Contraints for an Interpretation of the Italian Geodynamics: a Review Vincoli Per Una Interpretazione Della Geodinamica Italiana: Una Revisione

Total Page:16

File Type:pdf, Size:1020Kb

Contraints for an Interpretation of the Italian Geodynamics: a Review Vincoli Per Una Interpretazione Della Geodinamica Italiana: Una Revisione Mem. Descr. Carta Geol. d’It. LXII (2003), pp. 15-46 16 figg. Contraints for an interpretation of the italian geodynamics: a review Vincoli per una interpretazione della geodinamica italiana: una revisione SCROCCA D. (1), DOGLIONI C. (2), INNOCENTI F. (3) ABSTRACT - To properly frame the seismic data acquired RIASSUNTO - Per un opportuno inquadramento dei dati with the CROP Project, the geophysical and geological charac- sismici acquisiti nell’ambito del Progetto CROP negli ultimi anni, teristics of the Italian region and a review of magmatism are vengono sinteticamente descritte le principali caratteristiche geo- briefly illustrated and commented. fisiche, magmatologiche e geologiche della regione italiana. A description of the crustal and lithospheric structure is Le informazioni disponibili sulle struttura crostale e lito- coupled with a synthesis of the available geophysical data sets, sferica sono accompagnate da una sintesi dei dati relativi alle namely: Bouguer gravity anomalies, heat flow data, magnetic anomalie gravimetriche di Bouguer, al flusso di calore, alle ano- anomalies, seismicity, tomography and present-day stress field. malie magnetiche, alle caratteristiche sismologiche e al campo Several magmatic episodes with different geodynamic signifi- di stress attuale. cance occurred in Italy. A review of magmatism in the Alps Inoltre, viene fornita una panoramica degli eventi magma- and in the Apennines is provided; igneous products are distin- tici che hanno caratterizzato la complessa evoluzione geodina- guished, in the Tyrrhenian and circum-Tyrrhenian region, in mica della regione in esame. Una particolare attenzione è stata relation with the nature of the dominant magmatic source. dedicata al magmatismo della regione tirrenica e circum-tirre- Finally, the tectonic evolution of the Alps and the Apen- nica; i prodotti ignei sono stati distinti in relazione alla natura nines is synthesised together with a comparison of the main della sorgente magmatica dominante. morphological, structural and geodynamic features of these Infine, sono state incluse una breve ricostruzione dell’e- two orogens. voluzione tettonica delle Alpi e degli Appenini ed un confron- All these datasets highlight a complex geodynamic setting to tra le caratteristiche morfologiche, strutturali e geodinami- characterised, apart from the relatively stable foreland areas, by che di questi due orogeni. two very different orogens: the Alps and the Apennines. Tutte queste differenti fonti di dati mettono in luce un The Alps represent a double-verging orogen with a long quadro geodinamico caratterizzato, a parte le aree di avampae- lasting geological evolution: this orogen shows a quite well se relativamente stabili, dalla presenza di due orogeni molto developed lithospheric root and a documented overthrusting differenti: le Alpi e gli Apennini. of the Adriatic plate over the European plate from Cretaceous Le Alpi rappresentano un orogene con doppia vergenza e to present. una lunga evoluzione geologica; tale orogene è caratterizzato The Apennines are rather a rapidly migrating thrust belt, da radici litosferiche abbastanza sviluppate e dal documentato developed mainly in Neogene times during the eastward roll- sovrascorrimento della placca adriatica su quella europea, avve- back of the subducting Adriatic plate; this orogen is associat- nuto dal Cretacico all’attuale. ed with a back-arc basin (Tyrrhenian Sea) characterised in some Gli Appennini, invece, sono una catena in rapida migra- part by oceanic crust and high heat flow. zione sviluppatasi prevalentemente durante il Neogene, in risposta all’arretramento flessurale della placca adriatica in sub- duzione; questa catena è associata con un bacino estensionale di retro-arco (il Mar Tirreno) che presenta in alcune zone una crosta oceanica ed un elevato flusso di calore. KEY WORDS: Geodynamics, magmatism, tectonics, Italy PAROLE CHIAVE: Geodinamica, magmatismo, tettonica, Italia (1) Istituto di Geologia Ambientale e Geoingegneria - CNR, c/o Dipartimento di Scienze della Terra, Università La Sapienza, P.le A. Moro 5 - 00185 Roma. (2) Dipartimento di Scienze della Terra, Università La Sapienza, P.le A. Moro 5 – 00185 Roma. (3) Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 56 – 56127 Pisa 16 SCROCCA D. - DOGLIONI C. - INNOCENTI F. 1. - INTRODUCTION part of it (among the others: CASSINIS, 1983; WIG- GER, 1984; NICOLICH, 1989; NICOLICH & DAL PIAZ, The geology of Italy is a lively system that can be 1992; NICOLICH, 2001). traced from the early Paleozoic Hercynian orogen, Updated interpretation for part of the Italian throughout the Mesozoic opening of Tethys oceans region have then been proposed for the Alps to the later closure of these oceanic embayments, (KISSLING, 1993; SCARASCIA & CASSINIS, 1997; WALD- during the Alpine and Apenninic subductions. In HAUSER et alii, 1998) and for the Ligurian, Tyrrhen- spite of the long standing geological and geophysi- ian and Ionian Seas and adjacent on-shore areas cal studies, many unsolved questions remain about (SCARASCIA et alii, 1994). its structure and geodynamic evolution. Overall, the Italian crust is generally continental The huge amount of new NVR seismic data apart in the Tyrrhenian abyssal plain where a 10 km acquired with the CROP Project (about 1250 km thick Late Miocene - Pliocene oceanic crust is pres- onshore and more than 8740 km offshore) has ent (fig. 2), and in the Ionian Sea, where a Mesozoic brought a new valuable input to improve our under- oceanic crust is buried underneath a thick pile of standing of this part of the Mediterranean region. sediments (CATALANO et alii, 2001). Aim of this contribution is to briefly review the Stable areas (Sardinia, Adriatic sea and Puglia) main geophysical and geological features of the Ital- have Moho depths at about 30 km while the crust is ian region to properly frame this relevant data-set, thicker underneath the Alpine belt (45-55 km) and now available to the scientific community. The final is thinner in west Tuscany and Latium (20-25 km). references, only partly cited in the text, are an Several different Moho discontinuities may be updated collection of articles which might be help- distinguished: a new forming Neogene-Quaternary ful to the reader for further studies. Moho with low velocities in the Tyrrhenian basin and The present day geological and geomorpholog- western Apennines (Tyrrhenian Moho), an old Pale- ic setting of the Italian peninsula is marked by the ozoic-Mesozoic Moho in the Padano-Adriatic-Iblean two orogens, the Alps to the north, and the Apen- foreland areas (Adriatic Moho), and another Paleo- nines along the peninsula and Sicily (fig. 1). Very zoic-Mesozoic old Moho in the Alpine belt and Sar- limited areas in Italy have not been involved by the dinia (European Moho). The available data outline a two orogenic waves, i.e. the Puglia region, part of framework where the Adriatic Moho overrode the the Iblean Plateau (SE-Sicily), a few areas in the Po European Moho in the Alps while the Adriatic Moho and Venetian plains, and the Sardinia island. These underthrust the Tyrrhenian Moho to the south. foreland areas, even if not or weakly compressed by the orogenic waves, underwent subsidence or uplift movements connected to the migration of the Alpine or Apenninic fronts. 2.2. - LITHOSPHERE THICKNESS The present day Apenninic foredeep can be fol- lowed on the external side of the Apenninic chain The properties of the lithosphere-asthenos- from Southern Apennines to the Po Plain where it phere system and their lateral variations were clear- interferes with the older Southalpine foredeep. ly focussed in Italy and surrounding regions during Furthermore, the Apennines are characterised on the 1980’s (CALCAGNILE & PANZA, 1980; PANZA et their west side by the presence of a back-arc basin, alii, 1980; PANZA, 1984; SUHADOLC et alii, 1990). A the Tyrrhenian sea, developed from Miocene times. map of the lithospheric thickness, compiled by Before describing the geodynamic and the tec- PANZA et alii, (1992) and based on an analysis on the tonic evolution of the Alps and the Apennines, the surface waves dispersion, is represented in figure 3. available geophysical and geological data and a Although the distinction between the new litho- review of magmatism will be briefly illustrated and sphere in the Tyrrhenian back-arc basin and the old commented in the following chapters. subducting Apulo-Adriatic lithosphere has not been represented in this map, the main features of the lithosphere-asthenosphere system can be easily 2. - GEOPHYSICAL DATA recognised. The lithospheric thickness in foreland areas 2.1. - MOHO ISOBATHS varies from 70 km in the northern Adriatic Sea to about 110 km to the south-east in Puglia. In the In the last decades several reconstructions of Tyrrhenian Sea, lithosphere thickness thins to 20-30 the Moho-discontinuity isobaths, based on seismic km. Along the Alps belt the lithosphere shows the data, have been proposed for the Italian area or for higher thickness (up to 130 km in western Alps). CONTRAINS FOR AN INTERPRETATION OF THE ITALIAN GEODYNAMICS: A REVIEW 17 Fig. 1 – Synthetic tectonic map of Italy and surrounding seas; 1) Foreland areas; 2) foredeep deposits (delimited by the –1000 m isobath); 3) domains cha- racterised by a compressional tectonic regime in the Apennines; 4) thrust belt units accreted during the Alpine orogenesis in the Alps and in Corsica; 5) areas affected by extensional tectonics: these areas can be considered as a back-arc basin system
Recommended publications
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • The Structure and Formation of the Tyrrhenian Basin in the Western Mediterranean Back-Arc Setting
    Instituto de Ciencias del Mar Departament de Geodinàmica i Unidad deTecnología Marina Geofísica Barcelona Center for Consejo Superior de Subsurface Imaging Investigaciones Científicas The structure and formation of the Tyrrhenian basin in the Western Mediterranean back-arc setting Formación y estructura de la cuenca del Tirreno en el contexto de retrarco del Mediterraneo Occidental Memoria de Tesis Doctoral presentada por Manuel Prada Dacasa para optar al grado de Doctor en Geología por la Universidad de Barcelona Esta memoria se ha realizado dentro del programa de Doctorado de Ciencias de la Tierra de la Universidad de Barcelona bajo la dirección del Dr. Valentí Sallarès Casas y Dr. César Rodríguez Ranero, y bajo la tutela de Pilar Queralt Capdevila Barcelona, Enero de 2014 Para todo aquel que desee descubrir… Agradecimientos Para empezar, quiero agradecer a mis dos directores de Tesis, Valentí y César, el esfuerzo dedicado en mí durante estos cuatro años y medio de Doctorado. A Valentí, por su disposición a ayudar y la confianza depositada en mí, pero sobre todo por ser un buen consejero y maestro, gracias. A César, por enseñarme a ser un poco más exigente conmigo mismo, y por sus lecciones geológicas, su amplia visión me ha permitido “empezar” a comprender algunos de los procesos de formación de cuencas extensivas. Gracias a los dos por haber hecho que el camino sea un poco más llano. Quiero agradecer también a Nevio por haberme acogido en Bolonia y haber hecho que mi estancia allí sea provechosa. Sus conocimientos de la cuenca Tirrena son realmente extensos y han sido muy útiles para poder finalizar esta tesis.
    [Show full text]
  • Holocene Evolution of the Burano Paleo-Lagoon (Southern Tuscany, Italy)
    water Article Holocene Evolution of the Burano Paleo-Lagoon (Southern Tuscany, Italy) Maurizio D’Orefice 1, Piero Bellotti 2, Adele Bertini 3 , Gilberto Calderoni 4, Paolo Censi Neri 1, Letizia Di Bella 5,*, Domenico Fiorenza 1, Luca Maria Foresi 6,7, Markella Asimina Louvari 8, Letizia Rainone 3,Cécile Vittori 9 , Jean-Philippe Goiran 10, Laurent Schmitt 9 , Pierre Carbonel 10, Frank Preusser 11 , Christine Oberlin 12, Francesca Sangiorgi 13 and Lina Davoli 5 1 Italian Institute for Environmental Protection and Research, ISPRA, Department for the Geological Survey of Italy, 00144 Rome, Italy; maurizio.dorefi[email protected] (M.D.); [email protected] (P.C.N.); domenico.fi[email protected] (D.F.) 2 AIGeo, Italian Association of Physical Geography and Geomorphology, c/o Department of Earth Sciences, Sapienza, University of Rome, 00185 Rome, Italy; [email protected] 3 Department of Earth Sciences, University of Florence, 50121 Florence, Italy; adele.bertini@unifi.it (A.B.); [email protected]fi.it (L.R.) 4 Institute of Environmental Geology and Geoengineering, CNR, c/o Department of Earth Sciences, Sapienza, University of Rome, 00185 Rome, Italy; [email protected] 5 Department of Earth Sciences, Sapienza, University of Rome, 00185 Rome, Italy; [email protected] 6 Department of Physical sciences, Earth and environment University of Siena, 53100 Siena, Italy; [email protected] 7 Institute of Geosciences and Earth resources, CNR, c/o Research Area of Pisa, 1–56124 Pisa, Italy 8 Faculty of Geology
    [Show full text]
  • Minerals-09-00767-V2.Pdf
    minerals Article Geochemical Features and Geological Processes Timescale of the Achaean TTG Complexes of the Ingozero Massif and the Pechenga Frame (NE Baltic Shield) Elena Nitkina * , Nikolay Kozlov, Natalia Kozlova and Tatiana Kaulina Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia; [email protected] (N.K.); [email protected] (N.K.); [email protected] (T.K.) * Correspondence: [email protected]; Tel.: +79-0213-745-78 Received: 1 November 2019; Accepted: 6 December 2019; Published: 10 December 2019 Abstract: This article provides a geological review and results of the structural, metamorphic, and geochronological studies of the Pechenga frame outcrops located in the NW part of the Central-Kola terrain and the Ingozero massif outcrops situated in the northeastern part of the Belomorian mobile belt of the Kola Region (NW Baltic Shield). As a result of the work, the deformation scales and ages of the geological processes at the Neo-Archaean–Paleoproterozoic stage of the area’s development were compiled, and the reference rocks were dated. The petrochemical and geochemical characteristics of the Ingozero rocks are similar to those of tonalite–trondhjemite–granodiorite (TTG) complexes established on other Archaean shields. The isotope U–Pb dating of individual zircon grains from the biotite gneisses provided the oldest age for magmatic protolith of the Ingozero gneisses, which is 3149 46 Ma. Sm–Nd model ages showed that the gneisses protolite initial melt formed at 3.1–2.8 Ga. ± Ages of metamorphic processes were determined by using isotope U–Pb dating ID TIMS (isotope dilution thermal ionization mass spectrometry): Biotite gneisses—2697 9 Ma; amphibole–biotite ± gneisses—2725 2 Ma and 2667 7 Ma; and biotite–amphibole gneisses 2727 5 Ma.
    [Show full text]
  • Mesozoic Central Atlantic and Ligurian Tethys1
    42. RIFTING AND EARLY DRIFTING: MESOZOIC CENTRAL ATLANTIC AND LIGURIAN TETHYS1 Marcel Lemoine, Institut Dolomieu, 38031 Grenoble Cedex, France ABSTRACT The Leg 76 discovery of Callovian sediments lying above the oldest Atlantic oceanic crust allows us to more closely compare the Central Atlantic with the Mesozoic Ligurian Tethys. As a matter of fact, during the Late Jurassic and Ear- ly Cretaceous, both the young Central Atlantic Ocean and the Ligurian Tethys were segments of the Mesozoic Tethys Ocean lying between Laurasia and Gondwana and linked by the Gibraltar-Maghreb-Sicilia transform zone. If we as- sume that the Apulian-Adriatic continental bloc (or Adria) was then a northern promontory of Africa, then the predrift and early drift evolutions of both these oceanic segments must have been roughly the same: their kinematic evolution was governed by the east-west left-lateral motion of Gondwana (including Africa and Adria) relative to Laurasia (in- cluding North America, Iberia, and Europe), at least before the middle Cretaceous (=100 Ma). By the middle Cretaceous, opening of the North Atlantic Ocean led to a drastic change of the relative motions between Africa-Adria and Europe-Iberia. From this time on, closure of the Ligurian segment of the Tethys began, whereas the Central Atlan- tic went on spreading. In fact, field data from the Alps, Corsica, and the Apennines show evidence of a Triassic-Jurassic-Early Cretaceous paleotectonic evolution rather comparable with that of the Central Atlantic. Rifting may have been started during the Triassic (at least the late Triassic) but reached its climax in the Liassic.
    [Show full text]
  • The Mediterranean Region—A Geological Primer
    160 Article by William Cavazza1 and Forese Carlo Wezel2 The Mediterranean region—a geological primer 1 Dept. of Earth and Geoenvironmental Sciences, Univ. of Bologna, Italy. [email protected] 2 Institute of Environmental Dynamics, University of Urbino, Italy. [email protected] The last twenty-five years of geological investigation of the Mediterranean region have disproved the traditional Introduction notion that the Alpine-Himalayan mountain ranges Many important ideas and influential geological models have been originated from the closure of a single, albeit complex, developed based on research undertaken in the Mediterranean oceanic domain—the Tethys. Instead, the present-day region. For example, the Alps are the most studied orogen in the geological configuration of the Mediterranean region is world, their structure has been elucidated in great detail for the most part and has served as an orogenic model applied to other collisional the result of the creation and ensuing consumption of orogens. Ophiolites and olistostromes were defined and studied for two major oceanic basins—the Paleotethys and the the first time in this region. The Mediterranean Sea has possibly the Neotethys—and of additional smaller oceanic basins highest density of DSDP/ODP sites in the world, and extensive within an overall regime of prolonged interaction research on its Messinian deposits and on their on-land counterparts has provided a spectacular example for the generation of widespread between the Eurasian and the African-Arabian plates. basinal evaporites. Other portions of this region are less well under- In greater detail, there is still some debate about exactly stood and are now the focus of much international attention.
    [Show full text]
  • Ocean Drilling Program Initial Reports Volume
    1. INTRODUCTION1 Shipboard Scientific Party2 The Tyrrhenian Sea is the small triangular sea surrounded by and Ryan, 1986). Furthermore, because the Tyrrhenian is peninsular Italy, Sicily, Sardinia, and Corsica (Fig. 1). Drilling bounded to the northeast and southeast by orogenic belts (see objectives for Leg 107 of the Ocean Drilling Program consid• "A Review of Circum-Tyrrhenian Regional Geology" chapter, ered the Tyrrhenian Sea from three different perspectives: (1) as this volume), interactions between extension and collision could a landlocked back-arc basin, (2) as a young passive margin, and be explored and the basin could be regarded as a model for (3) as a stratigraphic type locality. landlocked back-arc basin evolution. In common with other back-arc basins, the Tyrrhenian Sea In common with other passive margins, the western Tyrrhe• exhibits a Benioff zone (Gasparini et al., 1982), a calc-alkaline nian Sea is floored by continental crust which has been stretched volcanic belt (Barberi et al., 1974; Selli et al., 1977), thinned and thinned by listric faulting (Fabbri et al., 1981; Malinverno crust on the margins (Panza et al., 1980), tholeiitic (mid-ocean et al., 1981; Rehault et al., 1985). A principal goal of drilling on ridge basalt) volcanism (Barberi et al., 1978; Dietrich et al., the Tyrrhenian margin was to determine the timing and rate of 1978) high heat flow (Delia Vedova et al., 1984; Hutchinson et extension and subsidence during the stretching phase as well as al., 1985), and high-amplitude magnetic anomalies (Bolis
    [Show full text]
  • Evidence for Ancient Lithospheric Deformation in the East European
    Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol To cite this version: Andreas Wuestefeld, Goetz Bokelmann, Guilhem Barruol. Evidence for ancient lithospheric defor- mation in the East European Craton based on mantle seismic anisotropy and crustal magnetics. Tectonophysics, Elsevier, 2010, 481 (1-4), pp.16-28. 10.1016/j.tecto.2009.01.010. hal-00475647 HAL Id: hal-00475647 https://hal.archives-ouvertes.fr/hal-00475647 Submitted on 27 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evidence for ancient lithospheric deformation in the East European Craton based on mantle seismic anisotropy and crustal magnetics Andreas Wüstefeld ⁎,1, Götz Bokelmann 2, Guilhem Barruol 2 Université Montpellier II, CNRS, Geosciences Montpellier, 34095 Montpellier, France article info abstract Article history: We present new shear wave splitting measurements performed at 16 stations on the East European Craton, Received 28 May 2008 and discuss their implications in terms of upper mantle anisotropy for this geophysically poorly known Accepted 6 January 2009 region. Previous investigations of mantle anisotropy in Central Europe have shown fast directions aligning Available online 19 January 2009 smoothly with the craton's margin and various suggestions have been proposed to explain their origin such as asthenospheric flow or lithospheric frozen in deformation.
    [Show full text]
  • The Western Tyrrhenian Sea: a Rifted Basin During the Messinian Salinity Crisis
    Geophysical Research Abstracts Vol. 20, EGU2018-17726, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. The Western Tyrrhenian Sea: A rifted basin during the Messinian Salinity Crisis Gaël Lymer (1), Johanna Lofi (2), Virginie Gaullier (3), Agnès Maillard (4), Isabelle Thinon (5), Frank Chanier (3), and Bruno Vendeville (3) (1) Univ. Birmingham, U.K. ([email protected]), (2) Univ. Montpellier, Géosciences Montpellier, France (johanna.lofi@gm.univ-montp2.fr), (3) Université de Lille, LOG - UMR 8187, Villeneuve d’Ascq, France ([email protected]), (4) Univ. Toulouse / GET, France ([email protected]), (5) BRGM Orléans, France ([email protected]) In the last fifty years, the Messinian Salinity Crisis (MSC) has been widely investigated through the Mediterranean Sea, but a major basin remains fewly explored in terms of MSC thematic: the Western Tyrrhenian Basin. The rifting of this back-arc basin is considered to occur between the Middle-Miocene and the Early-Pliocene, thus including the MSC, giving a unic opportunity to study this crisis in a context of active geodynamics. However the MSC seismic markers in the Western part of the Tyrrhenian Sea have only been investigated in the early eighties and the MSC event in the Western Tyrrhenian Basin remains poorly studied and unclear. In this study, we revisit the MSC in the Western Tyrrhenian Basin, i.e. along the Eastern Sardinian margin. We present results from the interpretation of a 2400 km long HR seismic-reflection dataset, acquired along the margin during the “METYSS” research cruises in 2009 and 2011.
    [Show full text]
  • Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)
    Georgia State University ScholarWorks @ Georgia State University Geosciences Theses Department of Geosciences 4-27-2010 Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy) Jennifer M. Dickie Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/geosciences_theses Part of the Geography Commons, and the Geology Commons Recommended Citation Dickie, Jennifer M., "Mineralogical and Geochemical Indicators of Subaerial Weathering in the Pozzolane Rosse Ignimbrite (Alban Hills Volcanic District, Italy)." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/geosciences_theses/23 This Thesis is brought to you for free and open access by the Department of Geosciences at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Geosciences Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. MINERALOGICAL AND GEOCHEMICAL INDICATORS OF SUBAERIAL WEATHERING IN THE POZZOLANE ROSSE IGNIMBRITE (ALBAN HILLS VOLCANIC DISTRICT, ITALY) by JENNIFER M. DICKIE Under the direction of Dr. Daniel Deocampo ABSTRACT The Pozzolane Rosse ignimbrite [PR] (457±4 ka) in the Alban Hills Volcanic District, Rome, Italy was exposed ~ 40 ka prior to a subsequent volcanic event which coverd it entirely. XRF, XRD, and clay separation results from PR samples from INGV and CA1 boreholes and Castel di Leva quarry show evidence of paleopedogenesis. All locations display loss of base cations, loss of K is consistent with XRD datat showing dissolution or alteration of leucite to analcime. Accumulation of Al and high L.O.I. support XRD evidence of 1:1 clay species at upper depth.
    [Show full text]
  • The Internal Northern Apennines, the Northern Tyrrhenian Sea and the Sardinia-Corsica Block
    Special Volume of the Italian Geological Society for the IGC 32 Florence-2004 THE INTERNAL NORTHERN APENNINES, THE NORTHERN TYRRHENIAN SEA AND THE SARDINIA-CORSICA BLOCK CARMIGNANI L., CONTI P., CORNAMUSINI G., MECCHERI M. Centro di Geotecnologie, Università di Siena, via Vetri Vecchi 34, 52027 –Valdarno (Arezzo), Italy Dipartimento di Scienze della Terra, Università di Siena, via Latrina 8, 53100 – Siena, Italy. ABSTRACT: In this paper we review the evolution of the internal 2. The Eastern Corsica-Northern Apennines system area of the Northern Apennines, northern Tyrrhenian Sea and originated as an accretionary wedge, produced by the Sardinia-Corsica block, focusing on the post-collisional subduction of the Apulia microplate under the evolution. The discussion follows the Author’s point of view, Sardinia-Corsica massif during the Late Eocene-Early but for the reader interested in a deeper knowledge of the geology of the area many in text citations are added and a Miocene.. At the same time tectonic units, with mostly comprehensive reference list is presented. African (top-NE in present-day coordinates) transport We first shortly introduce the stratigraphy of the area, in the direction, developed in the Apennines, while framework of the geodynamic evolution of the western margin European (top-W) transport direction is observed in of the Apulia microplate, the adjacent Ligurian ocean and the Corsica (PRINCIPI & TREVES, 1984; TREVES, 1984; European Sardinia-Corsica microplate. After a general overview CARMIGNANI et alii, 1995). In this model the Balearic of the nappe structure resulting from collisional tectonics is (or Algero-Provençal) basin and the Tyrrhenian Sea presented for the whole area.
    [Show full text]
  • Il Comitato Per Montecampione
    Il giro d’ Italia mette a nudo i problemi di MONTECAMPIONE Pubblichiamo qui di seguito l' articolo di Brescia Oggi sulla tappa del Giro d'Italia 2014. Ne avevamo dato la notizia qualche giorno fa, dichiarandoci ben felici che finalmente i nostri Comuni, ed in particolare quello di Artogne sul cui territorio insiste la strada 1200-1800 che porta al Bassinale (Plan) spendessero un po' della nostra IMU, almeno nel comprensorio. Ci siamo sbagliati, poiché il sindaco Cesari, sentito appunto dal giornalista D. Benzoni, si è affrettato a mettere le mani avanti ed ha detto: "LA NOSTRA VOLONTÀ (Cesari, se lo vorrà, ci dirà a chi attribuire le maiuscole) c'è. Certo i conti bisogna farli con una serie di problemi: da quello finanziario a quello logistico. Serve la compartecipazione economica dei Comuni ed in questi frangenti si sa bene che cosa significhi; l'assenza di alberghi a Montecampione viene poi a rimarcare una basilare carenza per la stazione turistica". A questo punto è il giornalista che gli fa notare che la strada che porta al Plan è impraticabile e ricorda che era intestata ad Alpiaz che, essendo fallita, è ora rappresentata dal Curatore. Ed ecco il sindaco Cesari "È ANCHE DA LUI che dipende il rifacimento del fondo. Salire fino al complesso Le Baite per gli automobilisti oggi è come avventurarsi in una gimkana tra buche ed avvallamenti; provate a immaginare la carovana rosa che che si inerpica in queste condizioni proibitive". Sempre cronache surreali quindi, per non dire marziane. Parla di mancanza di alberghi ! Al sindaco Cesari abbiamo già fatto, in un altro post su Facebook, l'elenco delle convenzioni che speriamo sempre possa servire.
    [Show full text]