SACRO MONTE DE CREA Locarno (CH)
    Photo A. Langhi SACRI MONTI DU PIÉMONT ET DE LOMBARDIE Briga (CH) SACRO MONTE DE CREA Locarno (CH) United Nations Sacri Monti del Piemonte Riserva speciale Surface: 47 hectares Educational, Scientific and e della Lombardia Sacro Monte DOMODOSSOLA Cultural Organization Iscritti nella lista del Patrimonio di Crea Lugano (CH) Mondiale nel 2003 Altitude: 355 - 455 métres GHIFFA SS33 Position: colline SS34 Verbania Propriété: diocèse OSSUCCIO SS340 Sacro Monte de Casale Monferrato Aosta-Ginevra (CH) VARALLO VARESE Como ORTA A26 SP229 A9 OROPA A8-A26 A5 SP299 A8 SP144 Borgomanero de Crea Biella Romagnano SP338 Venezia SP230 A4 ZONE PROTÉGÉE ET MILIEU Cuorgné Ivrea SS565 A4-A5 Novara MILANO Valperga Le Sacro Monte se dresse sur un des points les plus Vercelli Bologna BELMONTE A4 Firenze élevés du secteur oriental du Bas Montferrat, sur une SP460 A26-A4 Roma SP590 colline aux pentes assez raides constituée par de la A26 Serralunga roche sédimentaire facilement érodable. L’exposition SP457 Casale Monferrato CREA TORINO et les conditions climatiques particulières facilitent la Savona Moncalvo Alessandria-Genova croissance d’une grande variété de plantes (depuis le début du XXe siècle, 996 espèces floristiques ont été recensées dans cette zone) ainsi que la cohabitation de L’accès au Mont Sacré est libre et l’entrée est gratuite groupes de plantes ayant des exigences opposées. Le COMMENT VOUS Y RENDRE sous-bois se compose de cornouillers, fusains d’Europe, En voiture: autoroute A26, sortie Casale Sud, direction Asti et Moncalvo, une fois au hameau La Madonnina di Serralunga, suivre les indications pour le Mont Sacré. baguenaudiers, genêts, viornes lantanes.
    [Show full text]
  • Deinogalerix : a Giant Hedgehog from the Miocene
    Annali dell’Università di Ferrara ISSN 1824-2707 Museologia Scientifica e Naturalistica Volume 6 (2010) Deinogalerix : a giant hedgehog from the Miocene Boris VILLIER* * Dipartimento di scienze della Terra, Università degli Studi di Torino [email protected] SUPERVISORS: Marco Pavia e Marta Arzarello __________________________________________________________________________________ Abstract During the Miocene the Abruzzo/Apulia region (Italy), isolated from the continent, was the theatre of the evolution of a vertebrate ecosystem in insular context. At the late Miocene the protagonists of this ecosystem called “ Mikrotia fauna ” show a high endemic speciation level with spectacular giant and dwarf species of mammals and birds. Most of the remains of this peculiar fauna are found exclusively in the “Terre rosse” of Gargano, except for the oldest genus: Deinogalerix and Hoplitomeryx , also found at Scontrone. Deinogalerix is one of the most uncommon forms of the “ Mikrotia fauna ”. It’s the largest Erinaceidea ever lived. Deinogalerix was described for the first by Freudenthal (1972) then by Butler (1980). Today the five species yet described are under discussion cause of the high intraspecific variations in an insular evolution context. In this study we valuated the information that could bring the new discoveries of Deinogalerix remains. The work was divided into three main parts: the preparation of the material, the drawing reconstructions and the anatomical description. The most important specimen was the second sub-complet skeleton ever found. We gave the most objective anatomical description for futures comparison with the first skeleton from a different specie. We put the finger on new juvenile features and on the relation between the growth of Deinogalerix and his feeding behaviours.
    [Show full text]