Evaluating Greenhouse Gas Emissions Benefits of Emerging Green Technologies in Passenger Transportation in the Quebec Context
Total Page:16
File Type:pdf, Size:1020Kb
Evaluating Greenhouse Gas Emissions Benefits of Emerging Green Technologies in Passenger Transportation in the Quebec Context Sabrina Chan Department of Civil Engineering and Applied Mechanics McGill University, Montreal November 2012 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering. © Sabrina Chan 2012 ABSTRACT The transport produces 43.5% of Quebec’s greenhouse gas (GHG) emissions; more than half of these emissions come from passenger transportation. In Quebec, transport emissions have grown by 30% from 1990 to 2009. Accordingly, this research evaluates the impact on GHG of alternative fuels and technologies in public transit and personal motor vehicles in the Quebec context using link-level GHG estimation methods. The transit technologies examined were analyzed using a lifecycle approach, mainly focusing on fuel production and vehicle operation phases, with the aid of GHGenius and MOVES. The demand for hybrid vehicles, its determinants as well as some potential market penetration scenarios were also investigated for Quebec City and the Island of Montreal. Different sources of data were combined to generate GHG inventories and estimate motor vehicle travel demand including: GPS, train and vehicle fleet fuel consumption rates, the Canadian Census, origin- destination surveys, and vehicle registration records. The results demonstrate that the use of alternative technologies can lead to significant GHG reductions. Among the bus technologies, it was found that hybrid buses are the best option with savings of 43.3%, followed by compressed natural gas (20.5%) and biodiesel (12.5%). For commuter rail, electric technology can reduce emissions by 98%; however, hydrogen fuel cell trains may be competitive in terms of cost-benefit ratio. Although hybrid personal vehicles have the potential for great GHG reductions, the limited spatial distribution of purchasers indicates that this technology will have a more modest impact than what might be expected. From an optimistic perspective where the vehicle fleet is composed of 25% hybrid vehicles, the impact would only lead to a 10% decrease in GHGs. i RÉSUMÉ Le secteur des transports contribue 43,5 % des émissions de gaz à effet de serre (GES) au Québec; plus que la moitié de ses émissions vient du transport de passager. Les émissions du secteur des transports a accrue par 30% entre 1990 et 2009. En conséquence, cette recherche évalue l’impact des carburants et technologies alternatives en transport collectif et les véhicules personnels sur les GES dans le contexte québécois en utilisant les méthodes d’estimations de GES aux niveaux des liens. Les technologies des transports communs sont analysées en utilisant l’analyse de cycle de vie, particulièrement la production du carburant et l’opération du véhicule, avec l’aide de GHGenius et MOVES. Le marché pour les véhicules hybrides, ses déterminants et puis des scénarios potentiels de pénétration du marché sont examinés pour la ville de Québec et l’Ile de Montréal. Différents sources de données sont combinés pour générer l’inventaire de GES et estimer la demande de transport incluant le GPS, le taux de consommation des carburant, le Census, les enquêtes origine-destination et l’enregistrement de véhicules automobiles. Les résultats démontrent que les technologies alternatives réduient effectivement les émissions de GES. Parmi les technologies d’autobus, les autobus hybrides sont les meilleurs choix avec des réductions de 43,3 %, suivi par le gaz à naturel compressé (20,5 %) et le biodiesel (12,5 %). Pour les trains de banlieue, les trains électriques peuvent diminuer les émissions par 98%; pourtant, les trains à hydrogène sont compétitifs selon le rapport cout-bénéfice. Bien que les véhicules hybrides ont la potentiel d’éviter beaucoup de GES, la distribution spatiale du marché des véhicules hybrides indiquent que cette technologie aura un impact modeste. Dans le cas optimiste, le remplacement de 25% du parc d’automobiles vont mener à une baisse de 10% des GES. ii ACKNOWLEDGEMENTS I want to thank my supervisors, Luis Miranda-Moreno and Zachary Patterson, for their guidance and support. Without their knowledge and commentary, the completion of my thesis would not have been possible. There are several other people and agencies I want to acknowledge, each of them played in important role in my research and my deepest gratitude goes towards all of them: Amir Zahabi, for taking the time to explain his methodology and for always offering help in any way; Marianne Hatzopoulou, for her assistance in bus transit technologies and lifecycle assessment methods; Ahsan Alam, for teaching me how to use MOVES and collecting GPS data with me; Philippe Barla, for providing the processed data for hybrid vehicles and his suggestions for the fourth chapter; Ahmed El-Geneidy and Walter Hitschfeld GIC Library, for giving me access to geospatial data; AMT and STM, for providing the necessary data for the analysis on public transit; and Fonds québécois de la recherche sur la nature et les technologies (FQRNT), for their financial support. iii CONTRIBUTIONS OF AUTHORS Please note that some chapters have or will be presented at different conferences. These papers were written in collaboration with other authors. The work on transit bus technologies was presented in part at the Conference on Advanced Systems for Public Transport (CASPT) in July 2012. The methodology on this study has been reworked to include a comparative analysis between methods as well as the investigation of an additional alternative technology. Moreover, the emissions were re-evaluated and new results were obtained. The other authors were primarily responsible for editorial work. The study on commuter rail technologies was presented at the Transportation Research Board (TRB) 91st Annual Meeting. The other authors were also mainly responsible for editing the paper. The chapter on hybrid-electric vehicles will be presented at the TRB 92nd Annual Meeting in January 2013. iv TABLE OF CONTENTS ABSTRACT ..................................................................................................................................... I RÉSUMÉ ........................................................................................................................................ II ACKNOWLEDGEMENTS ......................................................................................................... III CONTRIBUTIONS OF AUTHORS ........................................................................................... IV TABLE OF CONTENTS ............................................................................................................... V LIST OF FIGURES ................................................................................................................... VIII LIST OF TABLES ........................................................................................................................ IX 1 INTRODUCTION ....................................................................................................................... 1 1.1 CONTEXT ............................................................................................................................. 1 1.2 STRATEGIES TO REDUCE GHGS ..................................................................................... 2 1.3 ALTERNATIVE TECHNOLOGIES IN PASSENGER TRANSPORTATION .................... 5 1.3.1 Transit Buses ................................................................................................................ 5 1.3.2 Commuter Trains ......................................................................................................... 6 1.3.3 Automobile ................................................................................................................... 7 1.4 METHODS AND TECHNIQUES TO EVALUATE TECHNOLOGICAL IMPACTS ......... 8 1.4.1 LCA ............................................................................................................................... 8 1.4.2 LCA Tools ................................................................................................................... 10 1.5 INTERNATIONAL LITERATURE .................................................................................... 11 1.5.1 Transit Bus Technologies .......................................................................................... 11 1.5.2 Commuter Train Technologies ................................................................................. 11 1.5.3 Passenger Car Technologies ...................................................................................... 12 1.5.4 Research Issues........................................................................................................... 12 1.6 OBJECTIVES ...................................................................................................................... 13 1.7 METHODOLOGY .............................................................................................................. 14 1.7.1 Bus Technology Case Study ...................................................................................... 15 1.7.2 Commuter Rail Technology Case Study .................................................................. 15 1.7.3 Car Technology Case Study ...................................................................................... 16 1.8 ORGANIZATION OF THE DOCUMENT ........................................................................