<<

Louisiana State University LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1985 Structural Chemistry of Several Compounds Elucidated by Single Crystal X-Ray Diffraction. Khalil Abdallah Abboud Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Abboud, Khalil Abdallah, "Structural Chemistry of Several Compounds Elucidated by Single Crystal X-Ray Diffraction." (1985). LSU Historical Dissertations and Theses. 4084. https://digitalcommons.lsu.edu/gradschool_disstheses/4084

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document photographed is “ Missing PageCs)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University Micrdrilms International 300N.Zeeb Road Ann Arbor, Ml 48106 8526363

Abboud, Khalil Abdallah

STRUCTURAL CHEMISTRY OF SEVERAL COMPOUNDS ELUCIDATED BY SINGLE CRYSTAL X-RAY DIFFRACTION

The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1985

University Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or p a g e s______

2. Colored illustrations, paper or print ______

3. Photographs with dark background ______

4. Illustrations are poor co p y ______

5. Pages with black marks, not original copy ______

6. Print shows through as there is text on both sides of page ______

7. Indistinct, broken or small print on several pagesi S

8. Print exceeds margin requirements ______

9. Tightly bound copy with print lost in spine ______

10. Computer printout pages with indistinct print \S

11. P ag e(s)______lacking when material received, and not available from school or author.

12. P ag e(s)______seem to be missing in numbering only as text follows.

13. Two pages n u m b ered ______. Text follows.

14. Curling and wrinkled pages ______

15. Other ______

University Microfilms International STRUCTURAL CHEMISTRY OP SEVERAL COMPOUNDS ELUCIDATED BY SINGLE CRYSTAL X-RAY DIFFRACTION

A Dissertation

Submitted to the Graduate Faculty of tbe Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Chemistry

by Khalil Abdallah Abboud B.S., Lebanese University, 1977 C.A.P.E.S., Lebanese University.- 1978 August 1985 TABLE OP CONTENTS

Acknowledgement ...... ii i

List of Tables ...... v

List of Figures...... vii

Ab str a c t ...... v iii

Chapter I: Introduction ...... 1

Chapter II: (PD C^j 0 ^2 ®4 ^ 2 ...... ^

- Introduction ...... 7

- Experimental ...... 9

“ Structure Solution and Refinement ...... 12

- Discussion ...... 22

Chapter III: C1? O 10 H2 4 ...... 32

- Introduction ...... 33

- Experimental ...... 34

- Structure Solution and Refinement ...... 37

- Discussion ...... 56

- Ring Conformation ...... 65

Chapter IV: Ba[Pt 0 5p NiQ 41(CN) 4 ].4H20 ...... 72

- Introduction ...... 73

- Experimental ...... 75

- Structure Solution and Refinement ...... 78

- Discussion ...... 83

References ...... 1 0 0

Appendix A ...... 105

Appendix B ...... 118

V ita...... 121 ACKNOWLEDGEMENT

I would like to thank those who have helped to make this dissertation possible.

My deepest thanks to my parents, sisters and brothers who have helped me realize my goals throughout my life, and who have given me love and compassion.

I would like to acknowledge the following people for the co n trib u tio n s of c ry s ta llin e compounds discussed in this proj e ct :

Dr. Joel Selbin, for the palladium dimer and the discussions concerning its chemistry.

Dr. Ezzat Younathan, for the organic compounds. I am also very grateful for the guidance and kindness he offered and for being a ready reference for advice.

Dr. Ronald Musselman for the Pt-Ni mixed metal crystals.

My deep gratitude to the Lebanese University for the support and confidence they gave me.

I would like to thank the chemistry department for the opportunity I was given to further my education. And my thanks to the professors and faculty for being patient, helpful and understanding.

My deepest gratitude to Andrea Greene and J.C. Wang for their friendship and support.

My respectful appreciation to Terry Dilord, colleague, professor and frien d , whose discussions and help were of great value.

iii Further, I would like to thank Dr. Frank Fronczek for his kindness and uncanny ability to clarify puzzling prob­ lems. His guidance in directing my research is greatly appre ciated.

Finally, I would like to express my profound apprecia­ tion and respect to Dr. Steve Vatkins for being my mentor and caring friend during the past five years. His expertise in the field of crystallography has been of immeasurable value to me. the compassion he showed me as a person, not only as a student, will never be forgotten. I extend my respect and admiration to his wife, Mrs. Linda Watkins, as well. LIST OP TABLES

Crystal Data of Compound I ...... 10

Observed and Calculated

Structure Factors of Compound I ...... 14

Atomic Positional

Parameters of Compound I ...... 20

Anisotropic Thermal Parameters of Compound I... 21

Crystal Data of Compound VI ...... 35

Average Values of E for

Parity Groups of Compound VI ...... 38

Atomic Positional Parameters of Compound VI.... 42

Anisotropic Thermal Parameters of Compound VI.. 44

Observed and Calculated

Structure Factors of Compound VI ...... 45

Bond Lengths of VI and Reference Compounds ...... 57

Selected Bond Lengths of Compound VI ...... 61

Ring Torsion Angles of Compounds II through VI. 63

Ring Conformation of Compounds II through VI... 66

Puckering Amplitudes and Pseudo

Rotation Angles of Compounds II through VI ...... 69

D istortion of Ring Atoms from Symmetry Elements 70

Crystal Data of Compound V II ...... 76

Special Positions of Ba and Pt/Ni Atoms ...... 78

Torsion Angles and T ilt Angles of Compound VII. 91

Bond Lengths and Angles of Compound V II ...... 92

Atomic Positional Parameters of Compound V II... 93

v 4.6 Anisotropic Thermal Parameters ofCompound V II ...... 94

4.7 Observed and Calculated

Structure Factors of Compound VII ...... 95

A.l Crystal Data of Compound V III ...... 107

A.2 Atomic Positional Parameters of Compound VIII ...... 112

A.3 Anisotropic Thermal Parameters ofCompound V III ...... 113

A.4 Observed and Calculated

Structure Factors of Compound VIII ...... 114

A.5 Hydrogen Bonding in Compound V III ...... 117

B.l Dimensions of Atomic Thermal

Ellipsoids in Compound VII ...... 120

B.2 Angles of Atomic Thermal

Ellipsoids in Compound VII ...... 120

vi LIST OP FIGURES

2.1 Stereo Veiw of Compound 1 ...... 8

2.2 Bond Lengths and Angles of Compound ...... 1...... 26

2.3 Stereo View of the

Packing Diagram of Compound I ...... 31

2.4 Energy level Diagram of a Square Planar d® S ystem ....30

3.1 Stereo View of Compound VI ...... 58

3.2 Bond Lengths and Angles of Compound V I ...... 59

3.3 Selected Torsion Angles of Compound VI ...... 64

4.1 Distorted M(CN)^ Anion ...... 80

4.2 Hexagonal Packing of M(CN)^ Anions ...... 86

4.3 Stereo View of the

Stacking of MfCN)^- in Columns ...... 87

4.4 Coordination Sphere of

Ba2+ Ion in Compound V II ...... 90

A.l Bond Length and Angles of Compound VIII ...... 109

A.2 Selected Torsion Angles of Compound VIII ...... 110

A.3 Stereo View of Compound V III ...... I ll

vi i ABSTRACT

The single crystal Xray diffraction structure of four compounds have been determined.

Crystals of bis( (i - acetato - 0:0') - bis[4* - nitro -

2' - {2 - pyridyl) phenyl - N] dipalladium (II), (PdC^gH^Q Nj

0^ ) 2 * are monoclinic, space group I 2/c, with lattice constants : a = 14.300(3)1, b = 9.939(1)1, c= 18.822(2)1, p = 91.01(3)°. The structure was solved by the heavy atom technique, and full-matrix least squares refinement resulted in a final R-value of 0.029, Rw = 0.050, The molecule has a folded conformation with Pd Pd = 2.822(6)1,

Crystals of pseudo penta - 0 - acetyl - p - D,L -

Glucopyranose are monoclinic, space group P2j/c, a =

11 .5 80 (2) X, b = 8.27 6(1)X, c = 22.031(2)1, p = 104 .33(1)°.

The structure was solved by direct methods and refined to a final R value of 0.049 and Rw of 0.054. The pseudo-glucose ring has nearly a ^ Cj, conformation with 0(61) in the gg position.

Ba[(Ptx, (CN^lMHjO crystallizes in space group C 2 /c with lattice constants : a = 12.209(2)X, b =

13.752(2)X, c = 6.638(1)1 and p = 107.76(1)°. The dis- ordered structure consists of columns of M(CN)^ groups (M =

Pt and Ni) stacked along the c. axis with M-M distance of

3.319(1)1. Planes of these groups are tilted by 4.1(1)° from the c axis. The CN ligands are found to be staggered with NC - H - M - CN torsion angles ranging from 42° to 48°. The Ba 2 + ion has a ten fold coordination of bicapped square

antiprismatic geometry. The crystal structure refined to

R = 0.0469, Rw = 0.0699, and X = 0.59.

2,5 - anhydro - (1,3,4 ,6 - 0 - - D - Mannitol crystallizes in space group P2^2^2j with a = 7.876(1)1, b =

8.561(1)1, c = 11.443(1)1. The molecule does not have the

expected Cj symmetry: the ring C - 0 bonds are unequal in length, and the conformation is slightly distorted from the

ideal ^Tg configuration. CHAPTER I

INTRODUCTION

1 2

"Pursuit of the details of molecular structure and molecular environment is the occupation of all chemists part of the time and part of the chemists all of the time," said professor J.B. Wertz. The importance of knowing the shapes and sizes of molecules have been stressed time after time as a means of understanding their chemical and physical proper­ ties.

Crystal and molecular structure determination by X-ray diffraction has evolved in the past 70 years into the most powerful technique; it yields fine detail about the structure of chemical compounds in the solid state. The experimental details of single crystal structure determination employed in 1 2 this work have been discussed in numerous te x ts.'

The determination of a single crystal structure normally proceeds in four distinct stages:

The f irs t is the measurement of I, the intensity of each diffraction maxima (for a detailed discussion of intensity data collection, consult reference 11), and the calculation of a structure amplitude. This step usually follows the choice of a suitable single crystal. The structure ampli­ tudes, or structure factors Ifoj,s I , are proportional to

I, and must be reduced to a common scale and corrected for various physical and geometrical factors.

The second stage requires the solution of the phase problem . The phases of re fle c tio n s cannot be measured experimentally but must be known for the structure to be 3 4 solved. Direct methods ' and the heavy atom (Patterson) method^ are two techniques used to assign phases to struc­

tural amplitudes.

The third stage consists of the refinement of all atomic positions in order to obtain the best possible agreement between the observed structure factors and calculated

structure factors. Structure factors are calculated from the

atomic positions according to:

^ fj exp. [ 2ni (hij + kyj + lZj)l

where X., Y- and Z, are the fractional coordinates of J J J i. the j atom in the unit cell* and f. is the atomic scatter- J ing factor of the atom.

The fourth stage involves geometrical calculations using

the positional parameters of all atoms in the structure.

Bond lengths, bond angles, torsion angles, planarity of

groups of atoms, along with their estimated standard devia­ tions are calculated. Additionally, the molecular structure

is draw using computer programs like Pluto f* or Ortep . 7

Packing diagrams are also drawn to gain information about the

stacking of molecules in the solid state.

The present work deals with the crystal structure determinations of four compounds which vary from transition metal organometal 1ic to organic inorganic in nature.

Bis ((i - acetato - 0 : O’) - bis[4’ - nitro - 2' - (2 - pyridyl) phenyl - N] dipalladium (II), ( PdC^gqNjO 4 ) 2 * is a product of cyc 1 opa 11 adation reaction carried out by

Dr. J. Selbin and his group (chemistry dept., Louisiana State

Univ., Baton Rouge). Their work involved the characterize- 4 tion of ligands and their substituents in cyclometallation reactions.

Pseudo penta - 0 - acetyl - 0 - D, L - Glucopyranose was provided by Dr. E. S. Younathan (department of biochem istry,

L.S.D., Baton Rouge). Although possessing a cyclohexanyl ring, this compound is regarded as a carbocyclic analogue of g 1 ucopyranose . In this compound, the ring oxygen was replaced by a CH 2 group. In contrast to the parent compound, the analogue showed no activity with ATP or glucose oxidase.

The crystal structure was determined to study mainly the ring conformation and investigate geometrical changes caused by the ring oxygen replacement.

Ba[(Ptx, Ni^_^) (CN) 4].4H20 was provided by Dr. R.L.

Musselman (Department of Chemistry, Principia College, Epsah,

I l l i n o i s ) . Te tra cy anome tal 1 a te s (M = Ni, Pd or Pt) in the solid state possess intense dichroic absorption spectra that have no counterpart in corresponding liquid solutions. This interesting characteristic is the result of metal orbital interaction which allows for electron delocalization along columns of stacked M(CN)4~ groups. The structural features of this particular mixed metal compound, when correlated with its spectral properties (to be measured by Dr. Musselman) will, hopefully, provide better understanding of the nature of the solid state effects.

2,5 - Anhydro - (1, 3, 4, 6 - 0~ ) - D - Mannitol was also provided by Dr. E. S. Younathan. This compound is a simple derivative of 2.5 - Anhydro - D - Mannitol formed by 5 replacing the hydroxyl hydrogen atoms with deuterium. The structure of the parent compound in the solid state was determined previously 5 3 . Contrary to its structure in the liquid state, it does not possess C 2 symmetry or a perfect

conformation. The crystal structure of the deuterated compound was found to differe insignificantly from the parent and is therefore presented in appendix A. It was determined in an attempt to clarify the existence of hydrogen bonding that was believed to be the reason behind the distortion of the parent compound in the solid state. CHAPTER II

(Pd C13 H10 N2 °4*2

6 7

INTRODUCTION

Cyclometalation reactions, also known as orthometala- tion, are intramolecular reactions in which a C-H bond breaks and an H-C bond forms when alkyl or aryl groups are attached to a coordinated nitrogen or phosphorous ligand. A large number of such reactions have been conducted re c e n tly and Q _ Q many review papers have appeared in the literature . Most of the work done in this area involves Pd(II) complexes in which the Pd atom is bonded to triphenylphosphines, tripheny- lphosphites or substituted aryl pyridines. In general, these metal complexes, their ligands, the effect of ligand substi­ tuents, and the identity of those coordinated elements which enhance cyc 1 oneta 1 ation reactions are all well character­ ized.

X-ray d iffractio n is used to confirm the structures of these compounds. The discussion in the following chapter deals with the structure determination of bis(fi - acetato -

0:0') - bis[4’ - nitro - 2'(2 - pyridyl) phenyl - N] dipal­ ladium (II) (fig. 2.1).

Current interest in this compound lies in the charac­ terization of the metal-metal interaction in the solid state. Specifically, does the conformation imply the existence of a Pd - Pd bond? Fig. 2.1 : Stereo view of compound I

00 9

EXPERIMENTAL

A red-orange c ry s ta l of bis (p-a ce t a to-0 : 0 ' ) -b i s [4'

-n itr0-2'-(2-pyridy 1) phenyl-N] dipalladium (II), (compound

I), was provided by Dr. J. Selbin and M. A. Gutierrez. The crystal was mounted in air on a glass fiber and in random orientation on an Enraf-Nonius CAD4 automated diffractometer equipped with a graphite monochromator. All crysta11ographic data are listed in table 2 .1.

Only eight reflections were located by program SEARCH^-® at angles, theta = 10°, chi = 20°, and phi = 180°. Chi was then changed to 45° and the program successfully located and centered 22 reflections. These reflections, when used in 11 1 O program INDEXA , gave a triclinic unit cell, but the NiggliXi matrix was suggestive of a higher symmetry lattice. Upon using the six parameters of this unit cell along with their standard deviations in program TRACER^®, which looks for a higher symmetry unit cell, the result was a body-centered monoclinic unit cell with p = 91.01(1)9

A rapid survey of 170 high angle ( 0 = 20° to 20.5°) reflections produced a set of the 25 strongest reflections which were used to re-index the l a t t i c e and determine the fin a l values of the c e ll dimensions. This scan also con­ firmed the body centered monoclinic symmetry by the absence of all reflections for which h + k + 1 is odd, and the equivalence of hkl, hkl and hkl data.

During data collection, reflections h + k + 1 = odd were not collected. Reflections (600), (020) and (006) were 10

CRYSTAL DATA

Foinnla <»d C1 3 EK > W 2 Formula Weight 729 .3

Crystal size (mm) 0.12 x 0.20 x 0 .32

Crystal system monoclini c

Space group I 2 / ca

Dc(g cm"3) 1 .8 1 1

Z(molecules/cell) 4

a (A) 14.300(3)

b (A) 9.939(1)

c (A) 18.822(2)

P (°) 91.01(1)

X(Mo - Ka) (A) 0.71069

Data Collection w / 20

Intensities : measured 2048

I > 3 a (I) 1 6 4 4

p(Mo - Eq) (cm-3") 13 .8

Minimum transmission 9 1 . 5%

Variables 186

R 0.0289

Rw 0.050

Table 2.1 crystal data of I.

a_Space group I 2/c is an alternate setting of C 2/c, with general equivalent positions ( 0 .0 . 0 .: 1/ 2 .1/ 2 .1 / 2) + x. y, z; x, y,~zj x + 1/ 2 , y, z ; x, y + 1/ 2 , z + 1/ 2 . II

measured repeatedly throughout data collection for intensity

control purposes and crystal decay detection. Reflection

(600) was also used for orientation control. After data

collection was completed, the intensities of three reflec­

tions [(600), (400) and (10 00)] near Chi = 90° were measured

using incremental Chi values of 10°. These reflections were

used for empirical (Psi-scan) absorption correction. The raw

data were reduced and merged by the S H E L X ^ program package.

A total of 2048 reflections were measured, of which 1644 were greater than 3

of 1° < 20 < 25°. All reflections measured are in the h, +

k, ± 1 quadrant.

Program CLA SSIFY *^ sorted the intensity data according

to parity groups. The result revealed the absence of all

reflections (hoi) in which 1 is odd. This is indicative of a

glide plane along the c direction. This, in addition to a body-centered monoclinic unit cell, identifies the space

group as I2/c, an alternate setting for C 2/c. 12

STRUCTURE SOLUTION AND REFINEMENT

The structure was solved by the heavy atom technique^

(Patterson). The Patterson map revealed the position of the

one independent palladium atom in the asymmetric unit.

Structure factors calculated using this palladium position

alone yielded an R-value of 0.4343. This R-value is not

necessarily too large since the percentage of electrons used

(one palladium atom per asymmetric unit) in this calculation

is 44%. A difference fourier map revealed the positions of

all the non-hydrogen atoms in the asymmetric unit.

After two cycles of least squares the R-value improved

to 0.0578 and all hydrogen atoms (except those of the methyl

group of the bridging acetate group) were successfully located from a difference fourier map. The positions of the

three methyl hydrogen atoms were calcu lated assuming SP^ hybridization.

At this stage, all non-hydrogen atoms were converted to anisotropic thermal parameters. Isotropic thermal parameters continued to be used for all hydrogen atoms. The weighting s chem e :

w = ( a2 (F) + IgIf2)-1 also replaced the unit weights used heretofore. The only constraint employed in this model during 1 east—squares refinement was to force the positions of the three methyl hydrogen atoms to shift in a synchronized way with the methyl carbon. That is, the CH^ group was defined as a rigid body in which the hydrogen atoms 'ride' on the carbon atom 13

g position in order to preserve the SP hybridization geome­

try. After refining this model for three cycles of least

squares, no param eter p s h ifte d more than 0.3cr(p) and no 0 -3 residnal electron density greater than 0.5e.A was observed

in the final difference map. The final R-value is 0.0289 and

Rw is 0.050 over 1 6 4 4 reflections and 186 parameters. Table

2 .2 lists the final calculated and observed structure factors. Atomic positions and isotropic thermal parameters- of the asymetric unit are listed in table 2,3; figure 2.2 contains bond lengths and angles and figure 2.3 is the packing diagram. Anisotropic thermal parameters are listed in table 2.4. 14

ik e9C P4Pirf>p>n o m m | M aK i^nim oiitM ^^K tnio^in^rx^M nftia^K ia oK ^-n wr\w>m M ,ui'ift)« i aa v ta a a q 0 9 9 A 1 M ir«onnM ifiN «*d M |« | |f*|M |>*| | |l** *« I n i I * I * * I * - **MM| I I * « |fM I • II I I * I I 3 nqavni*t?c>'i9ff‘Xr>>r>opri0j>rKiMXsMa^oAaJ>^fiin*a oatf 9 Vk axcruoawaQntaN^Kpn^^f (v j s x o j'caftjp*p> aofr»a^ir^7SLrirakno* o rx i m rtVM-*>«Ki34?ajaiiiva>n>o«4p-M*iflr\j9irfna&4)NM HinA?«in-*inKnj4 j fV(vAiruM>ti<\ii\iruAji\i(\i«ui%jiuAj«UMMMru(\irurvfV'\iMrui\iru(UOJ(Uiu

^ i n v«ifiviininini/tipintPi/iinin4il>^iin«4)4444)AAA04>4dh> X tn9»4,*iinari\i9449Ajsrw«a9r\i9il^^>"iriOM*«priinf>.ipHr\i 9<\i9M94)cjOA)a«iM9kinm*«HinK^HMt'\ioj)oru9rvj«i)S9 HMMp,MP4| I I I MMMMM I I | | | mm I f MMM—M I I I I I MMM — I II M III II I »l •• u *>pirc9KKicM«tiNc^^cp>fun^)'i^inc4PiKi^(»^ne iuirsfftff><>o«*'o>oe9irxc99uli«<4'4i^aiirvi£cirrum 4qk O^MB9iOlfl}Kl4}M4^>Atf7^N^v«p^eKI9ri*«*aj]/unJ'£VCinj>H'V3l^^rV9KOON4P*4j>fO9<0(rfnft«QiMQr«ruAirua^iQi6i£OONniiPMAjfvi«^rnI I I I jj*«hjjj©i*up*i moai>VMajOKMecitrruj)c^»rtMO'WMOirl|ia«o9N >• iko «9«inxi»*v««4iA^njcp>aiivo^9Mtf—99 9 0‘-04/)Miri/\ooutJ^Mn^cMnjf'i*^^(nirtMirvjoM>knivitnrxjr>o inn^fu«M(UMrufn(finni ki«po 9 XAfff 9n/)iro«*9iMin£<»Kir40>>cr^»>etfT9ruoco^ jjitoc'MJ' ojmwi^viP M mm fU mm m m m Mm mm m j . mmmmmmmmmmmmmmmmmmmmmmmmp ...mmmmmmmm rufunjrururvr\Jf\jnjrxjrururunja

X M»Mt^aMini04>?(U9^4AiofU44QO90Ajq ^oofuaomMiMjiirTMHminM^H^tnaftiotfX) | MMMMMMMl I I MMMMMMMl l i t MMMl I « MMMMMMl I I I MMMMMMI | • III III ••« til III

cj ^kkK ^fxM oinrutrotr^rm pm ror-tnN 9f»Mfn^oooru«eoAJAio<^rirf\fMknp>inp>M ou. «\iMMnjM«»r\i o-’CMncrviirii/iMtj oKiKiajn^ v,(airJim9nj(Mtir^9C0'r»4tNm^4)MffM9in jj®iDK>i\jMiifi^os®ruOM9f\ji/i» os-^o^Aja® 9©iP9*o*9irofUT-m«»»9‘*»*II 4k oxnic Ohff-^KrvaniPl^NX^tr^l^^^stt^ooNl^a** «r q r m m m m m Hirru/iinrtani^»>i^tt04}^MVhmip|Ma]r«vi/> IC h IP p» K(unp*i/i N c iu i^ iiiiic iN O fV j M M O |9 M M <\i M MM M

«j ooqoooqoooommmmmmmmmmmmmmmmmmmmmmm AJAjnjrvnjrunjnjrurururwrunjrunjftjfururuftJfbnjrurwvrvAjrufurunjnjrv »ff‘fl‘O0o 0OMMMMMMMMMMMMMMMMMMMMAirufurxirvru MMMW^Mf\ifMAi(\jnjnjnjnjAjr\jruf\ifxinjKkf*ifiVM>kKiKiMiKiH4«ni^ii^f^Km int«*eA|q ^tOMtnxixanjoc « 9fcoAJ9 £©e-nja jjin—tr^irw »•—n^m JJ9AJ©« AaMOfua *-Kiinr»»—tfi M MMMMl I I I MMMMMMl I I I MMMMMMMl I I I MMMMMM I III! MM • I I I I I *111 III y c4nii>"C39XLfiompOih>rtQruKW^94}wiKiinp>ON9Ktoc^i s4K*<4riimru«cMnio(U9ttfi9oru<0M»'MC(&so»n«>(Cn«h*4f,a>9i m c ^ q q v i q ruM,/*?o9Mix*t-£9 njo”\iM»*ifi M9M«'*)9*»M*)otn *rfui 1 n trrw m i m|m|||| • 1 1 ft 1 |m|m||m|m • I I mm 9 1 *iftji"u«\j m II — I *nnj—njM— 3 ovkiotnMVQrxisffyi^^MAMhvvQ^caffCMruK^ciuftI • eru4>m4ii'irin^lncinnf?MOfu««in0««llN'ariiHa^haaf>-*'*ncir-"ir a»>^tKasii7aif\i9V||,iic kndjc^*4 M»nr\j*n9 Mrt^Ki-»p«NX>j"nip«*>f*^i'o»\j9— ivr\iahqh>^M££ci:MruHir;ctva *\j (vxirxirc^c

X ce(\i9«4Kti/ip-t«^iPofU9iofljd*ioin^t**oruo

U |-M £r>9 |r>l-f»O ^lirC t0 9^Kl^pC,t» 9CO^ m IT Jiff K>CT M^rtQ O K P«*0 <£0-fCGfUf»O K1-£C9m 9©m**»r\i ik ^toh.a«f^Mp^oJ'«-0“ afAcon*»w xiiv^liriM^x^^siaac -OiTf*9 9-©c»nt'-^fVMrwaf-M^r'-m o oirrtmaipoe©fnc-usx'A^jKirufn i^ki iM r»9in9oa et^njin • —**cr * nj n*M—h*irnj« 9 Mnjin—4!9»\j©,A,ou''r\fiA—k»x H mnj M I fUMMM I I M I I I M M # M MM I M * I I . I | | I I I I t I « I I I o (D^ar«s^M/\jf\io,c7'•ottLOLPfvii/'Mfviro• I I I I A94>oNinoinc*«

J 99900OO00000O0a00OC0000O0QODC00 CQQ m m m — m m m m m — m m — m m m m m m — m m m — m m m m m ooeeQeoo^(«'NhcsB 0O8)ftcoopo>oiua4Oi\iQ*4r,iirf>tfiKiMP«u,>r»-*9D49(\>oa4O0> 1/119 mm MMMM MMM MMM MM I • I • Mm M*I I I I I Mm • | | | | M | | | | Table 2.2 : Observed and calculated structure factors of compound I. 15

Ao or-»irr-aACbNp« ^M^dNin^o> i9a.>i/i9© >0,mXMOAjirff,r\i«»©9tAi\nrxxsj-"M a ipmrvo tn«i*ncin773 moo* ^)^if\iMAjMXOg-«- Jirxaa^fcr'vts i>\n 3£«^rsr\i«£ n x y q ji» y K to w8S9£*op>J)4(n jtfif>N<»*OiP9'\»9*n4^lKt9Hl7«>£f»v4),tti •* I I M ( I — M l I mp* PI II • - II « (MlPirutlUH I 1*1 I *•♦-« M • ■ * I II III II q (rffa»«>oircBrik<4 ^ * 4 ^ N n tri^ 9 ^'u«M^£^ti*»f\j3 di\i c T ^ f u i i i r ^ a tf 3 q 9 { ff* aS 9 t i ^ 3 o n ji^ H f f ir M |(nia s c b. 9 9>vOi«ao«dfU-«lrcm'Ur\jir9 — hin»tamtt ^©arua^-ain*-*! o hmqJinmiPMn^io ccoMinr vcio a«a* csKMinnir 9 «4 M m MM M M M M HJ «M\| A/M - * - « M j m m m m rnm m m m m m m aavvciciivcivcgiccoaic iitin^iruiiniiininiriiritin^j)iri/iinkruiin^tf>iP*/tiAiniri)niri^/i u .' ^ 9 ^© ooa© O M M M © d s o o o o o o o o o o o o o o m m m m m MMMMMruniAi*\ir\n^r*> no'ws ^inM9i<»in)nM«i«iinh|>«minc9U9ccqai\ftfiBO M | *| || ——MM | ti l MM-——— | | I I I I H— .— * | | M ■ III III III *111

U p-o4JrLrt;(V<7‘r*ffp.h-ifiC (>gC U 3«ffp*p*w or*f-cc-lffl^caex^pw rtf cH(C- aj »* i k aC "f— tottfiopiw oik •*lTKP^«MfVl-*9 onitu*>ojiKC4 3rs4-<^Ji^apr»Si9fn9lC(rh*4|)i/t«)cIVC 9 V miAllCUV O Aim I AJinAJ^KT'&r-tf' r,i\i*wrvimr>- l(«'C3f\JQK9>£ffr'il\J9 MMfy^AjmAIAimMfl 7**lpiO* ^(UtllOOSCCtni - —II I III I I I I • I I I I I I I llllll I I I —« I I I O omflj)'K9^i!«i'r-tCQccsini«>inK»»o9C mM©#ur-9rw9mififrf»©«mr.iO*' S(VTii3 f«?QTr\i^r\j£M ^ U, dpiMt*'<6*'itA^tm«^hnF'»r'»crtr0'>»mA4A4*«tp7 j>i,VMdm4>F>»M'n(s)^ O HghANPW vrvita 4 >m^rurtM^ ® rum m

^ CCCCC>N.»>|k>N^htCCSai)S8 f lS & B r l t0 |89IMim?9SS333Spp"XrtPf4HHMHPMPMM x m inM r^sciiA ieiccs^K ir^M iO iP K ir. «o®.c>9ruonj crup^kr«<*ii^>clisd'M4CCirn«aMiriiACtfiluoC49oniv4 MM | | t | MM| | | | | MMl I I I MM| | | III ||| MMMMlll I I I I I 1 I

(j fur*f**^<\»»~r-ff*f*c?-oilA.$o.or\nrm p-intnjjinu‘iirii\jsAj7»-MM^>V4t>*9Aim*-ir'o«m A M | i — * I I I I MM MMMM III! M MM|| | | | I MM|||I| «M|| I III II II s C|tiOpiM 0 K tc a o in < 9 o i M t t f 7 p4 C 9 0 jjo m m ru-c j>m©* jim fu jim sM iiflt ji» a r s AitnJiruj)j“.j»m® o Min««c rur-ruAj r-mo^M in^iCBsanci

_j mmmmmmmmmmmmmmmmmmmmmrnmmmmmmmmmmmm oggggoegggog a aaaas o o ig g ffaio v ^g g g g 9

^ cttcctv«9«ccirtnjiirirtniniri^tf'kiii^iri/ijicccifl44c i4CC£m cic*Kh>K^KhNKNM ^hM icosQflflCC

X Kinm»^O>0r£ e m m ,t£ c^fUiTAjm■ginxcrmsir 9 ^ Mr* 9 rurum M9 x>rum(ri'ru aiX 9 :omCf‘*mfu®fU.r.MiAAjAj®y*©«mMf\i m |« MMrUMrUVrl mmmm I I I | A. m | | « l M l I I|mI I\|mmm p | i l | «l * III llllia I II a aiusMexo^AifumMAjm/iMmv Bio«* u. — o trir a iPaj .ox d ^.e£» xcr a / 1gjirrci^C H etss c£*nc/'«ra'UT«f*/i£c^fu^KC'*,i£«g«*-KK» © irkh^njA' 0 -cco--r.ru< 6 Acsruirm^M inir^mox9 ^-rgptnjn rtnm ninar>9,rrusorinr)0}irKii\ja4Vi)r^irui\iccccm—■ M -MMAjMAjm MMMM fU M M M <1— M j mwimmmmmmmmmmmmmmmrnmmmmmmmmmmmmmmmm 1909909999101191011991111999999111 sc Mrurunif\irui\iAjrvru(Ufur\ifunjn>Aimmmmmmmmmmmmmmmm9 ( n K i^ K w v a a v ttv g tit9 W 9 9 b P tr ir i/'i/itf ’inmu',iriinirnnfl*P

X ^uny-4ffKir«A-*-**riirM'ptWifil|afljc cgruonivcconjifX** rrHfi^voc- 4ruun9-rlfioc? 9 i«nx«Qor\ic9 CiriirK ^MnjMmfU'\jr-o»r*'m^ 4iifua'MC'9^'a^t>Mff,-oo‘0“ff‘xa(rr^«T' ik Aim 9 gCSirC '*£C Sr^>noc|rir{roiO£QirCCCrH.9CCru cl*OC94r>gi\irOi\t^9"riI^B^C8ruc*onp4£Crcifijl79 o m«nmru f\jrujVAimruMm9 4 n j9 i/>iirmar*>ruanAjr>t'VcinKtoe9cr-*9^Chcir/CAiO>gpngm mcccr

^ 0 9 -ir 9 9 9 9 - 0 0 0 0 ocommmmmmmmmmmmmmmmmmm m MMMMMMMMMMMwrururururufUr'uAiAjfurummmmmmmmKimpo

X aiM-irM M ^9 4>9ruoni47i0irmMM|i9Ajonj9'AvOAJ9 tfiKiMMinyir-trMm^rux^a A*OAi9-cor\j<^iAmM9^mviMMm4n M t I I I I I I I I MMM t I I I MMM | I I MMMM | I I I MMMMM | till • I I I III 16

U 9 O N m V 4 03iT4mO^OOi99ino>fiJ)(ri,UdC^90£-*Or»>"^ D3 04X'0 9-«0,xOk9*4>4^in9043 4ipar«3>0 £ U» lOX)4*l IM m O m ^O 1 r\Jf»©® ^ ^ f 1- aw ^JN1^rVi*0!iai—»r|p»—KlfU^t^-KI S71^/lKff- aWlMKlinatM^tOi© aajM ^Jfy^aK W «r» wr»ry■& -cm-£ -O c» 9«a'4ll>)in«4in**^SX i^hN 9 4MK10C«4^Dw<11 a (UIMM(UmiunO(\i g«U(V3 •« • * • * I • « • ttfblftM I I m « # « t t • 1 « 1 1 § 1 | m 1 | | 11 a £ n ? s £cx^-*a(UpieiV9HMK x*»e v g c9 i/i^-* v ^^^o u.a etr|OK93?Af^NHirinc4tpjMP*>(rs'nr>NPin(ui*)9«o^S 3A 9SxK )*«ssixtf ifininN>*iv-<>nKt?fO-93.'V09inni0 'urthxiocc*1 ** CiTotoa39 *-^ q

« vvv^vvvvvavinirii/i^inirinxi •>^^^K K saeos«se«8 7m ptr79^03 9s3 99

X 9ru3,'MXfioni3'xi^.a^^M9K(Vjp*ei/t(POniM90*no& o ^ f u m i ' n ■ w d ^ M x * m t u M^p^-nn —ru ru ru *o ,c ^ in a ry<^ ryw^o^jpnMirKilBpn^ninMruni M II m | M | M M I Mil « l | • » I I II I • M « M M f II M M II | « • I I .1 I a 9^inM9#«*oeru^Xhin0Oi£KtocnrvNOiP9«aoru3crKtrM mo-*'u*i"»wio-®iin»*xD«Mo^rtrvinaoiOfk»Mo it Aivt^i/i9>niM |» o (r^ p ^ v tt/)o n jiP 9 a ffi9 9 ix}4}^^i*d3-*>* •oin*ooB^^iru^£T>9m «tfiF>» M ^ ^ 9 x ^ ^ 9 ,*,»M 9t^0e*oi/> e x>n*40ar«tqrutnnX'f>>|*NhKKKNKI.r»Nh>SI-Kp>SSNh|N>KNK|k.f.

X tOirfn>«9'NUi«,)-*HntfiNt-*|Ai/,'vaai)9oi\J9dfioaj?^t/iPO M itiirK»*->9 3cxi9e4uax>c<3fuo’i*l>«4tii^«',«44«ni/M>.^Mtnaclo MMMMllit | I I I MMMMM| !• • « ^MMMMMM ail M •• M | | | MMMMMi i | | | | M-«M| • |

O «-»K,>aints,i'£ov»oo>0i*iru9'O9'ea>lc(p0'mtn*n»noa'99«wurut Min^KNMKmr(Uin^9fU*0M «x\»-3^B3/ii}j'^(7,1rc < c w c ^ r u ^ Mo a^MiN^tOf^ninni^tuxiMi II l | l II II 1 niTM^oQin>«9Min**'7>«o | MW^ryM|«\i|MM KwKkncrMiyn*^M\^9(t(o M MMMfViniMM « |M|« — III • I I I I I I I I I I I a mw 9k•£«<%) w w^rury witxximc ^ w.sx i jiw —ocm ; x ru sm It 0«[TI>X'\ir>0 3iCtf1*-» MX/1MCM C9dM diT£9 9l/IX7 ^H\|W©XJM 9 w ^iPfu^ru/iaM M M «-K\(/iMMO«iriMioru*nKiW9a *s.x>wnjh-sO»w•oruaMKiwKiinMMM-GW' ruojwmMnjMnjmw wki

j tfimtf>>int/iinif>in^iiPt/tuiiru7ininir|iAirtiO4i^<0<6 9'X-c r*shKhKM*KhKNKNhKShKs^r*NNf»Nf.r«i»NSNss

v t t r t ' O ' t c a c o o o c o M M M M M o a e a o o a o o o o o o s o njrunmiiyryryryi\ifVjfyruryr\i*i»nw^*unM*rtninmfnKs«w w o o a ej X 9r\ia^0ONJmMMninp»9(U7(U«<£aaaoanidfua

(j t7 7 tia**e^4K(N ^9 9K)irKcnjoieniJ,,o,i/i9(\iaMhHMa *-xcxcch9tiN N X ^3^etn««N ^^X K M oc^acacf* u. mi*.*. • aMAjNxiut^titrMircMa^xr^/atiinrKffiKOT x^gra © m Mf-.ffir-ftj k1 tnw 1 WMWiuryaj • \jw*iM*jwry.oAiryw c9M«h/iK5 3 atfiinx/urr it© trciT gm g g exmr»Ai t©*«-cintroasr-o> *n»-Kiw WMonjrufuwyrouiw'0 wg«isg«hin; w^tna•htipH5../ff gin^xgvn nn «-*rvMMM«injtf*ii\jnj*ory.fiMf\iWM©wwiKK,i«,iK'*nMkT« x}m©*.jio* tn

j tninnmnminiinininininintnmknn^ninininintn^injiin^in^intnNnin

^ iflXXXlXXX>flX^NKh-Kf-»l>«'rMeox9 crirmMKiint^aofua^^MMKixvnissAanioruxicoMtf^ I t MmmM • I | I MM I I I • • MM IPlMlIt II | | MMMM I I I » - M - t l I III! t

U c99«iPrviPX)voipg XAj£^trQMroox«ict r^*n*>irv^fVff*-i»i M l c ^ , t w^m*mw3 s1 -x ai^i^^actocNNXir^^x^aNnj jc a r^ r-ry o w g e « * 3 « g ^ itit( M 9 MltltlltMl t||||M|M M «|«M|| || • If t M | | I I I « I I I • a u*ruwiVik'ioo^wirinsf ■Ai'^c/|s»kT^Kur woru — oxjkio- ( t ,ooKimMipwvi»M,a^.xc?*~K>ry*o;nnjw'«r *>kim mO(Vjm o WMMmMMinKiMoinr1*^ Ai^amtgc-wf»ir,^n

^ m i*ioagqgggdtoggg vi^/tininirt/VtiriAir^>Pinir4)At6 inirin4<04^A4t44>txiri>h>Kt>.i»r»r«r«*>r>Ncei0CQoa44 X n*w<*iMtrr«-inHtMa-*nin*»{r>MilnwryGtf)'tf wiMoruwattoiMKiMpin N>«nrusi}^9i\iQnj39K/imH-«i'iinNMCo

09 HK L 10F0 1 OFC HK L 1 OFU IOFC H K L JOFO IOFC H K L 10FU t OFC H K L 10FU IOFC •1 3 19 322 301 1 7 ia 616 -b 2 3 -fa 3 15 152 -1 9 4 • 4 7 15 80 -1 4 0 -9 3 16 297 -321 1 3 14 1005 1011 3 7 14 64h 572 -4 3 15 301 310 -2 7 15 56 160 -7 3 16 175 203 3 3 14 370 • 37B 5 7 14 205 199 -2 3 15 107 -2 5 2 7 15 319 •3 1 8 -3 3 lb 529 -5 0 9 7 3 14 878 Bb5 7 7 14 557 -5 5 2 0 3 15 246 -2 5 9 fa 7 15 241 229 - I 3 lb 105 86 9 3 14 142 -1 5 8 -4 8 I 4 3«9 -3 7 7 2 3 15 159 150 •3 « 15 254 202 1 3 lb 439 410 11 3 14 274 -2 7 4 •2 8 1 4 529 619 4 3 IS 347 -3 1 9 3 B 15 26b 258 3 3 lb blO -5 9 7 • 13 4 14 34 0 320 0 8 14 183 209 fa 3 15 292 • 287 -1 2 0 Ifa 3 4 / -3 1 2 7 3 Ifa 532 558 •10 4 14 216 282 2 8 14 55 3 -5 6 5 8 3 15 412 391 •10 0 16 40b -3 9 1 9 3 16 316 •3 0 6 -B 4 14 7faO -7 3 2 4 8 14 1 74 174 •9 4 15 170 -2 3 8 -8 0 16 750 7 49 -1 0 4 lb 86 Ibb *b 4 14 151 77 6 8 14 348 369 •5 4 15 72 B7 -fa U 1b 143 -2 6 8 -8 0 16 faflj -6 7 6 -11 4 14 864 915 1 4 1 4 159 68 1 4 16 212 -2 0 0 -4 0 lb 102b-l011 -4 4 16 572 56 3 0 4 14 147 -2 0 9 -1 0 1 15 284 -2 8 7 5 4 15 57 -4 7 -2 0 lb 963 956 -2 4 lb 307 -3 2 5 3 4 14 514 519 -A 1 15 546 549 7 4 15 8b 99 2 0 16 857 —87 0 0 4 lb 71 • 104 4 4 14 402 -3 7 b • 4 1 15 793 -7 9 4 9 4 15 98 - l b 4 (I 16 532 5b2 2 4 lb 920 921 fa 4 14 Sfafa -5 7 8 -2 1 15 767 776 11 4 Ifa 103 -5 4 fa 0 lb 7 36 7h4 4 4 lb 157 -207 B 4 14 fab 3 662 0 1 15 459 462 -1 0 S 15 214 207 8 0 Ifa 743 -7 5 3 fa 4 16 487 -4 92 - 9 5 14 217 177 2 1 15 942 -9 6 4 -8 fa 15 527 -5 4 9 to 0 1b 12fa -1 1 8 B 4 16 56« Sbb -7 fa 14 255 -2 5 4 4 1 15 282 29b -6 5 15 142 48 -9 1 lb 3 09 -301 -7 5 lb 169 -147 •3 5 14 fabfa 559 b 1 15 585 670 • 4 5 15 708 700 -7 1 lb 532 535 -3 5 16 496 476 I 5 19 722 -b 9 7 8 1 15 51b •521 • 2 5 15 38b - a i o •fa 1 16 132 253 -1 6 16 250 •2 3 2 3 5 19 322 325 10 1 15 14b -1 0 2 5 15 871 883 • 3 1 lb 867 -Bfab 1 5 1b 2H3 • 260 5 fa 14 399 403 12 1 16 469 474 4 5 15 30b •3 1 3 *1 1 16 165 212 3 5 lb 430 433 7 5 14 49fa -4 9 2 -9 2 15 491 -4 9 0 6 5 15 592 -b o i 1 1 1b 386 404 5 6 lb 155 -3 0 •8 fa 19 Ib8 -2 0 0 -7 2 16 495 497 8 5 15 452 469 3 1 16 423 -4 0 9 7 5 1b 296 •281 •0 fa 14 317 315 -5 2 15 A 4 154 •9 fa 15 471 485 5 1 lb 242 • 249 -8 fa 16 145 -171 •2 fa 14 387 -3 8 8 -3 2 16 11 114-1 109 -7 fa 15 422 •3Bb 7 1 lb 441 447 -4 fa lb 17 95 0 fa 14 25b -2 7 3 -1 2 16 399 370 -5 6 15 331 *314 9 1 16 37 -5 5 -2 fa lb 19A •2 1 3 a fa 14 38b 400 1 2 15 1055 101b -3 6 15 857 867 11 1 lb 154 •2 7 4 0 fa 16 94 74 a fa 14 10b - 2 Ifa 3 2 15 729 -701 -1 6 16 169 -171 -1 0 2 lb 154 158 2 b 16 239 235 fa fa 14 283 —2b8 7 2 15 8(10 801 1 fa 16 bfal -7 0 9 -4 2 lb 8b — B4 -5 7 Ifa 2T4 -2 3 8 8 fa 14 ?no 202 9 2 15 227 -2 2 6 1 fa 15 614 614 -2 2 lb 242 218 -J 7 lb 602 602 •7 7 14 2B3 -2 8 5 11 2 15 365 -3 3 5 5 fa 15 197 211 2 2 lb 51B -5 0 3 -1 7 lb 215 •224 -5 ; 14 059 -4 5 4 -1 2 3 15 287 271 7 fa 15 b l 1 -fa07 4 2lb 226-230 1 7 16 457 -4 7 3 - 3 7 14 671 fafah • 8 3 16 463 -4 6 3 -fa 7 15 41 -3 9 b 2 lb 137 -2 2 7 J 7 16 493 471 •2 8 Ifa 39b 365 -5 a 1? Tb 186 3 1 18 315 -3 2 5 • 4 1 19 302 -2 7 9 •4 0 20 399 •411 0 8 lb 190 189 -3 4 17 292 -2TA 7 1 18 341 373 -2 1 19 361 352 -2 0 20 230 227 3 8 lb 3b2 -3 7 0 -1 a 17 110 -1 2 3 9 1 18 1 84 -1 8 8 0 1 19 102 -3 3 2 0 20 548 -544 -8 1 17 585 578 1 4 17 137 160 •6 2 IB 122 -1 9 2 2 1 19 323 -3 2 h 4 0 20 37b 360 -fa i 17 301 -271 3 a 17 119 -1 1 6 -4 2 IB 106 -IB 4 1 19 331 312 fa II 20 324 328 • 9 l 17 503 -4 9 3 5 4 17 109 lb -2 2 IB 17b 183 fa 1 19 265 265 -7 1 20 215 216 -3 l 17 6 39 693 7 4 17 Ibb 181 0 2 18 63 -1 2 8 1 19 311 -317 -3 1 20 327 —309 2 i 17 680 -b 7 9 •6 5 1 7 43b -4 2 5 2 2 IB 91 4 • 7 2 19 428 420 -1 1 20 148 173 a i 17 359 557 - a 5 17 282 269 4 2 IA 220 214 -3 2 19 655 —fa4 3 1 1 20 193 212 6 i 17 254 232 - 2 5 17 558 -5 7 8 8 2 IB 100 -4 8 -1 2 19 316 317 J 1 20 457 -4 4 4 8 l 17 595 -5 6 3 0 5 17 Hfa -1 2 9 - 9 3 18 244 -2 5 5 1 2 19 430 427 7 1 20 259 2b5 10 l 17 130 37 2 5 1 7 544 544 -7 3 IB 360 352 3 2 19 b 14 -6 0 3 0 2 20 13b -3 4 -9 2 17 287 -2 9 9 4 5 17 2b9 -3 2 6 -5 3 IA 253 234 5 2 19 125 20 2 2 20 137 -4 4 -7 2 17 483 4bfa b 5 17 299 -3 0 9 — 3 3 18 54b -bUO 7 2 19 5b9 549 b 2 20 79 -2 8 • 8 2 17 1 36 153 8 5 17 507 490 •1 3 18 75 75 •8 3 19 232 -2 3 4 •3 3 2u 487 -457 -3 2 17 bOO • bl 4 •7 fa 17 426 -9 2 4 1 3 18 245 244 •6 3 19 171 154 -1 3 20 404 413 -I 2 17 280 265 -3 6 17 729 736 3 3 IB 675 -6 6 2 • 4 3 19 177 180 1 3 20 320 337 1 2 17 bl 3 b2fa -1 6 17 240 -261 7 3 IA 4fa4 431 • 2 3 19 379 -3 8 2 3 3 20 374 -3 7 7 J 2 17 703 -7 1 2 I 6 1 7 410 -4 2 8 -8 4 1 A 4A2 -0 5 3 0 3 19 39 -IB 5 3 20 164 lBN 5 2 17 91 -191 3 b 1 7 467 4bB -4 4 18 311 297 2 3 19 2b9 2b7 -4 4 20 59 233 7 2 17 fa4fa 615 - 4 7 1 7 212 -2 0 9 -2 4 IA 692 -6B 5 4 3 19 254 -2 4 2 -2 4 20 523 -5 0 8 9 2 17 3 36 -3 4 4 -2 7 IT 101 128 0 4 18 76 -5 9 fa 3 19 203 -20B 0 4 20 . 59 I* •1 0 3 17 149 206 • A 0 1 8 bt)5 6 33 2 4 IA 667 662 -7 4 19 157 142 2 4 20 4911 499 - 8 3 17 3b7 -3 5 9 -b 0 18 298 -2 7 5 4 4 IB 463 -4fab - 5 4 19 162 171 4 4 20 278 •288 -6 1 17 121 -11 - 4 0 18 562 -5 6 7 6 4 IB 140 -311 -3 4 19 57 -1 1 « 1 5 20 16B • 142 -4 3 17 33b 39] -2 0 18 692 701 8 4 IB 471 47B -1 4 19 211 197 **£ 1 21 294 312 -3 3 17 170 -9 3 2 0 18 536 -521 -7 fa IB 119 -1 9 2 -4 6 19 259 275 2 1 21 401 -3 8 9 0 3 17 9 32 4 0 18 448 433 -3 5 IB 299 310 - 2 fa 19 398 -4 0 2 4 1 21 241 197 3 3 17 fano 624 A 0 18 51b -5 1 2 -1 5 IB 112 -1 0 9 0 fa 19 41 1 — J 2 21 474 • 468 <1 3 17 74 -1 3 3 -9 1 18 141 -2 2 2 1 5 IB 20 7 -1 6 7 2 6 19 413 459 — 1 2 21 419 407 fa 3 17 345 -3 3 5 -7 1 18 264 265 3 fa IB |9B 215 4 5 19 17b -2 8 2 1 2 21 129 200 8 3 17 312 337 -3 1 18 945 -451 -2 6 18 88 -1 54 • 1 b 19 247 -2 8 2 3 2 21 447 -a 2 b •9 4 17 128 -1 2 3 -1 1 1 A 393 393 -8 1 19 357 352 1 fa 19 323 -2 7 8 -4 3 21 84 105 •7 4 17 159 20 1 1 1 A 569 694 -6 1 19 2b2 -281 -fa 0 20 19u -261 -2 3 21 351 -3 1 0 0 3 21 5B 54 -I 4 21 119 4 2 0 2 2 455 -421 -1 1 22 Ibb 151 1 I 22 143 141 2 3 21 289 297 - 2 0 2 2 452 440 -3 1 2 2 261 -220 Atomic positional parameters X 10**9

Isotropic temparature factor X 10**3 Atom X 7 2 U

Pd 1 6 5 3 1 ( 1 ) 1 1 1 3 6 ( 1 ) 10129() 92(2)

□ Cl) 17031(3) 12513(9) 10933(2) 67(1)

0(2) 16975(3) 12710(9) 9931(2) 56(1)

0(3) 19373(9) 7119(5) 7660(2) 66(2)

0(9) 19792(9) 5b 37(5) 6995(3) 65(2)

N(l) 1 6 9 3 1 ( 3 ) 955 5(6) 10765(2) 95(1 )

N(2) 19762(9) 6797(6) 3217(3) 65(2)

C(l) 16022(3) 9351(5) 9969(2) 91(1)

C(2) 15776(3) 10079(5) 3733(2) 50(2)

C(3) 15370(9) 9090(5) 6335(3) 59(2)

C( A) 15215(9) 7633(6) 6629(3) 51(2)

C ( 5 ) 15963(9) 7593(5) 9360(3) 55(2)

C(6) 15673(3) 35 b 2(5) 9735(3) 99(2)

C ( 7 ) 16136(3) 39 31(5) 10996(2) 93(1) c(a) 16095( 9) 7259(6) 10906(3) 61(2)

C(9) 16302(5) 7305(6) 11616(3) 66(2)

C(10) 16666(5) 6932(7) 11901(3) 69(2)

C(ll) 1 67< *1(^) 9531(6) 11967(3) 55( 2)

C(12) 1717<«(9) 130J7(5) 9090{3) 52(2)

C( 13) 17030(6) 19167(6) 6537(9) 67(3)

* Equivalent isotropic temperature Factors

Table 2»3 : Atomic positional parameters of I Anisotropic thermal parameters X 1QS-3

Atom Ull U 22 U33 U23 U13 U12

Pd 33(1) *♦ 0 ( 1 ) 93(1) -5(1) —2( I) -3(1)

0(1) 67(3) 53(2) 75(3) —20 ( 2 ) - 6( 2 ) - 2 ( 2 )

0 ( 2 ) 9r*(2) 97(2) 79(3) 13(2) -7(2) 3(2)

0( 3) 107(9) 103(9) 52(2) - 21( 2) -13(2) -19(3)

0(9> i o i m 51(3) 95(3) -19(3) -13(3) -3(3)

N( 1) 3K2) 99(2) 97(2) 3(2) - 6 ( 2 ) 3(2)

N(2) 79(3) b 7( 9 ) 55(3) -19(3) -7(2) 3(2)

C( 1) 33(2) 50(3) 39(2) 3(2) - 1 ( 2 ) -3(2)

C (2 ) 51(3) 59(3) 95(3) 3(2) -5(2) -9(2)

C{3) 59(3) 6 6(9) 91(3) - 11(2) -5(2) 2 ( 2 )

C ( ** J 99(3) 55(3) 50(3) -9(2) -9(2) 1 ( 2 )

C( 5) 6b(9) 93(3) 50(3) - 2 ( 2 ) 3(2) -3(2) c m 93(2) 95(2) 95(3) -3(2) -9(2) 2 ( 2 )

C ( 7 ) 36(2) 91(2) 53(3) 9(2) 9(2) 3(3)

C( 9) 7 9(9) 51(3) 59(3) 6(3) -7(3) 7(2)

C(9) 76( 9 ) 67(9) 55(3) 13(3) -9(3) -2(3)

C< 10) 67(9) 66(9) 59(3) 3(3) -12(3) -3(3)

C( 11) 55(3) 67(9) 92(3) 3(3) - 6 ( 2 ) 9(3)

C ( 12 ) **9(3) 93(3) 66(3) 11(2) - 10( 2) -9(3)

CC13) 95(b) 71(5) 96(5) 90(9) -9(9) 2(9 )

Table 2*9 5 Anisotropic thermal parameters of I 22

DISCUSSION

Compound I was prepared by a cyclopalladation reaction which is the most common reaction in cyclometallat i on. In

general, cyclometalation reactions involve the formation of

a metal-carbon sigma bond by an organic ligand when it

undergoes intramolecular metalation.

The dimeric molecule I (fig. 2.1) sits on a crystallo-

graphic two-fold symmetry axis and consists of two square planar Pd (II) moieties bridged by two acetate ligands. Two

cis-coordination sites are occupied by oxygen atoms from the bridging acetate groups. The two remaining sites are

occupied by carbon atom C(l), of the benzene ring, para to a nitro group, and the nitrogen atom N(l) of the pyridyl

group. The benzene ring and thepyridyl group are linked together through C(6) of the benzene ring and C(7) of the pyridyl group. Both are in the position o r tho to C(l) and

N(l) in their respective rings.

In solving this structure it was hoped to learn about the metal-metal interaction, and also about the trans­ influence on the trans Pd-0 bonds through the influence of an aryl-carbon and an ary1-nitrogen.

The trans influence has been defined as 'the labiliza- tion of ligands trans to other, trans-directing ligands'^.

One form of this labilization is the lengthening of a bond relative to its anticipated length (longer than the sum of the two covalent radii). 23

Several palladium dimers with acetate bridges are reported in the literature. In each of these dimers, the palladium atom has bonds to main group atoms such as C, N, S,

P, Cl and Br, in addition to the two acetate-bridge bonds.

Benzyl-carbon and phosphorus were reported to have the same trans-effect (ref. 17). This is inferred from the similar

Pd-0 lengths (2.120(1)1 and 2.138(1)1). However, the trans-lengthening effect of a bonded aryl-carbon relative to that of a coordinated nitrogen is clearly true in such complexes. A difference of 0.092(2)1 between the two Pd-0 bonds (ref. 18), 2.198(3)1 and 2.106(3)1, was taken as evidence of a strong trans influence of the carbon atom of the norbornyl entity. An even larger difference was observed in an acetato-bridged palladium dimer with 2,6-diarylpyridine as the ligand (ref. 19). Pd-0 distances of (2.192(5)1,

2.054(6)1) and (2.182(5)1 and 2.061(5)1) in the two square planes (ref. 17), present strong evidence of the trans influence. In the palladium dimer studied in this work, it was found that the Pd-0 distance trans to carbon is 2.14(2)1 where as the Pd-0 distance trans to nitrogen is 2.03(1)1.

A difference of 0.11(2)1 shows the greater trans-lengthening effect of the aryl-carbon relative to the aryl-nitrogen.

Part of this ' trans-influence ’ may be due to the long range influence of the para nitro group.

The Pd-C bond length, 1.94(1)1, appears to be the shortest Pd~aryl carbon bond thus far observed (ref. 20,

21). It is significantly shorter than the calculated bond 24

length of 2.05X (based on the covalent radii of Pd(II),

1.3lX (ref. 22), and C(SP3) - C(SP3), 1.537X, and C(SP3)

C(SP2), l.SloX (ref. 22). The shortening in the Pd-aryl

carbon bond is suggestive of partial multiple bond character

as a result of pal 1adium-to-ary1 back-bonding. The differ­

ence of 0 , 1 1 ( 2 ) X can be compared to a 0.05(1)X shortening in

the Rh-C bond found in a Rh(II)-aryl carbon bond (ref. 23).

The Pd-N bond length is 2 . 0 2 ( 2 ) X . It is not signifi­

cantly longer than the calculated single bond value of 2 . 0 l X

(based upon Pd(II), 1.3lX, (ref. 22) and N(SP2), 0.70X

(ref. 24)). Any lengthening in this bond is insignificant

compared to similar bonds found elsewhere (0.037(3)X in a

Pd-dimer (ref. 19) and 0.05(1)X in a Rh-dimer (ref. 25)).

The Pd atom does not lie exactly in the coordination

plane (defined by atoms 0(1), 0(2), N(l) and C(l)). The four

coordinated atoms lie within one e.s.d. (estimated standard

deviation) of this plane while the Pd atom is situated at a

distance of 0.051(l)X above the plane and in the direction of

the second Pd atom. The geometry of the Pd coordination

sphere is that of a pyramidal distortion, in contrast to the

' ' distortion found in a similar Pd-dimer (ref. 19). The

shift of the Pd atom toward the adjacent Pd atom may be due to the repulsion between ji-orbitals of the two bidentate phenyIpyridy1 ligands, rather than a Pd-Pd attraction.

T h e four non-hydrogen atoms of each of the acetate groups lie in a plane, and the two acetate planes subtend an 0 angle of 81.6. However, they are skewed with respect to the 25

coordination planes. Each acetate plane makes angles of

86.4° with one coordination plane (Pd) and 76.8° with the

other (Pd ).

As can be seen in fig. 2.2, the coordination of the

bidentate ligand to the palladium atom gives rise to a five membered ring in addition to the aryl and pyridyl rings. All

three rings are individually planar within experimental

error and mutually planar within 3°.

The coordination plane has dihedral angles of 2.3°, 4.6°

and 3.7° with the five membered ring, the aryl and the

pyridyl rings respectively.

The only substituent in this ligand is a nitro group on

the phenyl ring para to palladium. The nitro group, along with carbon atom C(4) of the phenyl ring, lie in a plane that

is not planar with the phenyl ring but makes an angle of 13° w i th i t. 03

Fig. 2.2 : Bond lengths and angles of compound I.

s> <3\ 27

POES A METAL - METAL BOND EXIST?

The decreasing distance between two atoms in a molecule is usually taken as indication of bond formation: yet, sometimes, it is not. Considering the covalent radius of

Pd(II) to be 1.3lX. (ref. 22), two palladium atoms 2.62& apart might be considered to be bonded to each other.

The structures of many acetate bridged palladium dimers have been studied. In these, the palladium atom separations range from 2.84.X to over 3.4&. In syn-trans-di-acetato-bis

[0-(t-buty1-0-tolyphosphino) benzyl] dipalladium (II), the

Pd-Pd distance is 3.413(4)X (ref. 17) and was interpreted to be non-bonding. In another dimer, also with two substituted phosphine ligands (ref. 26), a P d -P d distance of 2.944(3)& was still considered to be a non-bonded distance. In a palladium dimer similar to I but with a chlorophenyl substi­ tuent on the aryl ring, a distance of 2.906(4)X (ref. 19) is also considered non-bonding. However, in a n-allyl palla­ dium acetate dimer (ref. 27) a distance of 2.94{2)X was interpreted to represent a metal-metal bond. An even longer

Pd-Pd distance, 2.96(4)X (ref. 18), was considered to repre­ sent a strong interaction between the Pd atoms. Contrary to the last two references, distances of 2.871(2)X and 2.842(2)X

(re f. 20) in [Pd(2-p-tolylbenzthiozole)OAc ]2 and [Pd(2-p- tolyIbenzoazole)0Ac] 2 , were regarded as non-bonding.

It is clear so far that there is no solid indication of whether the metal-metal bond exists in those acetate bridged

Pd dimers; and, considering the above mentioned contradicting 28

conclusions, the Pd atoms separation distance alone is not a

sufficient proof of the existence of a metal-metal bond.

In compound I, the Pd-Pd distan ce is 2.822(6)A, the

shortest Pd-Pd distance yet observed in dimers of this 13 type. There are three factors that affect the separation

of the two Pd atoms. F irst, a metal-metal bond could bring

the atoms closer together. Second, the unstrained geometry

of the two acetate bridges could bring them as close as 2.7X

to each other even without a bond. The third is the repul­

sion between the two bidentate ligands which will increase

the Pd-Pd distance repulsion between the two bidentate

ligands is observed when the distance separating them becomes

less than the sum of their van der waal rad ii (van der waal

radius of a benzene ring 5 2 is half the thickness of the

n-electron cloud, 1.7X). Probably the first two factors

could overcome the effect of the third, meaning that the

bridge geometry and a bond between the Pd atoms would counter

the lengthening effect induced by the repulsion of the bidentate ligands and could bring the Pd atoms as close as

2 . 7l or less. But the structure does not show any sign of

favoring the bridging geometry and the metal-metal bond. The

shortest distance separating the two bidentate ligands is

3.38(3)X. This value is within one e.s.d. of the contact

distance allowed by van der wall interaction (3.4X). The

angle O-C-O of the bridging acetate is 125.7° (6) instead of being 120° (SP^ hybridization angle). The larger value of

angle 0 -C —0 diminishes the chances of the m etal-m etal bond 29 and puts more importance on the e ffe c t of the rep u lsio n between the bidentate ligands. This is not to say that there is no interaction between the Pd orbitals. It is po ssib le that there is a bond of order 'z e ro ' between them. This becomes clear by constructing the qualitative molecular orbital diagram. Pd(II) is a d® system. The d-orbitals interact in the way show n in Fig. 2A. The sixteen electrons of the two Pd atoms f i l l in equal number of bonding and antibonding a and n orbitals implying, if there is any chance for a P d -P d bond to exist, that it would be of order zero.

The actual existence of a net attractive (or repulsive) force depends on the relative bonding and antibonding energies. Fig. ZA : Energy level diagram of a square planar d ;system. Fig. 2.3 • Stereo view of the packing diagram of compound I. CHAPTER III 33

INTRODUCTION

One of the techniques utilized in the study of carbohy­

drates is to modify the parent compound; the p ro p e rtie s of

the new model are compared with the parent. Lambert and o fi Wharry replaced the ring oxygen atom in D-glucopyranose with sulfur to produce 5-thio-D-glucopyra nose . This model

compound has been found to have a variety of physiological activites that were not observed in the original compound.

Tounathan e_t a_l. replaced the ring oxygen in p-D-glucopy- ranose with a CHj group to form pseudo-0-D-glucopyranose.

This model was studied as an analogue to p-D-glucose, but no reaction was detected between this model and ATP in the presenceof hexokinase. The same inactivity was observed

in the reaction with glucose oxidase.

The replacement of the ring oxygen atom with a CHj group introduces two changes to the analogue as compared to the parent compound: (1) an electronic change due to the disappearance of the two lone pairs of electrons on the oxygen atom, and (2) a steric/conformational change due to the size difference between an oxygen atom and the CH 2 group. In addition, differences occur in bond lengths and bond angles associated with this replacement.

Crystals of the aceto-derivative were produced (the t i t l e compound, VI) for single crystal X-ray studies. The main objective of this study was to investigate the conforma­ tion adopted by the ring in the crystalline phase. 34

EXPERIMENTAL

Colorless, clear crystals of pseudo penta-O-acetyl p -D ,

L-Glucopyranose were provided by Dr. Ezzat S. Younathan for

single crystal X-ray study. A crystal of dimension 0.3 z 0.3

z 0.36 mm was mounted in random orientation on a goniometer

bead. The crystal was stable at room temperature.

Twenty-five well centered reflections were located by

program SEARCH*® and used for preliminary determination of

the unit cell dimensions. The unit cell obtained by indezing

these reflections has: a = 8.278(2)A, b = 11.591(9)X,

c =» 22.038(2)&, a = 75.64(7)®, p = 89.97 (5)® and

% = 89.99(4)° . This suggests a monoclinic lattice. The

transformation matriz, used to reorient the unit cell to

standard monoclinic form was:

0 1 0

1 0 0

0 0-1

A survey of 118 reflections was performed in order to

choose a set of 25 strong reflections for a better determina­

tion of the unit cell dimensions (table 3.1). This set of

intensity data also revealed the absence of any possible

lattice centering. The oho reflections were measured and

revealed the presence of a two-fold screw azis along the b

direction, because all oho reflections with odd values of h were absent. The space group was determined after the full 35

CRYSTAL DATA

Formul a C17 °10 H2 4 Formula Weight 388.41

Cell Constants

a (A) 11.580(2)

b (A) 8.276(1)

c (A) 22.031(1)

0 (A) 104.33(1)

Volume ( A ) 3 2045.7(7)

z (molecular/cell) 4

Density (g/cm3) 1.26

Space group p2i1/c i Crystal size (mm) 0.3 x 0.3 z 0.36

MCu - Ka> (A) 1.54184

Minimum transmission 92.4%

Maximum trasm ission 99.88%

Reflections measured 2976

I > 3cr (I ) 1543

R = Jl iFol - |Fc| I / ^ iFol 0.049

Rw = (JwtlFol - |FcI)2/JwlFol2)1/2 0.054

Table 3.1: Crystal data of Compound VI 36

set of intensity data was collected. Inspection of the hoi data revealed that all reflections with odd values of 1 were absent. This is an indication of the presence of a glide plane perpendicular to the b direction with translation along the c. d ire c tio n . Knowledge of these system atic absences uniquely identifies the space group to be P2^/c.

The intensity data were measured on an Enraf-Nonius diffractometer using C u-K a radiation for reflections in the range 2° < 26 < 75°. The data were collected in the -fh, + k,

±1 quadrants. Reflections (100), (020) and (006) were used for intensity standard control. Reflections (54 1) and (1 4

10) were used for orientation control. The intensities of two reflections near Chi = 90° (1 1 3 and 214) were measured after data collection using incremental Psi values of 10°.

Thus, a linear decay correction and an empirical absorption correction could be applied to the data, in addition to the standard Lorentz and polarization corrections. The raw intensity data were reduced and merged using the DATARD^® program of the SDP set of programs available on the PDP 11/34 computer. 37

STRUCTURE SOLUTION AND REFINEMENT

The structure was solved using the Direct Methods program MULTAN77^®. Statistical analysis of the normalized structure factors ) showed them to have a centrosym- metric distribution. The temperature factor determination from the Wilson plot was 4.9 and the scale factor was

0.3286. The average values of for the parity groups are listed in table 3.2.

The largest 260 E-values as well as the 50 smallest

E-values were used for phase determination. Application of the ^ relationship^ gave rise to two assignments of 180°

(for 020) and 360° (for 6 0 20) with probabilties of 0.996 and 0.999 respectively. The number of relationships deter­ mined by the ^ relationship^ is 2460.

Space group P2^/c requires three reflections for origin definition. These were chosen by the program to be

h k 1. nh i

3 6 10 360°

3 7 4 360®

7 5 5 360® 38

All Data 1.017

EEE 0.985

UEE 1.040

EDE 1 .067

DUE 1.010

EEU 1.163

UEU 1.059

EUU 0.979

UUU 0.867

Table 3.2: Average value of E^ fox parity groups of VI. 39

Five other reflections vere used in the starting set:

h k 1

6 6 4

2 2 9

2 0 4

3 6 10

5 0 20

Systematic permutation of the phases and application of

the tangent formula gave rise to 32 phase sets. Combined

figures of merit for the 32 sets ranged from 0 . 3455 to

2.2623. The E-map generated by the set with the highest

combined figure of m erit gave a com plete image of the molecule with all non-hydrogen atoms accounted for.

The positions of all carbon and oxygen atoms were

refined for several cycles by the weighted, full-matrix

1east-squares procedure until no more shifts were observed in their positional or aniosotropic thermal parameters. At this stage of the structure refinement, all nonmethyl hydrogen atom positions were calculated assuming SP^ configuration around all carbon atoms, and were given a fixed is o tro p ic thermal parameter. These calculations were carried out by

o g program HYDRO in the SDP package. However, methyl hydrogen atom positions were determined by a slightly different method. The difference fourier map was calculated and one peak, (judged to be a hydrogen atom attached to a methyl 40 carbon) was used to calculate the positions of the other two hydrogen atoms. Then, the calculated positions of these two hydrogen atoms were used to idealize the position of the hydrogen atom chosen from the difference fonrier map. This procedure was applied to each of the five methyl groups.

This model, consisting of all non-hydrogen atoms along with the calculated hydrogen atoms, was refined. A difference map revealed the presence of significant electron density around every methyl carbon atom. This suggests the possibility that all methyl hyrogen atoms are disordered. The positions of three other hydrogen atoms were calculated for each methyl carbon. This new methyl group is rotated through 60° with respect to the original, and all hydrogen atoms were given half-weight. The new model was refined by least-squares, and showed a significant drop in the R-value. The two sets of methyl hydrogen half-atoms (the prime set and the unprimed set in table 3.3) are related by rotation around an axis that coincides with the bond between the methyl and carbonyl carbon atoms. Thus the best re p re s e n ta tio n of the methyl hydrogen atoms may be a cloud of three electrons in the form of a ring, since the methyl groups probably rotate freely.

The largest electron density in the final difference fonrier map is 0.36 e. ® The unweighted R—value is 0.049 and the weighted R-value (Rw) is 0.054 for all reflections with I > 3o(I). The atomic positional parameters and anisotropic thermal parameters are listed in Table 3.3 and

3.4. Table 3.6 contains the observed and calculated struc— * %

t vi r i fa c to rs . Atom X y z

O il 0 . 126BC2) 1.1114(3)• 0.4747(1) 012 0.2469(3) 1.3175(4) 0.4691(2) 021 0.0766(2) 0.9144(3) 0.3720(1) 022 -0.0028(3) 0.6943(3) 0.4047(1) 031 -0.1 7 0 7 (2 ) 0.9178(3) 0.2993(1) 032 -0.0586(2) 0,B7B6(4) 0.2304(1) 041 -0 .2679(2) 1.2310(3) 0.27B 0(1) 042 -0.4347(3) 1.1577(4) 0.3056(1) 061 -0 .2935(2) 1.3507(3) 0.4280(1) 062 -0.4513(3) 1.5105(4) 0.3972(2) Cl 0.0444(3) 1.1649(5) 0.4174(2) C2 -0.0152(3) 1.0150(5) 0.3858(2) C3 -0.1041(3) 1.0606(5) 0.3254(2) C4 -0.1952(3) 1.1787(5) 0.3380(2) C5 -0.1387(3) 1.3268(5) 0.3740(2) C6 -0.2341(4) 1.4386(5) 0.3882(2) C7 -0.0467(3) 1.2770(5) 0.4335(2) C ll 0.2255(4) 1.1947(5) 0.4952(2) C12 0.3038(4) 1.1311(5) 0.5540(2) C21 0.0753(4) 0.7558(5) 0.3861(2) C22 0.1815(4) 0.6730(5) 0.3738(2) C31 -0.1399(3) 0.8400(5) 0.2520(2) C32 -0.2201(4) 0.6979(6) 0.2306(2) C41 -0.3875(4) 1.2161(6) 0.2677(2) C42 -9 .4489(4) 1.2836(7) 0.2063(2) C61 -0.4044(4) 1.3983(6) 0.4267(2) C62 -0.4593(4) 1.2924(6) 0.4661(3)

Table 3.3 : Atomic positional parameters of compound VI. fHom X y z B.A2 fltoi X y z b , a ;

HI 0.B97B 1.2279 0.3881 5 .0 H33‘ -0 .1 7 3 2 0.5920 0 .2 5 1 4 5 .0

H2 -0.0506 0.9542 0.4148 5 .0 H42 -0 .4 1 9 3 1.4022 0.2025 5 .0

H3 -0 .0 5 6 5 1.1111 0.2952 5 .0 H43 -0 .5 4 1 3 1.2843 0.2020 5 .0

H4 -0.2447 1.1200 0.3655 5.0 H42 -0 .5 1 0 3 1.3717 0 .2 1 2 4 5 .0

H5 -0 .0 9 3 9 1.3922 0 .3459 5 .0 H43 -0 .4 9 4 2 1.1908 0 .1775 5 .0

HS1 -0.2955 1.4712 0.3464 5.0 H52 -0 .4 1 1 9 1.3032 0.5132 5 .0

H62 -0.1941 1.5431 0 .4112 5 .0 H53 -0 .4 5 6 4 1.1719 0.4516 5 .0

H71 -0.0036 1.3805 0.4557 5.0 H52 -0 .3 9 7 8 1.2034 0.4873 5 .0

H72 -0 .0 9 0 0 1.2174 0.4637 5.0 H53 -0.5355 1.2369 0.4381 5 .0

HI 1 0.2581 1.1343 0 .5897 5 .0 H12 0.327B 1.0114 0.5471 5 .0

H13 0.380B 1.2026 0 .5 6 7 0 5 .0 H13 0.3067 1.2142 0 .5 9 0 4 5 .0

HIT 0.3901 1.1137 0.5480 5 .0 H22 0 .2 5 7 0 0 .7 0 0 4 0 .4099 5 .0

H12' 0.2699 1.0205 0.5653 5.0 H21 0.2062 0 .5 7 6 3 0 .4052 5 .0

H21 0.1950 0 .7127 0.330B 5 .0 H31 -0.1782 B.616B 0 .2063 5 .0

H23 0.1675 0.5475 0.3721 5 .0 H311 -0 .2 3 7 S 0.6B79 0.IB17 5 .0

H22' 0.2525 0.7552 0.3799 5.0 H41 -0.4299 1.2123 0 .1705 5 .0

H23' 9.1607 0 .6290 0 .3276 5 .0 H41‘ -0 .3 8 6 1 1.3363 0.1B52 5 .0

H32 -0.3005 0.7379 0.2009 5.0 H51 -0 .5 4 8 3 1.3270 0 .4615 5 .0

H33 -0.2377 0.6356 0.2637 5.0 H51‘ -0.4034 1.3619 0 .5009 5.B

H32' -0.3BB5 0 .7 1 4 3 0.2430 5 .0

The form o f the anisotropic thermal parameter Is: oxp[-CB(l.I)*h2 + B(2,2)*K2 + B(3,3)*I2 + B(l,2)*hk + B(l,3)*hl B<2,3)*ktn. Table 3.3 cont. Home LK1.1) U(2.2) U(3,3) LK1.2) U(1.3) U(2,3)

Cl 0.056(2) 0.051(3) 0.049(2) -0.001(2) 0.011(2) 0.006(2) C2 0.051(2) 0.045(3) 0.056(2) -0.005(2) 0.021(2) -0.003(2) C3 0.054(2) 0.04B(3) 0.054(2) -0.007(2) 0.019(2) -0.003(2) C4 0.058(2) 0.050(3) 0.057(2) 0.003(2) 0.01B(2) 0.004(2) C5 0.065(2) 0.047(3) 0.065(2) 0.006(2) 0.023(2) 0.000(2) CG 0.093(3) 0.057(3) 0.075(3) 0.002(3) 0.037(2) 0.009(2) 07 0.067(3) 0.050(3) 0.063(3) -0.002(2) 0.014(2) -0.005(2) Oil 0.057(2) 0.055(2) 0.067(2) -0.013(1) 0.010(1) 0.004(2)

oil 0.067(3) 0.070(3) 0.081(3) -0.007(3) 0.013(2) 0.020(3) 012 0.082(2) 0.118(3) 0.134(3) -0.032(2) -0.011(2) 0.053(2) C12 0.063(3) 0.072(3) 0.088(3) -0.006(3) 0.005(3) 0.011(3)

021 0.061(2) 0.049(2) 0.072(2) 0.003(1) 0.024(1) 0.003(1) C21 0.088(3) 0.052(3) 0.058(3) 0.002(3) 0.009(2) -0.005(2) 022 0.130(2) 0.053(2) 0.128(2) -0.009(2) 0.051(2) 0.008(2) C22 0. 109(4) 0.068(3) 0.100(3) 0.027(3) 0.016(3) -0.005(3)

031 0.058(2) 0.060(2) 0.059(1) -0.007(2) 0.020(1) -0.011(1) 031 0.072(3) 0.060(3) 0.060(2) 0.005(3) 0.013(2) -0.001(2) 032 0.095(2) 0.0BB(2) 0.083(2) -0.010(2) 0.046(1) -0.016(2)

C32 0.106(3) 0.089(4) 0.090(3) -0.02B(3) 0.036(3) -0.029(3) .041 0.056(2) 0.073(2) 0.072(2) 0.006(2) 0.011(1) 0.005(2) C41 0.076(3) 0.071(3) 0.083(3) 0.008(3) 0.002(3) -0.012(3) 042 0.068(2) 0.137(3) 0. 133(3) -0.019(2) 0.022(2) -0.011(3)

C42 0.081(3) 0.113(4) 0.123(4) 0.013(3) -0.009(3) -0.021(4) 061 0.07B(2) 0.069(2) 0.0B8(2) 0.017(2) 0.040(1) 0.004(2)

061 0.091(3) 0.077(3) 0.106(3) 0.010(3) 0.044(2) -0.002(3) 062 0.097(2) 0.110(3) 0.179(3) 0.036(2) 0.049(2) 0.044(2)

062 0.114(3) 0.110(4) 0.183(4) 0.024(3) 0.093(3) 0.017(4)

The form of the anisotropic thermal parameter is: expC-2P12f h2a2U(1,1) + «2b2U(2,2) + I2c2tl(3.3) + 2hkabU(I,2) + 2hlacU(l,3) + 2klbcU(2,3) )3 where a,b. and c are reciprocal lattice constants. Table 3.4- : Anisotropic thermal parameters of compound VI. H K L Fob* F ca lc HK L Fob* F calc H K L Fobs F ca lc H 1C L Fobs F ca lc H K L Fob* F calc

e 8 2 a s 86 e 2 a 13* a a 4 3 68 03 e 6 2 131 119 1 0 -1 4 258 246 a a 4 121 124 a 2 9 109 . 100 e 4 4 215 215 8 6 3 44* 69 1 0-12 263 260 a a 6 1022 1806 a 2 la 131 135 a 4 5 206 212 a 6 4 40* 70 1 0 -10 545 545 a a a 227 23B a 2 u 74 B2 a 4 6 119 125 a 6 5 44* 61 1 e -B 236 244 0 a 10 323 328 a 2 12 73 64 a 4 7 291 276 a 6 6 B5 75 1 e -6 0* 13 e a 12 210 219 a 2 13 342 . 364 B: 4 0 131 134 a 6 7 147 148 1 0 -4 987 1023 e a 14 a* 35 B 2 14 156 145 a 4 9 155 138 e 6 a 24* 68 I B -2 919 976 a a 16 93 94 a 2 15 146 15a a. 4 ie 169 156 a 6 9 e * 45 i a a 1183 12S1 e a ie 17* 48 a 2 16 30* . 35 a 4 u 105 166 0 6 10 40* 45 i a 2 818 B74 e a 2a 158 142 a 2 17 117 111 a 4 12 44* 62 a 6 n 114 124 l a 4 55B 603 a a 22 94 76 a 2 18 19* 38 a 4 13 . 79 66 a 6 12 145 147 i a 6 538 545 a a 24 14* 35 a 2 19 a* 12 a 4 14 0* 35 a 6 13 25* 22 i a 8 1048 1BB3 a a 26 a* 29 a 2 2B 26* 34 0 4 15 91 103 a 6 14 31* 31 I a 10 466 457 a i 1 42 34 a 2 21 37* 52 0 4 16 42* 51 0 6 15 5* 4 1 0 12 239 241 a i 2 634 635 a 2 22 a* 15 a 4 17 59 50 0 6 16 0* 4 l a 14 a* 38 a i 3 396 423 a 2 23 8* 25 a 4 18 154 158 a 6 17 48 37 i a 16 113 1B2 a t 4 226 213 a 2 24 12* a a 4 19 27* 2 a 6 13 0* 31 i a IB 40* 26 a i 5 923 960 a 2 25 a* : 2 a 4 20 31* 16 a 6 19 0* 34 1 B 20 152 152 a i 6 1169 1199 a 2 26 a* 18 a 4 21 9* 1 a 6 20 0* 10 i a 22 50* 58 a i 7 33 87 a 3 1 157 162 a 4 22 0* 1 8 6 21 18* 22 1 1-22 29* 11 a l a 130 141 a 3 2 93 08 a 4 23 30* 12 e 7 I 26* 14 1 1-21 55 43 a l 9 07 94 a 3 3 186 1B7 a 4 24 IB* 21 a 7 2 116 116 1 1-20 113 125 a i IB 163 173 a 3 4 143 142 B 5 1 2B3 288 0 7 3 117 131 1 1-19 89 88 a l 11 51 12 a 3 5 510 522 0 5 2 180 167 a 7 4 28* 60 1 1-18 83 81 a i 12 296 312 a 3 6 285 ! 292 a 5 3 64 5B a 7 5 160 160 1 1- 17 77 60 a i 13 260 2B3 a 3 7 113 102 a 5 4 65 61 a 7 6 160 99 1 1--16 a* 8 a i 14 374 363 a 3 8 63 61 a 5 5 163 173 0 7 7 9* 2 1 1-15 33* 34 a l IS 74 74 a 3 9 41 64 a 5 6 19* 21 8 7 8 26* 48 1 1--14 33* 23 a i 16 12* 10 a 3 10 119 114 B. 5 7 142 148 B 7 9 SB 92 l 1--13 154 154 a l 17 22* 27 a 3 11 95 100 0 5 8 13* 26 a 7 10 28* 2 I 1--12 25* 59 a l 18 150 141 a 3 12 241 . 260 a 5 9 96 104 o 7 11 48 1 l - l 1 140 132 a t 19 IB* 6 a 3 13 107 98 0 5 10 B* 2 a 7 12 52 42 1 1-10 102 102 a i 20 a* 7 a 3 14 123 126 a 5 11 18* IB a 7 13 12* 37 1 1 -9 19* 19 a i 21 9* 14 b 3 15 59 ; 57 a 5 12 66 60 a 8 a BB 84 1 1 -8 213 213 a l 22 23* 49 0 3 16 72 64 a 5 13 222 238 b 8 1 41* 37 1 1 -7 594 600 a i 23 35* IB a 3 17 31* 54 a 5 14 26* 36 e a 2 24* 36 1 1 -6 416 426 a i 24 25* 14 e 3 IB a* 31 a 5 15 45* 72 a a 3 84 100 1 1 -5 412 417 a i 25 a* 19 a 3 19 55 43 a 5 16 123 131 0 B 4 39* 68 1 1 -4 1841 1049 a » 26 24* 16 a 3 2a 31* 32 a 5 17 99 90 a a 5 90 85 1 I -3 824 827 a 2 a 1367 1416 a 3 21 37* 51 a 5 18 22* 4 e 8 6 40* 60 1 1 -2 • 293 316 a 2 i 266 265 a 3 22 18* 17 a 5 19 36* 46 e 8 7 29* 17 1 1 -1 950 993 8 2 2 183 185 a 3 23 a* 1 a 5 20 IS* 19 a 8' B B* 11 1 1 8 45B 454 n 2 3 270 289 a 3 24 33* 15 a 5 21 25* 4 a a 9 67 65 1 I 1 ■ 494 511 a 2 4 7G6 703 a 3 25 12* 13 a 5 22 9* 18 i 0--22 63 44 1 1 2 696 683 n 2 5 492 510 o 4 0 3B4 292 a 5 23 14* 4 l 0-20 IB* 20 1 1 3 546 538 ft 2 6 386 ' 29B a 4 1 446 452 0 6 0 96 70 i 0-18 0* 25 1 1 4 1032 1090 a 2 7 197 282 a 4 2 90 86 a 6 1 229 234 i 0--16 41* 39 1 1 5 347 385 Reflections flagged uitti an osterisk uero considered unobserved. 4k. Table 3.5 : Observed and calculated structure factors of compound VI. Uj HK L Fobs F ca lc H K L Fobs Fcalc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc

1 1 e 206 193 1 2 9 203 214 1 3 13 26* 73 1 4 19 35* 9 1 6 -8 116 121 1 1 7 153 163 - 1 2 10 0* 0 1 3 14 142 135 1 5-■19 30* 64 1 6 -7 ' 46* 48 1 1 0 127 114 1 2 11 05 81 1 3 15 51 62 1 5-10 33* 35 1 6 -6 249 248 1 1 9 127 130 1 2 12 420 390 1 3 16 0* 65 1 5- -17 25* 11 1 6 -5 117 116 1 1 10 75 75 1 2 13 196 19B 1 3 17 12* 9 l 5--16 35* 5 1 6-4 92 87 1 1 11 170 175 1 2 14 56 65 1 3 IB 0* 18 1 5- 15 58 70 1 6-3 86 87 1 1 12 204 206 1 2 15 52 43 1 3 19 25* 4 1 5- 14 77 72 1 6 -2 - 46 41 1 1 13 02 69 1 2 16 0* 3 1 3 20 0* 17 1 5- 13 74 59 1 6 -1 18* 5 1 1 14 205 2 1 1 1 2 17 42* 36 1 4- 20 0* 2 1 5- 12 25* 21 1 6 8 50 57 1 1 15 33« 62 1 2 10 0* 20 T 4- 19 117 129 1 5- II 0* IB 1 6 1 176 175 1 1 16 40* 53 1 2 19 0* 23 1 4-18 109 97 1 5-10 107 114 1 6 2 39* 32 1 1 1? 20* 33 1 2 20 0* 16 1 4- 17 92 06 1 5 -9 171 170 1 6 3 21* 27 1 1 IB 121 110 1 2 21 0* 11 1 4- 16 01 70 1 5 -8 131 141 1 6 4 49 61 1 1 19 0* 11 I 3- -21 0* 27 1 4- 15 201 201 1 5 -7 78 80 I 6 5 41* 52 1 1 20 72 05 1 3--20 0* 11 1 4- 14 148 159 1 5 -6 114 111 1 6 6 28* 2 1 1 21 65 76 1 3-■19 60 75 1 4- 13 73 79 1 5 -5 0* 12 1- 6 7 110 116 1 2-■22 SB* 33 1 3--IB 41* 35 1 4--12 55 50 1 5 - 4 237 224 1 6 0 0* 14 1 2--21 0* 24 1 3--17 192 205 1 4- 11 117 120 1 5 -3 186 107 1 6 9 109 113 1 2--20 0* 11 1 3--16 273 265 1 4--IB 307 310 1 5 -2 21* 9 1 6 10 0* 2 1 2--19 0* 15 1 3-■15 38* 55 1 4 -9 92 03 1 5 -1 123 110 I 6 11 27* 3 1 2--10 0* 14 1 3-■14 239 236 1 4 -8 105 191 1 5 0 107 166 1 6 12 121 117 1 2-■1? 30* 42 1 3--13 174 106 1 4 -7 0* 1 1 5 1 174 167 1 6 13 20* 27 1 2-■16 0* 24 1 3-■12 0* B 1 4 -6 13* 6 1 5 2 64 69 1 6 14 0* 12 1 2 -15 312 309 1 3-■11 49 57 1 4 -5 290 270 1 5 3 29* 36 1 6 15 59 6B 1 2- 14 79 90 1 3- ■IB 209 211 1 4 - 4 345 340 1 5 4 145 133 1 7- 14 28* 16 1 2- 13 174 167 . 1 3 -9 113 119 1 4 -3 354 346 1 5 5 46 40 l 7- 13 49* 46 1 2- 12 49 59 1 3 -0 60 53 1 4 -2 132 121 1 5 6 6* 19 1 7-■12 ■ SB 47 1 2- U 11* 10 1 3 -7 173 17 7 1 4 -1 133 120 1 5 7 0* 41 1 7-11 59 48 1 2--10 0* 13 1 3 -6 41 40 1 4 e 277 275 1 5 0 170 166 1 7-18 0* 19 1 2 -9 159 160 1 3 -5 101 109 1 4 i 15* 15 1 5 9 138 150 1 7 -9 95 1B2 1 2 -8 96 96 1 3 - 4 527 532 1 4 2 317 323 I 5 10 176 161 1 7 -8 0* 13 1 2 -7 22* 20 1 3 - 3 431 433 1 4 3 239 235 1 5 11 18* II 1 7 -7 137 149 1 2 -6 360 351 1 3 -2 277 270 1 4 4 204 105 1 5 12 35* 34 1 7 -6 194 202 1 2 -5 166 148 1 3 -I 10* 21 1 4 5 240 219 1 5 13 18* 25 1 7 -5 113 124 1 2 -4 628 640 1 3 0 261 265 1 4 6 52 32 1 5 14 109 113 I 7 - 4 77 70 1 2 -3 1070 1069 . 1 3 1 532 523 I 4 7 213 217 1 5 15 97 101 1 7 -3 91 91 1 2 -2 221 214 I 3 2 272 204 1 4 B 108 189 1 5 16 0* 10 1 7 -2 90 86 1 2 -1 462 449 1 3 3 700 696 I 4 9 110 124 1 5 17 48* 54 1 7 -1 22* 15 1 2 0 39 43 1 3 4 371 360 1 4 10 174 171 1 5 10 32* 24 1 7 0 37* 44 1 2 1 1025 1007 1 3 5 204 191 1 4 11 49 40 1 6--16 0* 40 1 7 1 0* 65 1 2 2 766 756 1 3 6 149 163 1 4 12 0* IB 1 6--15 17* 10 1 7 2 01 93 1 2 3 452 408 1 3 7 119 119 1 4 13 112 117 1 6--14 32* 11 1 7 3 0* 0 I 2 4 301 386 . 1 3 0 B9 02 1 4 14 123 132 1 6- 13 52* 44 1 7 4 97 103 1 2 5 491 466 . 1 3 9 406 421 1 4 IS 34* 1 1 6- 12 61 56 1 7 5 80 77 1 2 6 513 531 1 3 10 117 113 1 4 16 72 70 1 6- 11 52 55 1 7 6 0* 25 I 2 7 499 470 1 3 11 0* 35 1 4 17 104 102 1 6--10 79 65 1 7 7 58 IB I 2 a 90 109 1 3 12 239 216 1 4 18 0* 62 1 6 -9 105 117 1 7 8 50 53 Reflections flagged with an asterisk were considered unobserved. H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc

1 7 9 B* 31 2 1-21 0* 29 2 2-10 116 107 2 3 -13 70 6B 2 4 -7 e* 0 1 7 IB 0* 2B 2 I-2B 35* . 35 2 2-17 66 83 2 3-12 66 52 2 4 -6 129 143 1 7 It 0* 27 2 1-19 53 47 2 2 -16 91 B4 2 3-11 144 151 2 4 -5 22* 32 1 7 12 0* IB 2 1-10 120 H i 2 2 - IS 0* 12 2 3 -10 210 211 2 4 - 4 42 43 1 7 13 24* 36 1 2 1-17 25* B 2 2 -14 63 66 2 3 -9 61 65 2 4 -3 46 55 1 a -9 0* 12 2 1-16 67 51 2 2 -1 3 UB 126 2 3 -B 486 469 2 4 -2 5B7 494 1 B -B 36* 21 2 1-15 52 58 2 2-12 62 44 2 3 -7 141 155 2 4 -1 13* 11 1 B -7 54 51 2 1-14 123 MB 2 2-11 166 150 2 3 - 6 310 319 2 4 e 209 203 1 B -6 31* 43 2 1-13 109 100 2 2 -10 SB 63 2 3 -5 16* £ 2 4 1 295 276 1 B -5 106 105 2 1-12 155 149 2 2 -9 149 151 2 3 -4 197 195 2 4 2 1B4 180 1 B -4 IB7 124 2 1-11 151 144 2 2 -B 170 1B2 2 3 -3 166 172 2 4 3 540 519 1 0 -3 22* 17 2 1-10 123 129 2 2 -7 177 179 2 3 -2 301 302 2 4 4 509 491 I B -2 20* 27 2 1 -9 317 332 2 2 -6 311 301 2 3 -1 172 160 2 4 5 162 176 1 B -1 13* £0 2 1 -8 43 35 2 2 -5 529 556 2 3 0 147 160 2 4 6 262 264 1B B 49* 52 2 1 -7 206 191 2 2 - 4 100 98 2 3 1 43 56 2 4 7 £1 £4 1 8 1 0* 41 2 1 -6 235 214 2 2 -3 481 5 IB 2 3 2 52 41 2 4 B 142 136 1 B 2 0* 48 2 1 - 5 352 361 2 2 -2 110 111 2 3 3 231 245 2 4 9 143 138 1 8 3 62 79 2 1 - 4 1479 1548 2 2 -1 £2 58 2 3 4 519 513 2 4 10 B* 37 1 B 4 0* 6 2 1 -3 514 522 2 2 0 284 2 70 2 3 5 80 82 2 4 11 3B* 35 1 B 5 0* 30 2 1 -2 786 770 2 2 1 9B 92 2 3 6 457 447 2 4 12 0* 17 1 8 £ 0* 31 2 1 -1 553 5B4 2 2 2 231 221 2 3 7 43 41 2 4 13 0* 1 1 B 7 0* IS 2 1 B 586 604 2 2 3 594 601 2 3 B B9 94 2 4 14 97 90 1 8 B 17* 42 2 1 1 257 244 2 2 4 332 334 2 3 9 131 140 2 4 15 B* 1 2 0-22 0* 14 2 1 2 142 134 2 2 5 13B 135 2 3 IB 35* 29 2 4 16 B* 16 2 0-20 0* 27 2 1 3 £6 58 2 2 6 69 56 2 3 11 204 196 2 4 17 0* 45 2 e - la 1B5 1B5 2 1 4 957 945 2 2 7 102 1 IB 2 3 12 0* 4 2 4 IB 34* 11 2 0-16 36* 25 2 1 5 334 316 2 2 8 457 474 2 3 13 95 100 2 5-19 27* 38 2 0 -14 332 30B 2 1 6 300 321 2 2 9 574 573 2 3 14 35* 39 2 5 -10 0* 39 2 0 -12 114 117 2 1 7 246 246 2 2 10 188 183 2 3 15 180 110 2 5-17 0* 47 2 0-10 157 170 2 1 0 240 235 2 2 11 19* 8 2 3 16 IB* 24 2 5 -16 0* 7 2 0 -B 183 165 2 1 9 346 . 347 2 2 12 51 63 2 3 17 111 109 2 5 -15 0* 18 2 B -6 637 63B 2 1 IB 387 . 3B7 2 2 13 191 192 2 3 IB 36* IB 2 5 -14 84 85 2 B -4 1565 1647 2 1 11 179 174 2 2 14 16* 25 2 3 19 0* 31 2 5-13 • 45* 47 2 0 -2 623 621 2 1 12 164 177 2 2 15 31* 52 2 3 20 0* 14 2 5-12 1B0 96 2 0 B 135 132 2 1 13 177 176 2 2 16 34* 27 2 4 -2 0 22* 14 2 5-11 8* 3 2 0 2 £38 660 2 1 14 161 15B 2 2 17 136 126 2 4 -19 141 153 2 5-10 115 129 2 B 4 95 99 2 I 15 50 : 54 2 2 IB £6 53 2 4 -18 64 66 2 5 -9 147 147 2 0 6 239 239 2 1 16 116 122 2 2 19 38* 16 2 4 -17 104 182 2 S -0 170 174 2 0 0 235 248 2 I 17 52 41 2 2 28 48* 3B 2 4-16 139 159 2 5 -7 0* B 2 0 IB 653 623 2 1 IB 119 126 2 3-21 31* 26 2 4 -15 B9 63 2 5 -6 121 112 2 0 12 10* 7B 2 1 19 23* 25 2 3-20 0* IB 2 4 -1 4 0* 44 2 5 -5 15* 2B 2 8 14 23* 21 2 1 20 59 68 2 3-19 119 124 2 4-13 65 68 2 5 - 4 49 61 2 0 16 48 35 2 1 21 73 74 2 3-18 117 132 2 4 -12 70 7! 2 5 -3 176 178 2 0 10 13* 39 2 2 -2 2 46* 45 2 3-17 132 132 2 4-11 131 147 2 5 -2 103 9-1 2 0 20 IB* 64 2 2-21 IB* 46 2 3 -16 61 05 2 4 -10 0* 13 2 5 -1 211 280 2 1-23 0* 12 2 2 -20 52 59 2 3-15 111 130 2 4 -9 52 44 2 5 0 237 230 2 1-22 31* 23 2 2 -19 91 98 2 3 -1 4 1 IB 124 2 4 -3 B* 35 2 5 1 12* 6 Hort get lexis flagged ulth an asterisk uere considered unobserwl. -N -J H K L Fobs Fcalc ■ H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc

2 5 2 0* 26 2 6 14 0* 19 3 0-2 8 95 95 3 1 3 621 620 3 2 7 481 403 2 5 3 162 158 2 6 15 59 69 3 0-19 123 115 3 1 4 68 67 3 2 8 404 396 2 5 4 73 82 2 7 -14 B* 44 3 0 -16 8* 34 3 1 5 687 591 3 2 9 B* 34 2 S S 162 151 2 7-13 0* 54 3 0 -1 4 167 154 3 1 6 454 453 3 2 10 43 27 2 S 6 47 64 2 7-12 0* 16 3- 8-12 417 4U6 3 1 7 212 210 3 2 11 95 92 2 S 7 85 IBB 2 7-11 0* IB 3 0-10 437 439 3 1 8 370 356 3 2 12 97 102 2 5 8 15B 142 2 7-10 23* 37 3 0 -9 13* 18 3 1 9 252 249 3 2 13 21* 37 2 5 9 217 218 2 7 - 9 95 102 3 0 -6 619 649 3 1 10 8 * 10 3 2 14 85 84 2 S IB 90 92 2 7 -0 27* 23 3 0 -4 198 224 3 1 11 36* 38 3 2 15 0* 39 2 S 11 96 95 2 7 -7 224 246 3 0 -2 435 412 3 1 12 301 285 3 2 16 76 60 2 5 12 110 113 2 7 -6 133 135 3 ' 0 B 474 479 3 1 13 129 129 3 2 17 134 145 2 5 13 155 148 2 7 - 5 76 62 3 8 2 630 610 3 1 14 65 63 3 2 IB 69 60 2 5 14 32* 61 2 7 - 4 18* 31 3 0 4 302 298 3 1 15 62 5B 3 2 19 17* 51 2 5 15 34* 29 . 2 7 -3 5B 50 3 0 6 996 991 3 1 16 185 185 3 3-21 12* 37 2 5 16 63 63 2 7 - 2 6* 16 3- 0 B 458 428 3 1 17 109 112 3 3-20 0* 17 2 5 1? B* 22 2 7 -1 107 114 3 0 IB 116 119 3 1 18 B* S3 3 3-19 95 68 2 6-17 B* 7 ■ 2 7 0 72 79 3 0 12 8* 6 3 1 19 29* 11 3 3-18 13* 27 2 6-16 90 88 2 7 1 41* 36 3 B 14 105 101 3 1 20 8* 7 3 3-17 B* 7 2 6 -15 0* 11 2 7 2 0* 14 3 B 16 0* I 3 2 -22 33* 47 3 3-16 0* 3 2 6 -14 Be 32 2 7 3 38* 7 3 0 19 52* 42 3 2-21 26* 13 3 3-15 8* 70 2 6-13 159 153 2 7 4 41* 40 3 0 20 0* 1 3 2-20 44* 44 3 3 -14 112 115 2 6 -12 0* 58 2 7 5 0* 13 3 1-23 64 59 3 2-19 131 125 3 3-13 76 66 2 6-11 37* 13 2 7 6 0* 9 3 1-22 8* 8 3 2 -18 31* 0 3 3-12 61 49 2 6 - IB 307 3B4 2 7 7 5B 51 3 1-21 8* IS 3 2 -17 163 155 3 3-11 290 262 2 6 -9 79 79 2 7 8 45* 41 3 1-20 10* 39 3 2 -16 34* 28 3 3-IB 8* 36 2 6 -B 25* 49 2 7 9 0* 53 3 1-19 0* 69 3 2 -15 UB 104 3 3 -9 209 195 2 6 -7 269 262 2 7 10 37* 44 3 1—IB 22* 35 3 2 -1 4 0* 21 3 3 -8 70 79 2 6 -6 236 241 2 7 11 53 64 3 1-17 0* 26 3 2 -13 e* 35 3 3 -7 • 52 42 2 6 -5 132 134 2 7 12 0* 19 3 1-16 101 77 3 2-12 59 61 3 3 -6 232 224 2 6 -4 e* 19 2 0 -9 B* 13 3 1-15 105 107 3 2-11 276 286 3 3 -5 234 224 2 6 -3 59 44 • 2 8 -8 30* 62 3 1-14 IS* 0 3 2-18 399 481 3 3 - 4 221 227 2 6 -2 65 57 2 8 -7 0* 9 3 1-13 14* 23 3 2 -9 424 423 3 3 -3 399 410 2 6 -1 22* IB 2 8 -6 IS* B 3 1-12 36 39 3 2 -8 19* 24 3 3 -2 337 342 2 6 8 0* 12 2 8 -5 51* 48 3 1-11 225 215 3 2 -7 124 138 3 3 -1 221 206 2 6 1 0* IB 2 8 - 4 0* 8 3 1-18 221 202 3 2 -6 213 225 3 3 B ■ 215 217 2 6 2 118 1B6 ■ 2 8 -3 0* 32 3 1 -9 16* 1 3 2 -5 255 252 3 3 1 294 299 2 6 3 74 69 . 2 8 -2 85 96 3 ' 1 -9 482 394 3 2 - 4 153 147 3 3 2 148 130 2 6 4 69 54 2 0 -1 77 87 3 1 -7 253 257 3 2 -3 369 349 3 3 3 491 476 2 6 5 B* 15 2 8 0 26* 71 3 1 -6 126 136 3 2 -2 0* 29 3 3 4 336 332 2 6 6 66 59 2 8 1 63 68 3 1 -5 676 697 3 2 -1 48 52 3 3 5 71 62 2 6 7 44* 48 2 8 2 60 66 3 1 -4 312 347 3 2 0 182 101 3 3 6 94 94 2 6 8 75 74 2 8 3 109 1B1 3 1 -3 698 721 3 2 1 14* 19 3 3 7 272 273 2 6 9 49* 50 2 8 4 39* 36 3 1 -2 359 344 3 2 2 155 152 3 3 8 23E1 241 2 6 IB 36* 2 2 8 5 144 140 3 1 -1 231 224 3 2 3 774 792 3 3 9 0* 7 2 6 11 IBB 122 2 Q 6 12* 45 3 1 0 764 754 3 2 4 191 171 3 3 IB 97 79 2 6 12 B* 11 2 8 7 56 91 3 1 1 0* 21 3 2 5 0* 21 3 3 11 fl* 40 2 6 13 22* II 3 0 -22 92 92 3 1 2 138 146 3 2 6 420 403 3 3 12 n* 33 Reductions flogged utth on asterisk uare considered unobserved. H K L Fobs F calc H K L Fobs F ca lc H K L Fobs F ca lc K K L Fobs Fcalc K K L Fobs F calc

3 3 13 18* 26 3 5 -1 8 fl* 19 3 £ -5 8 * 98 3 B -7 25* 27 4 1-11 83 75 3 3 14 B* 16 3 5 -1 7 0* 53 3 6 - 4 61 56 3 0 -6 0* 45 4 1-10 47 65 3 3 IS 101 85 3 5-16 26* 41 3 6 -3 99 109 3 8 -5 0* 8 4 1 - 9 85 80 3 3 16 £1 50 , 3 5-15 23* 21 3 6 -2 193 195 3 B - 4 3B* 8 4 1 -8 1 122 116 3 3 17 0* 27 3 5 -1 4 39* 20 3 6 -1 0* 35 3 8 - 3 0* 10 4 1 -7 207 203 3 3 IB 37* 46 3 5-13 127 123 3 6 0 0* 10 3 0 -2 68 74 4 1 -6 503 490 3 3 19 29* 12 3 5-12 66 71 3 6 1 144 134 3 8 -1 31* 27 4 1 -5 96 109 3 4-20 a* 41 35-11 77 67 3 6 2 60 44 3 B B 76 96 4 1 - 4 20* IS 3 4-19 67 50 3 5-10 177 170 3 6 3 31* 45 3 8 1 31* 3 4 1 -3 41 29 3 4 - IB 0* 29 3 5 -9 196 203 3 6 4 45* 56 3 8 2 0* 27 4 1 -2 97 105 3 4 -17 0* 22 3 5 - 8 50 42 3 £ 5 113 111 3 B 3 03 B7 4 I -1 368 383 3 4-16 32* 13 3 5 -7 0* 3 3 £ 6 B* 63 3 B 4 31* 24 4 1 0 201 190 3 4 -15 45* 48 3 5 -6 149 149 3 £ 7 8* 47 3 8 5 0 * 12 4 1 1 222 225 3 4-14 34* 35 3 5 -5 19* 42 3 6 8 91 90 3 8 6 79 78 4 1 2 230 224 3 4 -13 17* 21 3 5 - 4 51 35 3 6 9 27* 103 4 0 -22 41* 34 4 1 3 80 82 3 4-12 157 144 3 5 -3 49 67 3 £ 10 146 133 4 0 -2 B 85 98 4 1 4 57 33 3 4-11 55 53 3 5 -2 60 56 3 £ 11 121 125 4 0-18 193 212 4 1 5 399 406 3 4-10 01 90 3 5 -1 0* 20 3 6 12 08 74 4 0 -1 6 138 143 4 1 6 IB7 93 3 4 -9 02 57 3 5 0 143 . 147 3 6 13 0* 28 4 0 -14 109 1BI 4 1 7 116 123 3 4 -0 104 IBB . 3 5 1 134 138 3 £ 14 44* 5B 4 0-12 200 220 4 1 0 73 68 3 4 -7 21* 20 3 5 2 33* 43 3 7-•13 104 112 4 0 -10 15* 2 4 1 9 0* 18 3 4 -6 140 150 3 5 3 35* 34 3 7-12 0* 43 4 8 -0 212 228 4 1 10 82 81 3 4 -5 0* 42 3 5 4 143 132 3 7-11 0* 32 4 0 -6 101 174 4 I I I 0* 11 3 4 - 4 286 292 3 5 5 5B 57 3 7-10 0* 14 4 0 - 4 206 2B2 4 1 12 87 82 3 4 -3 73 74 . 3 5 £ 0* 28 3 7 - 9 0* 32 4 0 -2 63 43 4 1 13 0* 8 3 4 -2 23* 47 3 5 7 0* 13 3 7 -0 23* 4 4 0 0 500 484 4 1 14 0* 21 3 4 -1 192 196 3 5 0 0* 7 3 7 -7 50 49 4 B 2 767 740 4 1 IS 82 05 3 4 0 153 162 3 5 9 0* 20 3 7 -6 103 102 4 0 4 355 356 4 1 16 48* £0 3 4 1 247 229 3 5 10 0* 1 3 7 -5 0* 12 4 0 6 543 504 4 1 17 94 100 3 4 2 272 264 3 5 11 0* 53 3 7 - 4 93 80 4 0 8 210 205 4 1 18 26* 15 3 4 3 225 220 3 5 12 61 78 3 7 -3 55 31 4 0 10 274 260 4 1 19 0* 6 3 4 4 104 182 3 5 13 35* 92 3 7 -2 B* II 4 0 12 135 134 4 2 -2 2 £2 74 3 4 5 271 276 , 3 5 14 31* 45 3 7 -1 133 137 4 0 14 75 92 4 2-21 0* 5 3 4 6 61 64 3 5 IS 33* 2 3 7 e 0* 2 4 0 16 71 £3 4 2-20 8* 20 3 4 7 213 211 3 5 16 47* 29 3 7 i 51* 50 4 0 18 65 68 4 2 -19 0* 4 3 4 B 03 71 3 6 -17 25* 27 3 7 2 48* 46 4 1-23 76 69 4 2 -10 0* 2 3 4 9 99 102 3 6 -1 6 59 62 3 7 3 50* 59 4 1-22 43* 41 4 2-17 42* 35 3 4 10 3B* 26 3 6 -1 5 39* 20 3 7 4 232 232 4 1-21 0* B 4 2-16 21* 22 3 4 11 5* 19 3 £ -1 4 19* £4 3 7 5 19* 56 4 1-20 25* 37 4 2-15 • 27* 15 3 4 12 20* 16 3 6-13 15* 24 3 7 6 80 £9 4 1-19 97 101 4 2 -1 4 103 79 3 4 13 127 136 3 6-12 60 75 3 7 7 U* 4 4 1-18 0* 8 4 2-13 22* 22 3 4 14 93 93 3 6-11 0* 1 3 7 B 40* 31 4 1-17 94 107 4 2-12 8* 45 3 4 15 46* 41 3 6 -10 412 433 3 7 9 29* B 4 1-16 118 127 4 2-11 154 159 3 4 16 6* 21 3 6 - 9 56 70 3 7 18 46* 26 4 1-15 72 61 4 2-IB 84 77 3 4 17 0* 3 3 6 -8 150 170 3 7 11 B* 30 4 1-14 101 1B7 4 2 - 9 647 £32 3 4 IB 34* 43 3 6 -7 144 147 3 B -9 123 115 4 1-13 274 266 4 2 -B 649 633 3 5 -19 63 60 3 6 - 6 134 130 3 B -8 12* 1 4 1-12 152 149 4 2 - 7 786 £96

Reflections flagged ultti an aster UKu e r r considered unobserved. -o- VO H K L Fobs Fcalc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc

4 2 -6 203 204 4 3 1 121 105 4 4 9 01 84 4 6 -12 34* 52 4 7 9 e* 19 4 2 -5 3IB 328 4 3 2 114 IBB 4 4 10 44S 31 4 6-11 0* 57 4 B -7 32* 41 4 2 - 4 448 442 4 3 3 174 . 151 4 4 11 69 69 4 6 -10 175 181 4 8 -6 0* 22 4 2 -3 121 105 4 3 4 148 150 4 4 12 Be 22 4 6 -9 0* 5 4 8 -5 0* 23 4 2 -2 256 254 4 3 5 139 137 4 4 13 86 87 4 6 -fl 103 94 4 B -4 30* 19 4 2 - I 248 246 4 3 6 80 76 4 4 14 Be 35 4 6 -7 85 93 4 8 -3 B* 28 4 2 e 422 405 4 3 7 Be 13 4 4 15 Be 57 4 6 -6 42* 33 4 8 -2 ■ 54 46 4 2 1 135 130 4 3 8 147 138 4 4 16 2 6 s 4B 4 6 - 5 B* 24 4 8 - I BB 82 4 2 2 71 73 . 4 3 9 128 110 4 5 -19 !9 e 45 4 6 - 4 22* 17 4 8 0 e* 7 4 2 3 3IB 314 4 3 10 64 61 4 5 -18 66 57 4 6 -3 0* 12 4 8 1 76 63 4 2 4 269 250 4 3 11 Be 33 4 5 -17 75 68 4 6 -2 189 192 4 B 2 9B 89 4 2 5 53 48 4 3 12 e e 38 4 5-16 46S 36 4 6 -1 0* 39 4 B 3 8* 29 4 2 6 0* 22 ■ 4 3 13 114 124 4 5-15 3Bs 6 4 6 B 157 152 5 0-22 2B* 19 4 2 7 122 132 4 3 14 70 78 4 5-14 76 B8 4 6 1 64 79 5 0-20 ‘ 196 210 4 2 8 15* 38 4 3 15 lB e . 56 4 5-13 80 09 4 6 2 37* 43 5 0-18 7* 35 4 2 9 215 213 4 3 16 Be 8 4 5 -12 77 78 4 6 3 62 72 5 0-16 76 74 4 2 18 0* 36 ■4 3 17 52 50 4 5-11 156 161 4 6 4 18* 52 5 0 -1 4 B* 9 4 2 11 222 221 4 3 IB 91 75 4 5-10 105 122 4 6 5 47* 38 5 B-12 - 2B4 279 4 2 12 IBB IB6 4 4 -20 51 e 51 4 5 -9 142 148 4 6 6 82 B7 5 0-10 196 183 4 2 13 135 135 4 4 -19 Be 29 4 5 -B 80 77 4 6 7 0* 28 5 0 -8 119 104 4 2 14 145 133 4 4 -18 60 32 4 5 -7 65 86 4 6 8 34* 5 5 0 -6 43 41 4 2 15 0* 8 4 4-17 48 e 49 4 5 -6 112 1B4 4 6 9 B* 29 5 0 -4 202 217 4 2 16 120 129 4 4-16 13e 27 4 5 -5 58 63 4 6 IB 0* 48 5 0 -2 172 159 4 2 17 79 76 4 4-15 72 56 4 5 -4 131 129 4 6 11 34* 46 5 0 0 75 83 4 2 IB 0* 9 4 4 -1 4 29e 0 4 5 -3 76 79 4 6 12 0* 7 5 0 2 195 20B 4 3-21 0* 2 4 4-13 132 137 4 5 -2 IBB 169 4 7-13 125 133 5 0 4 ■ 22B 21B 4 3-20 Be 31 4 4 -12 201 I9B 4 5 -1 B7 83 4 7-12 0* IS 5 8 6 0* 13 4 3 -19 49e 3 4 4-11 53 72 4 5 0 323 322 4 7-11 22* 34 5 0 8 22* 24 4 3-10 7B 96 44-10 95 92 45 1 Be 41 4 7-10 0* 42 5 0 IB . 243 242 4 3-17 Be 5 4 4 -9 133 122 4 5 2 Be 14 4 7 -9 B* 31 5 0 12 - 41* 41 4 3-16 0« 14 4 4 -0 0 e 29 4 5 3 27* 27 4 7 -8 85 84 5 B 14 0* 16 4 3 -15 64 67 4 4 -7 366 374 4 5 4 00 96 4 7 -7 44* 2B 5 0 16 IB* 0 4 3 -14 IB) 99 4 4 -6 118 120 4 5 5 184 192 4 7 -6 106 106 5 B 18 0* 9 4 3 -13 Be 13 4 4 -5 48 66 4 5 ' 6 54 40 4 7 -5 107 114 5 1-22 130 124 4 3 -12 156 145 4 4 - 4 228 229 4 5 7 121 115 4 7 -4 51* 49 5 1-21 0* 35 4 3-11 81 74 4 4 -3 247 243 4 5 8 91 B6 4 7 -3 0* 63 5 1-20 0* e 4 3-10 40 53 4 4 -2 3 ie 39 4 5 9 71 79 4 7 -2 0* 26 5 1-19 107 97 4 3 -9 246 253 4 4 - I 40B 378 4 5 IB 148 143 4 7 - I 86 103 5 1-18 26* 39 4 3 -B 159 164 4 4 6 376 370 4 5 11 137 140 4 7 0 79 79 5 1-17 68 6S 4 3 -7 154 156 4 4 1 2 le 13 4 5 12 35* 31 4 7 1 38* 44 5 1-16 136 135 4 3 -6 666 657 4 4 2 56 67 4 5 13 0* 5 4 7 2 35* 5 5 1-15 111 112 4 3 -5 196 268 4 4 3 256 240 4 5 14 0* SB 4 7 3 111 SB 5 1-14 8* 3 4 3 - 4 107 102 4 4 4 256 247 4 5 15 34* 33 4 7 4 167 164 5 1-13 95 90 4 3 -3 681 658 . 4 4 5 104 107 4 6-16 8* 6 4 7 5 68 53 5 1-12 114 104 4 3 -2 187 176 4 4 6 106 122 4 6-15 e* 48 4 7 6 37* 4 5 1-11 0* 20 4 3 -I 42D 437 4 4 7 40* 34 4 6 -14 138 141 4 7 7 46* 3B 5 I - 10 40 55 4 3 B 96 IBB 4 4 e 140 134 4 6-13 64 67 4 7 8 3B* 31 5 1 -9 272 255 RoDset ions flagged ulth on asterisk uere considered unobserved. Ui © H K L Fobs Fcalc H K L Fobs F ca lc H K L Fobs Fcalc H K L Fobs Fcalc H K I Fobs F ca lc

S 1 -G 331 319 5 2 -2 303 288 5 3 6 0* 26 55-18 0* 5 5 6 -1 73 74 5 1 -7 181 97 5 2 -1 119 114 5 3 7 104 110 5 5-17 77 81 5 6 0 127 133 S 1 -6 42 50 5 2 0 80 78 5 3 8 41* 34 55-16 0* 16 5 6 1 0* 39 s 1 -5 291 296 5 2 1 480 582 5 3 9 129 130 5 5-15 85 87 5 6 2 53 51 5 1 —4 242 217 5 2 2 136 140 5 3 10 48* 38 55-14 79 80 56 3 26* 10 5 I -3 378 379 ■ 5 2 3 56 39 5 3 11 74 81 5 5-13 71 74 5 . 6 4 0* 18 5 1 -2 13? 145 5 2 4 205 190 5 3 12 91 94 . 5 5-12 124 IBB 5 6 5 0* 42 S 1 -1 392 373 5 2 5 250 250 5 3 13 101 113 5 5-11 IB* 18 5 6 6 117 113 s l a 322 312 5 2 6 25* 22 5 3 14 83 98 55-10 39* 23 5 6 7 61 58 3 i i 8* 7 5 2 7 162 172 5 3 15 0* 4 5 5 -9 0* 40 5 6 0 116 189 S 1 2 279 272 5 2 8 39* 3 5 3 16 44* 32 55 -8 172 174 5 6 9 37* 44 s 1 3 55 50 5 2 9 183 172 5 4-28 37* 38 5 5 -7 101 109 5 6 10 13* 1 s 1 4 0* 19 ■ 5 2 10 0* 6 5 4-19 0* 14 5 5 -6 189 119 5 6 11 0* 37 5 1 S 26* 9 5 2 11 228 235 S 4-18 20* 31 5 5 -5 138 140 5 7-12 48* 28 5 1 6 71 72 . 5 2 12 206 210 5 4-17 20* 45 5 5 - 4 248 256 5 7-11 96 94 5 1 7 229 225 5 2 13 171 186 5 4-16 0* 11 55 -3 29* 32 5 7-10 61 53 S i e 85 92 5 2 14 23* 38 5 4-15 60 67 55 -2 23* 18 5 7 -9 0* 8 S 1 9 47 41 5 2 15 34* 12 5 4-14 8* 33 5 5 -1 135 150 5 7 -0 13* 51 5 1 10 70 62 5 2 16 13* 46 5 4-13 199 198 5 5 0 217 219 5 7 -7 32* 13 5 1 11 23* 8 5 2 17 0* 1? 5 4-12 70 68 5 5 1 145 150 5 7 -6 90 91 S 1 12 154 155 5 3-21 22* 28 5 4-11 12* 8 5 5 2 66 48 5 7 -5 139 143 5 1 13 8* 0 5 3-20 27* 40 5 4-10 8* 9 5 5 3 25* 17 5 7 - 4 8? 97 5 1 14 0* 13 5 3-19 0* 13 5 4 -9 144 138 5 5 4 38* 31 5 7 -3 82 81 5 1 15 33* 8 5 3-18 70 73 5 4 -8 74 76 5 5 5 13? 129 5 7 -2 0* 25 5 1 1G 13* 23 5 3-17 35* 23 5 4 -7 0* 7 55 6 17? 174 5 7 -1 • 116 120 5 1 1? 31* 13 5 3-16 53 55 5 4 -6 72 84 5 5 7 0* 55 5 7 0 146 153 5 1 18 17* 17 5 3-15 31« 1 54 -5 44 7? 5 5 B 0* 4 5 7 1 26* 3 S 2-22 65 66 5 3-14 8* 39 54 -4 32* 19 5 5 9 30* 3 57 2 126 123 5 2-21 22* 14 5 3-13 171 158 5 4 -3 139 142 5 5 IB 106 127 5 7 3 89 85 5 2-20 8* 24 53-12 0* 3? 5 4 -2 247 252 5 5 It 73 72 5 7 4 • 0* 12 5 2-19 103 100 5 3-11 290 272 5 4 -1 346 348 5 5 12 69 55 5 7 5 75 71 5 2-18 23* 21 53-10 0* 9 54 0 119 186 5 5 13 31* 67 5 7 6 ■ 48* 46 5 2-1? 33* 10 5 3 -9 67 71 5 4 I 191 166 S 6 -16 12* 44 5 7 7 0* 1 5 2-16 8* 54 5 3 -B 134 119 5 4 2 0* 5 5 6 -15 0* 17 5 0 -4 0* 10 S 2-15 0* 43 5 3 -7 17* 0 5 4 3 0* 23 5 6 -1 4 161 162 5 0 -3 0* 23 5 2 -14 0* 43 5 3 -6 357 333 5 4 4 0* 4 5 6 -13 76 01 5 0 -2 8* 19 5 2-13 115 101 5 3 -5 121 122 5 4 5 42* 24 5 6 -12 0* 2 5 0 - I 43* 30 S 2 -12 44 33 5 3 -4 30B 299 5 4 6 44* 38 5 6-11 13* 39 60-22 0* 2? S 2-11 119 105 5 3 -3 127 120 5 4 7 82 91 5 6 -1 0 0* 26 6 0-20 231 237 5 2-18 186 165 5 3 -2 51 57 5 4 0 158 156 5 6 - 9 75 68 6 0-18 184 193 5 2 -9 181 176 5 3 - I 0* 13 5 4 9 37* 36 5 6 -8 67 71 6 0-16 0* 30 5 2 -0 108 101 5 3 0 121 111 5 4 10 58 55 5 6 -7 0* 38 6 0 -14 80 72 S 2 -7 311 308 ' 5 3 1 9B 86 5 4 II 102 92 5 6 -6 35* 29 6 0-12 151 167 5 2 -6 522 500 5 3 2 151 144 5 4 12 44* 47 5 6 -5 63 71 6 0-10 ■ 48 48 S 2 -5 485 309 5 3 3 00 Bl 5 4 13 0* 18 5 6 -4 197 198 6 0 -8 118 12? 5 2 -4 154 160 5 3 4 124 1B7 5 4 14 0* 12 5 6 -3 104 104 6 0 -6 • 52 47 S 2 -3 492 495 5 3 5 200 139 5 4 15 0* 23 5 6 -2 0* 0 6 B - 4 189 195 Roftecdons flagged ultfc on asterJsK uere considered unobserved. Ul M H K L Fobs Fcolc • H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F ca lc

6 8 -2 283 302 6 1 15 56 45 6 3 -1 4 65 75 6 4 - 2 162 164 G 6-15 37* 19 6 a a 480 457 6 1 16 a* 14 6 3-13 78 G7 £ 4 -1 16* 21 £ 6-14 30* 22 6 a 2 290 293 6 2-21 B* e 6 3-12 49 43 £ 4 e 0* 37 £ 6-13 34* SB 6 a 4 113 IB6 6 2 -20 a* 8 6 3-11 29* 44 6 4 1 24* 23 6 6-12 33* 14 e a G 0* 20 6 2 -19 110 107 6 3-10 68 75 6 4 2 35* 31 6 £-11 0* 30 e a a 109 194 G 2 -18 0* 65 6 3 - 9 107 1B5 6 4 3 59 5B 6 6-10 20* 27 6 e la 0* 34 6 2-17 0* 49 6 3 -B 79 81 6 4 4 105 115 G 6 -9 38* 4 6 a 12 2a* 39 6 2 -16 8* a 6 3 -7 160 150 £ 4 5 £6 62 6 G -0 19D 197 € a 14 6* 20 6 2-15 98 86 6 3 -G 140 145 6 4 £ 33* 7 £ £ -7 58 72 6 a ie a* a 6 2 -1 4 a* 7 6 3 -5 77 57 £ 4 7 161 170 6 G - 6 1 149 140 6 1-22 63 55 6 2 -1 3 a* It 6 3 -4 30* 27 £ 4 8 0* 83 G 6 -5 23* 39 e 1-21 0* 9 6 2 -1 2 III : in 6 3 -3 203 184 6 4 9 124 133 G G - 4 319 324 6 1-20 B* 29 6 2-11 227 213 6 3 -2 196 IBS £ 4 10 37* 57 6 6 -3 113 126 6 1-19 80 99 6 2 -1 0 293 272 £ 3 -1 148 146 6 4 11 e* 5 6 6 -2 121 123 6 1-10 19* 7 6 2 -9 226 200 6 3 a 99 92 £ 4 12 76 87 6 6 -1 9G 97 6 1-17 55 48 6 2 - 8 56 51 G 3 1 96 70 6 4 13 0* IB 6 6 B 14? 152 £ 1-16 46* 32 6 2 -7 293 289 G 3 2 62 58 £ 4 14 2b* 35 6 6 1 . 142 142 e 1-15 0* 36 6 2 -6 52 58 6 3 3 128 138 6 5 -17 15* 9 6 £ 2 53 57 6 1-14 0* 24 6 2 -5 65 67 6 3 4 153 162 G 5 -16 22* 41 G G 3 37* 38 6 1-13 B* 8 G 2 - 4 36? 366 6 3 5 161 163 6 5 - IS 85 103 G 6 4 8* 3S 6 1-12 27* 2 £ 2 -3 193 169 6 3 £ 8* 17 £ 5 -14 43* 73 6 6 5 58 £9 6 1-11 135 136 6 2 -2 0* 38 6 3 7 89 89 G 5 -13 88 89 G G 6 39* 31 6 1-10 149 130 6 2 -1 2B9 207 £ 3 8 77 73 6 5 -12 29* 31 £ 6 7 6* 54 6 1 -9 172 177 6 2 0 182 178 6 3 9 223 227 6 5-11 34* 17 £ G 8 62 54 6 1 -8 144 148 6 2 1 141 148 6 3 10 142 131 b 5 -10 0* 17 6 6 9 0* 4 6 1 -7 243 252 6 2 2 92 82 6 3 11 0* 32 6 5 -9 G4 64 6 7-10 8* 26 6 1 -6 506 490 6 2 3 37B 365 £ 3 12 123 131 6 5 -8 0* 15 6 7 -9 • 0* 19 6 I -S G3 65 6 2 4 187 178 £ 3 13 0* 37 6 5 -7 123 124 6 7 -0 32* 50 6 I -4 183 IBB 6 2 5 a* 36 £ 3 14 36* 38 6 5 -6 31* 80 £ 7 -7 0* 0 6 1 -3 229 232 6 2 G a* 8 G 3 IS 0* 46 £ 5 - 5 227 235 6 7 -6 57 46 6 1 -2 327 321 6 2 7 a* 30 £ 4 -19 30* 71 6 5 - 4 195 190 G 7 -5 8* 40 6 1 -1 120 119 6 2 8 57 59 £ 4 -18 39* 46 6 5 -3 104 111 6 7 - 4 e * 12 6 i a 1B1 IBS 6 2 9 71 86 6 4 -17 62 75 £ 5 -2 0* 37 £ 7 -3 • 5? 43 6 1 1 13* 12 6 2 ie 7* 23 G 4 -16 0* 10 G 5 -1 10* 7 6 7 -2 34* 08 6 1 2 38 44 6 2 11 101 107 £ 4-15 89 83 £ 5 e 85 70 6 7 -1 64 69 6 1 3 13* 11 6 2 12 1B6 116 G 4 -1 4 32* 30 6 5 1 82 77 6 7 0 75 73 e 1 4 23* 31 £ 2 13 a* 10 6 4 -13 101 97 £ 5 2 114 127 £ 7 1 8* 7 6 1 S a* 19 6 2 14 e* 21 6 4 -12 1B8 109 6 5 3 22* 44 6 7 2 00 91 G 1 6 303 290 £ 2 15 48* 22 6 4-11 0* 17 6 5 4 0* 2 6 7 3 70 83 6 1 7 92 97 6 2 16 12* 32 6 4-10 101 96 6 5 5 56 64 G 7 4 46* 37 6 1 8 120 124 £ 3-21 0* 27 6 4 -9 0* 19 6 5 6 171 170 G 7 5 22* 3 G 1 9 a * 44 6 3 -20 a * 46 6 4 -8 167 102 G 5 7 137 144 7 0-20 85 89 G 1 10 204 280 £ 3 -19 58 39 6 4 -7 135 140 G 5 8 25* 20 7 0-18 109 204 6 1 11 b s 92 6 3 -18 31* 28 £ 4 -G 44 47 6 5 9 3 7 * 56 7 0 -16 82 89 6 1 12 30* 30 6 3-17 26* 32 6 4 -5 16* 38 6 5 IB 74 72 7 0 -1 4 144 150 G 1 13 9* 29 C 3-16 52 49 6 4 - 4 0* 23 6 5 II 51* 13 7 0-12 158 151 G 1 14 120 121 6 3-15 a* 8 6 4 -3 02 B0 £ 5 12 8* 35 7 0 -10 142 143 Refloci ions flogged ulth on asterisk uere considered unobserved*

to H K L Fobs F calc H K L Fobs F ca lc H K L Fobs F ca lc H K L Fobs F calc H K U Fobs F calc

7 0 - 8 0* 37 7 1 14 53* 63 7 3-11 63 60 7 4 4 117 110 7 6 -2 0* 20 7 0 - 6 0* 15 7 1 15 24* 9 7 3 -18 0* 26 7 4 5 143 144 7 6 -1 • 46* 44 7 0 - 4 312 299 7 2-21 53 26 7 3 -9 0* 1 7 4 6 111 121 7 6 0 103 105 7 0 - 2 155 155 7 2 -20 20* 4 7 3 -0 66 75 7 4 7 114 109 7 6 1 33* 31 7 0 0 262 255 7 2 -19 0* IB 7 3 -7 0* 27 7 4 0 67 92 7 6 2 39* 25 7 0 2 112 106 7 2 -10 23* 29 7 3 -6 0* 12 7 4 9 97 116 7 6 3 0* 55 7 0 4 81 89 7 2 -17 95 87 7 3 -5 60 66 7 4 10 61 63 7 6 4 102 92 7 0 6 165 166 7 2 -1 6 37* 30 7 3 - 4 33* 44 7 4 11 0* 42 7 6 5 8* 14 7 0 S 202 204 7 2 -15 04 03 7 3 -3 8* 30 7 4 12 0* 7 7 6 6 53* 65 7 0 10 0* 10 7 2 -1 4 0* 5) 7 3 -2 53 46 7 5-16 78 64 7 6 7 0* 16 7 8 12 140 144 7 2 -13 0* 26 7 3 -1 92 96 7 5-15 27* 26 7 7 -7 B8 92 7 0 14 42* 30 7 2 -12 0* 29 7 3 Q 217 212 7 5 -1 4 37* 4 7 7 -6 0* 7 7 1-21 64 72 7 2-11 243 239 7 3 1 125 132 7 5-13 22* 3 7 7 -5 0* 39 7 1-28 B* 5 7 2 -10 175 165 7 3 2 12* 48 7 5 -1 2 0* 13 7 7 - 4 0* 20 7 1-19 63 51 7 2 - 9 30* 24 7 3 3 30* 34 7 5-11 00 72 7 7 -3 0* 5 7 1-10 29* 72 7 2 - 0 210 205 7 3 4 125 134 7 5-10 117 121 7 7 -2 28* 21 7 1-17 B* 21 7 2 -7 143 145 7 3 5 249 263 7 5 -9 B* 4 7 7 -1 8* 48 7 1-16 34* 77 7 2 - 6 e* 7 7 3 6 0* 37 7 5 -B 0* 21 7 7 B 64 55 7 1-15 18* 114 7 2 -5 01 79 7 3 7 115 111 7 5 -7 13* 39 7 7 I 8* 5 7 1-14 122 110 7 2 - 4 139 146 7 3 0 184 185 7 5 -6 49* 57 e 8 -20 46* 28 7 1-13 207 200 7 2 -3 75 85 7 3 9 51* 64 7 5 -5 257 266 8 8 -10 1B4 110 7 1-12 49 50 7 2 - 2 154 146 7 3 18 29* 27 7 5 - 4 0* 9 6 8-16 37* 38 7 l - l 1 95 HI 7 2 -1 104 102 7 3 II 11* 14 7 5 - 3 l i e 119 6 8-14 273 271 7 1-10 163 170 7 2 0 29* 15 7 3 12 40* 7 7 5 -2 36* 58 0 B-12 127 134 7 1 -9 112 117 7 2 1 19* 70 7 3 13 49* 30 7 5 - I 161 171 0 0-10 107 99 7 1 -0 74 73 . 7 2 2 106 96 7 4 -10 66 67 7 5 B 122 109 8 0 -8 34* 29 7 1 -7 92 04 7 2 3 41* 39 7 4-17 60 50 7 5 1 29* 24 0 B -6 170 163 7 1 -6 271 201 . 7 2 4 74 66 7 4 -1 6 93 IBB 7 5 2 65 56 8 0 - 4 171 177 7 1 -5 232 236 7 2 5 65 69 7 4 -1 5 0* 15 7 5 3 0* 8 8 0 -2 ! 383 313 7 1 -4 0* 22 7 2 6 20* 40 7 4 -1 4 0* 3 7 5 4 0* 29 B 0 0 : 126 139 7 1 -3 45 28 7 2 7 72 B6 7 4-13 0* 38 7 5 5 73 75 8 B 2 32* 33 7 1 -2 176 177 . 7 2 0 IBS 106 7 4 -12 63 50 7 5 6 85 67 6 0 4 . 160 159 7 1 -1 52 51 7 2 9 84 60 7 4-11 02 65 7 5 7 0* 2 0 B 6 52 54 7 1 0 2B* 23 7 2 10 84 B6 7 4 -10 B* 13 7 5 8 0* 19 0 0 B 246 267 7 1 1 121 126 7 2 11 116 114 7 4 -9 131 131 7 5 9 0* 23 0 8 IB 134 133 7 1 2 312 304 7 2 12 59 45 7 4 -8 0* 47 7 5 IB 0* 17 8 e 12 77 62 7 1 3 0* 40 7 2 13 11* 16 7 4 -7 25* 12 7 6 -13 0* 9 0 1-28 76 69 7 1 4 17* 15 7 2 14 13* 10 7 4 - 6 154 15Q 7 6 -12 17* 54 8 1-19 66 57 7 1 5 140 150 7 3-20 0* 11 7 4 -5 143 151 7 6-11 70 74 8 1—IB 49* 33 7 1 6 101 90 7 3 -19 0* 13 7 4 - 4 73 72 7 6 -1 0 0* 0 6 1-17 29* 19 7 I 7 54 62 7 3 -10 52* 42 7 4 -3 48* 61 7 6 - 9 120 116 8 1-16 0* 59 7 1 0 36* 2 7 3-17 0* 53 7 4 -2 27* 35 7 6 - 0 1 IB 122 8 1-15 191 199 7 1 9 0* 0 7 3 -16 142 146 7 4 -1 0* 17 7 6 -7 115 100 6 1-14 255 265 7 1 10 70 49 7 3 -15 77 59 7 4 B 0* 74 7 6 -6 85 84 8 1-13 20* 33 7 1 11 75 04 ■ 7 3 -1 4 28* 12 7 4 1 284 287 7 6 -5 93 90 8 1-12 0* 20 7 1 12 27* 19 7 3 -13 0* 18 7 4 2 156 157 7 6 - 4 126 145 8 t - l l 195 196 7 1 13 0* 1 7 3 -1 2 0* 15 7 4 3 196 204 7 6 - 3 100 114 0 1-10 261 271 Reflections flagged utlh on asterisk uere considered unobserved.

i / i w X H K L Fobs F calc H K L Fobs F ca lc H K L Fobs F ca lc h K L Fobs F ca lc H 1” Fobs F calc e 1 -9 125 127 8 2 4 123 125 0 4 -10 32* 60 0 6 - 8 136 142 9 1 1 34* 28 e I -B 66 59 0 2 5 12B 142 G 4 -9 133 127 8 6 -7 18* 7 9 1 2 48 54 8 1 -7 137 133 - 8 2 6 87 83 8 4 -B 80 94 B 6 -6 31* 13 9 1 3 0* 13 e 1 -6 47 54 B 2 7 75 04 8 4 -7 95 84 8 6 -5 0* 4 9 1 4 34* 27 8 I -5 55 62 0 2 8 99 101 8 4 -6 94 107 0 6 -4 0* 6 9 1 5 0* 45 8 1 - 4 118 109 8 2 9 78 73 8 4 -5 64 63 8 6 -3 76 72 9 1 6 75 75 B 1 -3 e* 61 8 2 10 62 48 8 4 - 4 48 61 0 6 -2 36* 41 9 1 7 93 102 8 1 -2 0* 33 8 2 11 26* IB 8 4 -3 0* 38 B 6 -1 22* 36 9 1 8 73 83 8 I -1 l i e 112 B 2 12 0* 14 8 4 -2 136 133 8 6 0 8* 4 9 I 9 • 50* 46 8 1 0 e* 42 8 3-19 76 69 0 4 -1 99 101 8 6 I BB 64 9 1 10 0* 26 8 1 I 182 180 B 3 -10 0* 36 8 4 B 64 70 8 6 2 46* 36 9 2-18 2B* 58 8 1 2 88 01 8 3-17 37* 0 B 4 1 89 87 8 6 3 17* 19 9 2-17 46* 53 8 1 3 114 113 8 3-16 82 81 8 4 2 94 91 9 0 -18 80 09 9 2-16 8* 5 8 1 4 35* 05 83-15 0* 0 84 3 32* 8 9 0 -16 137 135 9 2-15 0* 30 B 1 5 0* 3 8 3-14 8* 52 8 4 4 B* 32 9 0 -1 4 352 353 9 2 -1 4 0* 45 8 1 6 13* 2 e 3-13 122 122 8 4 5 181 189 9 0-12 33* 18 9 2-13 0* 53 8 1 7 189 186 8 3 -12 73 70 8 4 6 0* 27 9 0-10 372 385 9 2-12 37* 35 8 1 8 46* 56 8 3-11 83 78 8 4 7 36* 48 9 0 -8 41* 40 9 2-11 0* . 8 8 1 9 8* 8 e 3 -1 8 0* 5 0 4 8 0* 19 9 0 -6 67 77 9 2-10 59 55 8 1 IB 162 172 e 3 -9 122 126 8 4 9 0* 19 9 0 - 4 109 102 9 2 -9 B* 3 8 1 11 62 67 8 3 -0 149 154 8 4 IB 35* 36 9 0 -2 147 155 9 2 -0 8* 37 8 1 12 31* 30 8 3 -7 43* 47 B 5 -15 81 95 9 0 0 0* 17 9 2 -7 183 1B9 8 1 13 17* 40 8 3 -6 B* 6 8 5 -1 4 0* 13 9 0 2 78 7B 9 2 -6 169 166 0 2-20 45* 42 8 3 -5 tie 119 8 5-13 36* 10 9 8 4 0* 36 9 2 -5 B* 74 8 2 -19 8* 22 8 3 - 4 134 139 8 5 -12 0* 44 9 B 6 349 342 9 2 - 4 65 50 8 2 -18 37* 14 ‘ 8 3 -3 114 IBS 8 5-11 0* 34 9 0 S 137 134 9 2 -3 114 105 8 2-17 11* 13 8 3 -2 28* 14 8 5 -10 0* 20 9 8 IB 46* 56 9 2 -2 0* 23 8 2 -1 6 8B 99 8 3 -1 87 B3 8 5 -9 63 64 9 1-19 0* 35 9 2 -1 176 174 8 2-15 170 167 8 3 0 143 145 B 5 -B I3B 131 9 1-18 72 62 9 2 0 01 76 8 2 -14 94 90 8 3 1 95 103 0 5 -7 0* 42 9 1-17 131 134 9 2 1 69 74 8 2 -13 0* 26 8 3 2 192 194 8 5 -6 8* 80 9 1-16 0* 0 9 2 2 18* 27 8 2-12 37* 70 0 3 3 281 278 8 5 -5 B* 22 9 1-15 0* 50 9 2 3 74 73 B 2-11 76 82 . 0 3 4 0* 39 0 5 - 4 144 130 9 1-14 101 107 9 2 4 B6 81 8 2 -lfl 64 50 8 3 5 18* 7 B 5 -3 53 57 9 1—13 20* 24 9 2 5 • 26* 10 8 2 -9 101 104 8 3 6 26* 36 8 5 -2 144 141 9 1-12 291 283 9 2 6 75 55 8 2 -8 33* 16 8 3 7 28* 34 8 5 -1 0* 17 9 1-11 32* 55 9 2 7 25* 10 0 2 -7 75 50 8 3 0 41* 62 0 5 0 32* 54 9 1-10 31* 56 9 2 8 0* 2 8 2 -6 6* 28 8 3 9 8* 24 0 5 1 0* 14 9 1 -9 43* 43 9 2 9 ' 48* 44 8 2 -5 8* 44 8 3 10 10* 37 8 5 2 73 71 9 1 -0 1B6 IBG 9 2 18 48* 16 8 2 -4 70 72 > 8 3 11 0* 22 0 5 3 0* 7 9 1 -7 94 96 9 3-17 45* 54 8 2 -3 0* 51 8 4 -17 14* 3B B 5 4 U* IB 9 1 -6 33* 3 9 3-16 2B* 1G 0 2 -2 20* 18 8 4-16 28* 48 B 5 5 99 102 9 1 -5 74 64 9 3-15 6B 54 8 2 -1 212 285 8 4-15 61 47 8 5 6 33* 43 9 1 - 4 105 IB! 9 3 -1 4 32* 11 0 2 8 0* 8 0 4 -1 4 96 00 0 5 7 0* 7 9 1 -3 21* 37 9 3-13 23* 55 8 2 1 110 116 8 4 -13 B* 6 0 6-11 32* 13 9 I -2 33* 38 9 3-12 0* 57 n 2 2 181 106 8 4-12 IB* 37 8 6 - IB 45* 45 9 1 - I B* 4 9 3 - t l 0* 59 8 2 3 70 75 8 4-11 0* 27 0 6 -9 131 121 9 I 0 156 133 3 3-16 0* 6 R eflections /logged with on asterisk uere considered unobserved* VI 4* H K L Fobs F ca lc H K L Fobs F ca lc H K L Fob* F ca lc H K L Fob* F ca lc H K L Fobs F ca lc

9 3 -9 35* 3 9 5 - 7 7? 71 10 1 5 32* 38 IB 3 4 48* 38 II 1 -1 B* 4 9 3 -0 e* 10 9 5 -6 29* 0 10 1 6 0* 3 10 3 5 0* 36 11 1 B 30* 1 9 3 -7 34* 47 9 5 -5 119 lie 10 1 7 52 63 IB 4-12 48* 74 11 1 I 0* 10 9 3 -6 72 06 95 -4 51* 49 IB 1 0 02 66 IB 4-11 28* 36 11 1 2 74 72 9 3 -5 147 152 9 5 -3 60 71 10 2 -16 0* 19 IB 4 -1 0 0* 5 11 1 3 101 189 9 3 -4 55 53 9 5 - 2 0* 40 10 2 -15 86 93 10 4 - 9 129 122 11 1 4 31* 31 9 3 -3 54 61 9 5 -1 0* 23 10 2 -1 4 0* 41 10 4 -0 1B2 118 11 2-13 33* 24 9 3 -2 100 104 9 5 0 04 79 10 2 -13 101 108 18 4 -7 46* 51 11 2-12 - 33* 40 93 -1 0* 2 95 1 12* 20 10 2 -12 66 78 18 4 -6 IB* 22 11 2-11 105 114 9 3 B 52 64 9 5 2 33* 5 10 2-11 0* 34 10 4 -5 79 81 11 2-10 IB* 28 9 3 1 344 64 . 9 5 3 31* 4 10 2-10 0* 52 10 4 -4 SB 75 11 2 -9 ' 8* 25 9 3 2 93 102 9 5 4 34* 32 10 2 -9 105 176 10 4 -3 B« B 11 2 -B 27* 4 9 3 3 76 77 ■100-16 60 70 10 2 - 0 65 63 10 4 -2 32* 40 11 2 -7 94 93 9 3 4 105 97 10 0 -1 4 117 126 18 2 -7 35* 67 10 4 -1 38* 41 11 2 -6 45* 51 9 3 5 B* 19 10 8 -1 2 102 127 10 2 -6 0* 14 10 4 0 24* 21 11 2 - 5 42* 22 9 3 6 44* 56 100-10 8* 34 IB 2 -5 69 83 10 4 1 0* 11 11 2 - 4 58* 62 9 3 7 0* 18 10 0 -8 97 91 10 2 - 4 8* 19 10 4 2 51* 47 II 2 -3 0* 44 9 3 8 0* IS 10 0 -6 201 204 IB 2 -3 26* 40 10 4 3 0* 18 II 2 -2 31* 37 9 3 9 27* 0 100 -4 77 BB 102 -2 8* IB 10 5 -7 0* 51 11 2 -1 94 103 9 4-15 15* 12 10 B - 2 114 116 10 2 -1 124 125 10 5 -6 B* 7 11 2 8 31* 31 9 4 -14 25* 37 10 0 0 57 62 10 2 0 78 74 10 5 -5 0* 6 11 2 1 0* 35 9 4-13 B* 39 10 0 2 26* 44 10 2 1 8* 4 10 5 -4 48* 27 11 2 2 B« 22 9 4 -12 32* 40 10 0 4 09 82 10 2 2 3B* 31 10 5 -3 0* 9 11 2 3 - 43* 48 9 4-11 B* 1 10 8 6 105 201 IB 2 3 111 121 10 5 -2 6* It II 3-11 70 72 9 4-10 0* 29 10 0 8 0* 16 10 2 4 3B* 31 II 0-14 0* 23 11 3-10 122 132 9 4 -9 13* 11 10 1-1? 97 96 10 2 5 0* 14 11 0-12 153 154 11 3 -9 21* 3 9 4 -B B* 21 10 1-16 0* 29 IB2 6 8* 13 II 0-10 59 SI 11 3 -0 57 54 9 4 -7 42* 44 IB 1-15 145 151 IB 2 7 49* 46 11 0 -8 0* 7 II 3 -7 0* 5 9 4 -6 0* 0 10 1-14 0* 30 10 3-15 69 53 II 0 -6 0* 2 11 3 -6 0* 13 9 4 -5 29* 21 10 1-13 71 69 10 3-14 28* 6 11 0 - 4 0* 15 11 3 -5 8* 31 9 4 -4 6* 11 18 1-12 8* 3 10 3-13 0* 1 11 8 -2 0* IB 11 3 - 4 0* 21 9 4 -3 26* 3 18 1-11 02 B2 10 3-12 13* 17 118 0 0* 4 113 -3 22* 62 9 4 -2 90 02 IB 1-10 , 114 125 10 3-11 149 154 11 0 2 191 189 11 3 -2 17* 10 9 4 -1 92 103 10 1 -9 59 56 10 3-10 151 151 11 0 4 63 90 11 3 -1 8* 62 9 4 0 0* 3B 18 1 -0 137 f32 10 3 -9 84 83 11 1-14 0* 12 11 3 0 12* 16 9 4 1 37* 44 - IB 1 -7 0* 19 IB 3 -0 8* 23 11 1-13 25* 17 11 3 1 40* 3 9 4 2 34* 93 10 1 -6 64 50 10 3 -7 103 111 II 1-12 76 70 12 8 -10 86 90 9 4 3 56 54 10 1 -5 59 63 10 3 -6 0* 51 11 l - l l 0* 8 12 0 -8 0* 17 9 « .4 125 124 10 1 - 4 0* 20 10 3 -5 81 BB II 1-10 37* 27 12 B -6 71 71 9 4 5 0* 10 - 10 1 “3 3B* 4 IB 3 - 4 0* 30 It 1 -9 54 58 12 8 - 4 127 138 9 4 6 70 69 10 1 -2 0* 9 IB 3 -3 29* 10 II 1 -8 02 90 12 8 -2 B* 4 9 4 7 0* 6 10 1 -1 0* 30 10 3 -2 142 168 11 1 -7 48* 46 12 1 -9 0* 15 9 5-12 10* 36 10 1 0 129 134 10 3 -1 69 63 11 I -6 8* 50 12 1 -0 0* 23 9 5-11 57 47 10 1 1 32* 44 10 3 0 70 62 11 1 -5 75 72 12 1 -7 0* 2 9 5-10 61 65 10 1 2 47* 72 10 3 1 0* 26 II I - 4 91 81 12 1 -6 0* 27 9 5 -9 0* 27 10 1 3 62 65 10 3 2 0* 63 11 1 -3 0* 42 12 1 -5 72 03 9 5 -e 13* 13 IB 1 4 125 136 IB 3 3 0* 6? 11 1 -2 0* 63 12 I - 4 91 99 Rtfloctlom flagged ulth an aiiorlsK uara contldtrtd unobitrMdi

Ul 56

DISCUSSION

Compound VI (fig. 3.1) can be viewed either as a

cyclohexane derivative or as a pseudo-glucose derivative.

The latter viewpoint was adopted becanse of the substituents

on the ring. Carbon atoms numbered 1. 2, 3 and 4 are each

bonded to one hydrogen atom and one acetate group. Carbon

atom C{5) is bonded to a hydrogen atom and a CE^ group which

is in turn bonded to an acetate group.

BOND LENGTHS AND ANGLES

Bond lengths and bond angles for compound VI are shown

in fig. 3.2. All ring bond lengths agree very well with the

average bond lengths determined by Arnott and Scott^ in an

X-ray diffraction analysis of fibrous polysaccarides contain­

ing pyranose rings. Table 3.6 contains the ring bond lengths

of compound VI as well as those studied by Arnott and Scott.

Bond lengths of VI were also compared to those of

p-D-Glucose^ , p-D-acetylcellobiose^, and methyl tetra-

ace1y1-P-D-g1ucose 3 5 ; no significant differences were

observed. The same trend of agreement was noticed in

comparing the ring bond angles of VI and those compounds mentioned above. Most of the ring bond angles of VI are

close to tetrahedral values; however, the angle C(3) - C(4) -

C(5) (112.8°) differs by 3.4° from the ideal value of o 109.4 . The agreements in bond lengths and angles, in ad d itio n to the fa c t th a t compound VI does not have any hydrogen bonding, implies that the ring is not under any 57

BOND COMPOUND VI(i) ARNOTT AND SCOTT

Lengths(X) Range s(l)

C(l) - C(2) 1.504 1 .523 1.510 - 1 .538

C { 2 > - C ( 3 ) 1.514 1 .521 1.508 - 1.536

C ( 3 ) - C (4) 1.514 1 .523 1.509 - 1.537

C ( 4 ) - C ( 5 ) 1.517 1.525 1.511 - 1.539

C ( 5) - C(7) 1.527

C{1) - C(7) 1.511

Table 3.6: Bond lenghts of VI and reference compounds. Fig. 3-1 : Stereo view of compound VI 061 1-439 (3) % v . % °62 W84W&I l23'4(3) 110.8(2) C 5 1.527(3) 122.3(3) 1.483(4) 0 6 2

1.448(3) 041' £ 4 112.8 (2 ) 110.3(2) C| l4 5 ° — Oil v i ) \ /

) . 4 7 4 ( 4 ) / v 3 -C41 122.8(3) !N \ ^ 1.514(3) 1058(2) C3 C2 107.3(2) o ' /

118.7(2) 0 . . L3 4 9 — .C 2 | 126.5(3) '21 1^ \ / -

1501(4) I244(3L Cj C22

Fig. 3.2 : Bond lengths and angles of compound VI. 60

steric or packing strain. However, a slight shift from the

ideal tetrahedral angle value is observed in the angles

between the acetyl oxygens and carbon atoms of the ring.

This observation was noted in the studies mentioned above and

could be attributed to steric crowding around the ring.

Bond lengths and angles of all five acetyl groups

are in good agreement with those reported in the structures

of p - D - a c e ty l c e l lo b io s e ^ and methyl t e t r a ace ty 1-p-D -g 1 u-

cose. Table 3.7 shows the bond length averages and ranges for the five acetyl group in compound VI. The nomenclature of atoms in this table (3.7) follows from the following

illustration of an acetyl group:

where Cr is a ring carbon atom.

As for the bond angles in these acetyl groups, they all follow the trend that the angles involving the carbonyl oxygen (0b- Ca-0a and 0|)-C a_C'() ) are always greater than 120°. 61

BOND BOND AVERAGE(A) BOND RANGE

Cr - Ca 1.446 1.439 1.451

Oa - Ca 1.339 1.315 1.352

Ca - Ob 1.202 1.185 1.223

Ca - Cb 1.487 1.474 1.501

Table 3.7: Selected bond lengths of compound VI. 62

It is also observed that the third angle aronnd the carbonyl

carbon atom fOa- Ca-C^) is always less than 120°.

The least-sqnares planes of all acetyl groups were

calculated. Carbon atom C(ll) of the acetyl group attached

to C(l) of the ring was shifted 0.019(4)A from the plane of

that acetyl group. Every other acetyl group was found to be planar; that is, no atom was shifted more than one e.s.d.

from its respective plane. All acetyl groups lie in th e ir expected positions for a glucose derivative with respect to the ring; atom 0(61) is near the gg position.

The ring torsion angles (table 3.8 and fig. 3.3) are all within the ranges reported by Arnott and Scott, but differ

s i g n i f i c a n t l y from m ethyl t e t r a a c e t y 1-p-D- g 1 uc o s e and p-D-acety1ce11obiose . The largest differences are observed with atom C(7). This atom occupies the same position as the glucose ring oxygen (0(5)). Torsion angle C(4)-C(5)-C(7)-

C(l) is 8.9° and 12.5° less than its respective counterparts in methyl tetracetyl-p-D-glucose and p-D-a c e t y 1 c e 11 ob i o s e .

In the same way, t o r s i o n angle C(5 ) - C ( 7 ) - C ( 1)-C(2 ) is

7.5° and 9.9° less than its counterparts in the same above mentioned compounds. This shows that there is a considerable flattening, of the ring, near atom C(7). COMPOUNDS

TORSION ANGLE VI V II III IV

C(l)-C(2)-C(3)-C<4) -57 .2 -52.3 -50.77 -57.27 -49.02

C{2)-C(3)-C(4)-C(5) 54.1 49.3 53.38 51.98 48.94

C(3)-C(4)-C(5)-0(5) -52.8 -53 .1 -59.82 -5 1 .9 4 -57.05

C ( 4)—C( 5)-0(5)-C(1) 55.2 64.1 66.30 59.79 67.75

C(5)-0(5)-C(l)-C(2) -60.2 -67.1 -62.82 -65.71 -70.05

0(5)-C(1)-C(2)-C(3) 61.2 59.5 53 .67 63.54 58.97

C (l)*-C(2)' -C ( 3 ) '-C (4)' -50.66 -46.25

C(2)'-C(3)'-C(4)'-C(5) 47 .98 46.89

C(3)'-C(4)'-C(5)'-0(5)' -5 1 .1 4 -56.54

C(4)'-C(5)'-0(5)'-C(l)' 60.90 67.77

C (5) '-0(5) '-C(l) ' -C (2 ).' -65.05 -69.87

0(5) '-C(l) '—C(2) '—C(3)' 57.80 56.78

Table 3.8: Ring torsion angles of componnds II tbrongh VI 6 4

- 60.7 (4)

Fig. 3*3 : Selected torsion angles of compound VI. 65

RING CONFORMATION

The ring conformation of compound VI will be discussed in comparison with the corresponding rings in p-D-glucoseJ 3 3 9 £ (compound II), cellobiose (compound III), {J-D-ace ty 1 ce 11 o- b i o s e ^ (compound IV) and methyl t e t r a a c e ty 1-p-D -G l uco se ^ ®

(compound V). The la tte r is similar to compound VI except for a methyl group instead of the acetyl group on atom C{6).

Table 3.9 shows the rep o rte d ring conform ation of each compound,

In compound VI, the least-squares plane passing through carbon atoms C(2), C(3), C(5), and C(7) showed that these atoms lie exactly in the plane, with carbon atom C(l) at a distance 0.707(4)A below the plane and carbon atom C{4) at a distance of 0.631(4)A above the plane. These data indicate that the ring is in the chair conformation. This is the same conformation reported for compound V. However, since most of the other above mentioned structures have rings that prefer the ^C° chair conformation, a more detailed conforma­ tional study of the rings was called for.

The positional parameters of the ring atoms along with th e ir standard d ev iatio n s were used in program RINGCON^^, which calculates the puckering amplitudes, the pseudo rotation angles and the deviations from ideal (mirror or two-fold rotation) symmetry elements.

Tables 3.10 and 3.11 list the results fox the ring conformation study applied to compounds II through VI. Compound Ring Conformation

VI 4C1

II -3^ c°

III i 3' ,C° ii 4C

IV i 3c

11 3 4 C1

Table 3,9: Ring conformation of compounds II through VI. 6 7

A look at the puckering amplitudes shows that all rings are puckered to nearly the same extent except for ring ii in compound III (table 3.10). This ring is reported to be in the chair conformation, in contrast to ring i of compound II and the two rings of the compound IV. However, the results show that compounds VI and V have the same puckering amplitudes, but they differ in their pseudo rotation angles. Compound VI has an angle of -168.35° and compound V has an angle of 150.39°. The pseudo rotation angle for an ideal chair conformation is 2nn/6. Thus, all of the rings deviate from the ideal conformation.

The approximate symmetry at every atom is determined by program RINGCON, and the deviation in degress from the ideal symmetry is calculated. A conformation means that carbon atoms C(l) and C(4) are located on a mirror plane. The d e v i a t i o n from Cg symmetry in compound VI is 1.59° as compared to 4.4° and 5.99° for the approximate mirror planes passing through carbon atoms (C(2), C(5)) and (C(3), C(7)) respectively. In compound V, the approximate mirror (with the least deviation from Cg symmetry) passes through 0(5) and

C(3) (deviation is 4.51°). This implies that the ring is better represented by a mirror passing through 0(5) and C(3) rather than a mirror through C(l) and C(4). Thus the ring o conformation in V is nearly a gC chair. As for the rings in compounds II, III and IV, our calculations agree with the reported conformation. The molecular mechanics program QCPE^® allowed all atoms

of compound VI to relax and assume a minimum energy c o n fi­

g u r a ti o n . The r e s u ltin g minimum energy model was then

studied using program RINGCON which showed that the ring has

a puckering amplitude of 0.594(3) which is within three

standard deviations of the observed puckering amplitude of

compound VI (0.582(4)). The pseudo-rotation angle remained

essentially the same, changing only 0.72°. The significant

result is that the preferred conformation is (chair),

with a deviation of 0.32° from C s symmetry, whereas the other two "mirrors" in the ring show deviations of 6.94° and 7.16°.

In conclusion, it is not clear why the ring adopts a

certain conformation: specifically, why the ring in compound

A n VI prefer a chair rather than a gC chair. 69

COMPOUND PUCKERING PSEUDO

AMPLITUDE ROTATION ANGLE

VI 0.582(4) -168.35

II 0.584 (3) 83.8

III i 0.597(4) -164.25

ii 0.558(4) 152.47

IV i 0.597(4) - 61.13

ii 0.584(6) 118.56

V 0.582(4) 150.39

Min. £.

Model of VI 0.594(3) -1 6 7 .5 3

*Av e r a g e e. s d. for pseudo rotation angle is 2.73'

Table 3.10: Puckering amplitudes and pseudo rotation angles of compounds II through VI. COMPOUND VI COMPOUND II COMPOUND III

ring i ring ii * Atom Deviaton Atom dev. a tom dev. a tom dev.

C(l) 1.59 CC1) 11.05 C (1) 1.92 C(l) ’ 7.47

C (2) 4.40 C (2) 6.82 C (2) 9.82 C (2) ’ 12.08

C (3 ) 5.99 C (3) 4.35 C (3 ) 8.11 C ( 3 ) ’ 4.79

C (4 ) 1.59 C (4) 11.05 C(4) 1.92 C(4) ' 7.47

C (5 ) 4.40 C (5) 6.82 C (5) 9.82 C (5) ' 12.08

C (7 ) 5.99 0(5) 4.35 0(5) 8.11 0(5) ' 4.79

Deviation in degress from an ideal mirror plane passing through tliat atom.

* * Average e.s.d.'s for deviations in compound VI is 0.27, II is 0.20, II is 0.21 and 0.22, IV is 0.29 and 0.37, V is 0.24.

Table 3.11: Distortion of ring atoms from symmetry elements.

-j COMPOUND IV COMPOUND Y MIN. E. MOLECULE OF VI

ring i ring ii

Atom Dev. Atom dev. atom dev. atom dev.

C(l) 13 .41 C<1) ’ 15.57 C(l) 8.71 C(l) 0.32

C (2) 14.82 C{2) ' 15.97 C (2) 13 .11 C (2) 6.94

C( 3) 1.73 C { 3 ) ' 1.28 C(3) 4.51 C (3) 7 .16

C (4) 13.41 C(4) ' 15.57 C (4 > 8.71 C (4) 0.32

C( 5) 14.82 C (5) ' 15.97 C (5) 13.11 C(5) 6.94

0(5) 1.73 0(5) ’ 1.28 0(5) 4.51 C (7) 7.16

Table 3.11 (con't.) CHAPTER IV

Bi[Pt0 .59 Ni0.41 (CN)4 .4H20

72 73

INTRODUCTION

When tetracyanom eta 1 1 a t e ionic compounds crystallize,

square planes of M(CN)^ stack in columns in one direction of

the crystal lattice. These columns are separated by the

intervening cations and water molecules of crystallization.

An interesting characteristic of these compounds is the

dichroic absorption spectra they possess in the solid state

that has no counterpart in the corresponding solution

spectra.

The fact th at the MtCN)^- groups stack in in f i n i t e

columns in the crystal opens the door for interactions

between metal orbitals that are not involved in sigma bonding with the cyanide ligands. The metal orbital that is primar­

ily responsible for such interaction is the dz 2 because it is

ty oriented perpendicular to the M(CN)^ square planes and is

therefore able to overlap with the d 2 orbital on adjacent A _ M(CN)^ groups. The extent of metal orbitalinteraction

depends heavily on the M—M separation d istan ce and on the

relative orientation of the square planar anions.

The spectra of many P t, Pd and Ni compounds have been 3 9 4 0 investigated ' and all show the dependence of the one

dimensional physical properties on the columnar stacking of

ty — M(CN)^ groups in the solid state. On the other hand, few mixed metal crystal studies have been carried out. These provide significant evidence for the existence of the one

dimensional properties in the solid state. Strong evidence of metal orbital interaction in the "mixed magnus salt" like 74

[Pt(NH3)J+ [PdClJ“ ] and [Pd(NH3)$+] [PtClJ- ] was reported by

Anex?* However, these compounds only exist in a 1:1 ratio of

Pt and Pd. Compounds of tetracyanoneta11 ates do not present this disadvantage. R.S. Musselman, who provided crystals of the compound discussed in t h i s c h a p te r , p r e p a re d many compounds with varying ratio s of Pt and N i ^ .

The spectral properties of these mixed metal crystals have been s tu d ie d ^ . The main goal of these studies was to follow closely the absorption band due to out-of-plane transitions as a function of Pt/Ni ratio.

The discussion in this chapter will deal with the crystal structure of one of these mixed metal salts,

Ba [ {Pt, Ni)

EXPERIMENTAL

Crystals of Ba[(Ptx, Nij_^)(CN) 4] . 4HjO were provided by

Dr. R.L. Musselman. A suitable single crystal was selected

and mounted on a glass fiber fixed on a copper pin. This

assembly was placed on a goniometer head which in turn was mounted on an Enraf-Nonius CAD4 X-ray diffractometer.

Program SEARCH'*’® located 25 reflections of which 16 were 1 1 used in indexing the reciprocal lattice by program INDEX.

The resulting unit cell was triclinic. Higher symmetry was

then checked by using the cell dimensions with their e .s .d .'s 1 3 in program TRACER which produced a C-centered monoclinic

unit cell. Six strong reflections, along with their symmetry

equivalent reflections in four quadrants were used to obtain more accurate cell dimensions (Table 4.1).

During data collection (Mo-Ka radiation, 1° < 29 < 30°) reflections for which h + k is odd were not measured since

they are systematically absent in a C-centered lattice.

Reflections (4 0 0), (0 8 0) and (0 0 4) were measured repeatedly throughout data collection for intensity control purposes and crystal decay detection. The intensities of reflections (192) and (642) were measured periodically (after every 200 refelctions) for orientation control.

After data collection was completed the intensities of six reflections [(004), (002), (204), (002), (004) and (204)] all near Chi = 90° were measured using an incremental Psi value of 10°. These relections were used for an empirical 76

CRYSTAL DATA

Formala B,[Pt0.59Ni0.41

Crystal Size (mm) 0.3 x 0.3 x 0.34

Crystal System Monoclinic

Space Group C2/c Do (g/cm3) 2.83

z (molecule/cell)

a (X ) 12.209(2)

b (X) 13.752(2)

c (X) 6.638(1)

P <"> 107.76(1)

v (X3) 1061.4(5)

l(Mo - KQ) (X) 0.71069

Data Collection

Intensities: measnred 1804

I > 3a (I) 1487

Minimum transmission 58.4%

Variables 69

R = IFoI - |Fc| I / ^ IFoI 0.0469

Rw = (JwflFol - lFcl) 2/^w|Fo |2)1/2 0.0699

Table 4.1: Crystal data of Compound VII. 77

(Psi-scan) absorption correction. The raw data was rednced and merged by the SHELX^ program package.

A total of 1804 reflections were measured, of which 1580 were greater than 3o(I). All reflections are in two octants

( ±h, +k, + 1).

Program CLASSIFY^ sorted the reflections into intensity and parity groups. The result revealed the absence of reflections hoi when 1 is odd. This indicates the presence of a glide plane in the c. direction. However, upon carefully examining the data, a total of 17 reflections from the hoi group with 1 odd were found to be measured at a slow scan speed of 0.2 deg./min. Each of these 17 reflections has an

*/o(I) ratio larger than 6 in spite of their relatively small absolute intensities.

The uncertainty in the hoi group with 1 odd forced the structure refinement in two space groups: C2 and C2/c. 78

STRUCTURE SOLUTION AND REFINEMENT

The structure of Ba[Pt^ ^ Ni^ ^ {CNj^lMHjO was solved by the heavy atom technique^ {Patterson) assuming C2/c to be the space group. The Patterson map revealed the positions of the heavy elements (Ba, Pt and N i).

Pt and Ni atoms occupy the same p o sitio n in the unit cell. That is, Pt is found in 59% of the anions while Ni is in 41%. The distribution of Pt and Ni in the crystal lattice is apparently random: in other words, there is no systematic pattern of occurences of anions having either of these two metal atoms.

The Ba and Pt/Ni atoms were found to occupy special positions in the unit cell. Table 4.2 lis ts the symmetry and positions of these atoms.

Atom Wyckoff Notation Site Symmetry Positions

Ba 4 e 2 0,y,1/4, :0,y,3/4

Pt/Ni 4a 1 0,0,0:0,0,1/2

Table 4.2: Special positions of Ba and Pt/Ni atoms.

The site occupation factor (S.O.F) for Ba is 0.5, and since Pt and Ni share the same position in the average unit cell, each was assigned an S.O.F. of 0.25 (assuming 50 mole% of each) in the early stages of refinement.

A difference fourier map revealed the positions of all nonhydrogen atoms. The positional and thermal parameters of 79

all nonhydrogen atoms were refined for several cycles by

weighted, full matrix least squares until no more significant

shifts were observed. The positional and thermal parameters

of Pt and Ni were equated as "free" variables.

In this refinement model (model I) the S.O.F. of Pt/Ni,

subject to a constraint, was allowed to refine as an indepen­

dent variable. The S.O.F. of Pt refined to 0.295(1) and

consequently, the S.O.F. of Ni was 0.205(1) (since the Pt/Ni

lie on a center of inversion, their combined S.O.F. is 0.5).

Thus, the relative Pt/Ni ratio is 0.59/0.41.

After the final cycle of least squares refinement, no parameter P shifted more than 0.4o(P) and the highest residual electron density ( 2e.X ^) in the final difference fourier map was 0.89& from the Pt/Ni position. This peak was considered to be thermal "noise". The final R-value is

0.0469 and Rw is 0.0699 over 1487 reflections (for which I >

3 or (I ) ) .

MODEL I I

The structure was solved also in space group C2 by including the weak hoi reflections for which 1 is odd. In this model, Pt/Ni and Ba are treated the same as in model I except that now Pt/Ni is in a general position and there are four CN ligands in the asymmetric unit. Anisotropic thermal parameters were refined for all atoms. The S.O.F. of Pt and

Ni refined to 0.60(1) and 0.40(1), respectively. The final so

refinement of this model gave an R-valne of 0.0459 and Rw of

0.0692 over 1514 (for which I > 3e (I)).

Although models I and II are good representations of the

c ry s ta l s tru c tu re in the "average" unit cell, they do not

present the individual molecular anion structures well. - This

is a r e s u lt of the d iso rd er of Pt and Ni throughout the

crystal lattice.

Consider the two anions of this structure, (PttCN)^”) ft and N i(CN)^ ). The main structural difference between these

two anions is that the carbon atoms in the Ni anion are

closer to the central atom. This results directly from the

smaller covalent radius of Ni(1.21A)44 compared to that of

P t( 1 .3 5 i) l4 As a consequence of the smaller radius of Ni,

the Ni N distance is also shorter than the Pt N distance

(fig. 4.1).

Pt/Ni

£ _ The dotted atoms (C^, ) belong to CN coordinated to Ni. C£N£ is coordinated to Pt.

Fig. 4.1 Disordered M(CN)^ anions.

Fig. 4.1 shows that models I and II accounted for two

" p a r ti a l" atoms (for example C^/C^) as one whole atom. An 81 unsuccessful attempt was made to resolve the positions of these two "partial" atoms by calculating the dimensions of their combined thermal ellipsoid. the results are presented in Appendix B.

MODEL III ______Space Group C2/c

This model contains two rigid groups representing the two anions, one with a Pt atom and the other with Ni. The

Pt-C distance was fixed at 1.988A^® and the Ni-C distance was fixed at 1.870A^® Angles between adjacent ligands were fixed at 90° in order to maintain an ideal square planar geometry.

The positional and anisotropic thermal parameters of Pt and

Ni were equated. One variable represented the S.O.F. of Pt and all atoms in its rigid group. The S.O.F. of Ni and all atoms in its rigid group was : 0.25 - S.O.F. of Pt. Each rig id group was allowed to rotate around the pivot atom to attain the best f it with the data. Pt and Ni atoms, used as the pivot atoms in their respective rigid groups, were fixed at (0,0,0) by virtue of symmetry. The rest of the atoms in each rigid group were forced to ride on the pivot atom.

All atoms except C and N were refined with anisotropic thermal parameters. The final cycle of weighted least squares yielded an R-value of 0.059 and Rw-value of 0.099.

MODEL IV ______Space Group C2

This model also contains two rigid groups representing

Pt(CN)^- and Ni(CN)^- . Only the positions of Pt and Ni were 82

allowed to refine while the rest of each group was forced to

ride on the pivot atoms (Pt and Ni). Model IV refined to a

final R-value of 0.0483 and Rw-value of 0.084.

H7DR0GEN ATOMS

During the refinement of each of these four models, the

final difference fourier map did not yield any information

about the hydrogen atoms.

A sharp, detailed map was then calculated around every

oxygen atom and again the hydrogen atoms could not be

located.

Since hydrogen atoms contribute mainly to the low angle

reflections, a new weighting scheme was applied in order to

optimise their positions. The new weighting scheme places

more emphasis on all reflections for which angle 6 is less

than 12° by multiplying their existing weights by a factor of

two during the difference map calculation. The result was

the disappearance of the noise peaks near the Pt/Ni and Ba

atoms, and the highest peak in the difference map was le ss

than O.Se.X However, no information was gained about the

hydrogen atom positions.

Failure of the hydrogen atoms to register in the

difference fourier map is attributed to their weak scattering power in a crystal that contains such heavy elements as Ba,

Ni and Pt. The hydrogen atoms could also be disordered as a

result of hydrogen bonding with disordered nitrogen atoms. 83

DISCUSSION

The four models (I, II, III and IV) presented above are compared from statistical and chemical aspects. The best model v i l l f it the crystal data and reflect the true mole­ cular structure of compound VII.

A Hamilton's R-ratio test is an analysis of variance which enables one to determine which one of the four models agrees best with the crystal data. It takes into considera­ tion the number of variables used in the least squares process structure refinement, the number of the intensity reflectio n s and the w eighted R-value (Rw). In ad d itio n , structural properties, such as bond lengths, must be con­ sidered in each model during the process of comparison.

The constrained and unconstrained models in each space group were first tested against each other. The R-ratio test enabled the rejection of the constrained models (III and IV) at the 0.005 confidence level.

Upon testing models I and II, the following hypothesis was formulated:

HQ (the null hypothesis): Model I correctly describes the structure

(alternate hypothesis): Model II correctly describes the structure.

Rit 0.0699 R = ------= ------= 1.01 Rj 0.0692

This value is compared to R_*. , „ „ „ - 1.03 which 5 6 , s 14 0 0 , 0 . 0 0 5 is greater than the ratio of models I and II. According to

Hamilton's test, we cannot reject HQ. Thus model II is still 84 a valid possibility. Model I would have been rejected only if *56*1400,0.005 Were leSS than 1‘01* It should be noted that 125 variables were used in refining model II while the refinement of model I used only

69 variables. When two models yield similar results but one uses more variables to describe the structure, it is obvious that the one with the smaller number of variables is prefer­ red.

Investigation of bond lengths shows that both indepen­ dent M-C bonds in Model I are equal within experimental error

(1 .9 6 3 (5 )1 and 1 .9 5 7 (4 )1 ). The bonds in model II are significantly different: the M-C bonds range from 1.88(1)1 to

1.99(1)1, and the C=N bonds range form 1.07(2)1 to 1.23(2)1.

It is also important to mention that the e.s.d. of every variable bond length in model II (average O.Oll) was double its counterpart in model I. The average e.s.d. of bond agles in model II was three times larger than that of model I.

The evidence mentioned above, in addition to the fact that the hoi re fle c tio n s with 1 odd are weak (though not entirely absent), indicates that model I best describes the structure of compound VII: thus the space group is chosen to * be C /c. All further discussion of compound VII will describe only refinement model I. Tables 4.5 and 4.6 contain the atomic positional parameters and anisotropic thermal parameters. Observed and calculated stru ctu re fa c to rs are listed in Table 4.7. 85

The asymmetric unit of compound VII contains tvo CN~ ligands in general positions and a combined Pt/Ni on a center of inversion. It also contains tvo water molecules in

*y j . general positions and a Ba ion located on a two—fold axis of rotation.

The M(CN>4 groups are planar by virtue of symmetry and stack in a hexagonal fashion in the (110) planes (fig. 4.2).

t y __ This gives rise to columns of M(CN)^ groups along the c_ axis of the crystal (fig. 4.3). The angles between the [001] d i r e c t i o n and M-C(l) and M-C(2) bonds are 9 0.9(2)° and

94.0(2)°, respectively; which means that the anion planes are tilted by an angle of 4.1(2)° with respect to the c_ axis. A t i l t of ~ 3° was reported in Ba[Pt(CN)^].4Hj0. Adjacent

ty _ MfCN)^ groups are staggered withtorsion angles of nearly

45° in all cases. Table 4.2 shows that these torsion angles range from ~ 42° to s 48°.

Investigation of Table 4.4 shows that the M-C bonds are close to the Pt-C bond but differ by more than a tenth of an angstrom from an Ni-C bondf®

The most interesting structural feature in cyanoraetal- late compounds isthe metal—metal distance in adjacent

2 “ M{CN)^ groups. Electron delocalization along the anion columns is usually achieved as the meta1-meta 1 separation distance decreases to allow for orbital interaction of d 2 z orbitals which are not heavily involved in sigma bonding with the CN ligands. On the other hand, the anion columns are q 9 9 m g Oo>

- $ r 1 S&

cSy k , &

2 — Pig. *f.2 : Hexagonal packing of M(CN)^~ anions-

00 a\ ( O O — 0 — ^ € 0

C - c A g 0 0

Gg(M g o

c ^ > p = - o — cPo KD

Fig. ^.3 : Stereo view of the stacking of 2 — M(CN) in columns. 88 insulated from each other by the intervening water molecules and B a 9 + ions.

The metal-metal distance in compound VII is 3.319(1)1 which compares with 3.321(3)1 the Pt-Pt distance in

Ba(Pt(CN)4 ].4 H2 O. However, it differs significantly from

Ni-Ni distances in many tetracyanonieke 1 atesf®

In tetracyanoneta11 ates, the CN ligands in adjacent

M (C N)^2. — groups are eclipsed when the M-M separation is relatively longj and staggered when the separation is short.

In the case of short metal-metal separation, the lignds adopt the staggered conformation in order to minimize repulsion.

Fully staggered ligands are observed in partially oxidized compounds (K^ ^^[Pt(CN)^ ] .1.5Hj0) due to the short Pt-Pt separation distance (2.96(2)1). On the other hand, more eclipsed ligands are found in compounds with large Pt - Pt distance (3.48(2)1) as in KjtPt (CN) .3^70) . In compound

VII with M-M distance of 3.319(1)1, it is surprising that the ligands are nearly fully staggered.

As previously mentioned, the diffraction data did not contain sufficient information about the hydrogen atoms.

Consequently, it is not possible to discuss hydrogen bonding in detail. However, the role of the water molecules has been established in many compounds like VII. Water molecules hold together the anion columns through hydrogen bonding with nitrogen atoms of the cyanide ligands.

Water molecules also coordinate to the Ba ion, which has an uncommon coordination number in compound VII. Table 89

4.4 shows that there are ten atoms within the coordination sphere, including six oxygen and fonr nitrogen atoms. The

Ba 2 + ion is in the middle of an irregular square antiprism with two nitrogen atoms at longer distances, 3.068(S)X located just above and below the two opposite square faces of the square antiprism. Thus the coordination geometry

•y 4* around Ba ion is that of a bicapped square antiprism

(fig. 4.4}. The high coordination number of barium resu lts from its dipositive charge and its large ionic radius.

In conclusion, the most important features of this compound are the metal-metal separation (3.319(1)X) and the

Pt/Ni ratio (0.59/0.41). The importance of the metal-metal distance is that it governs the one dimensional physical properties through metal orbital interaction. Such proper­ tie s include the highly an iso tro p ic re fle c ta n c e spectrum which produces dichroic crystals. The Pt/Ni ratio in this compound is also associated with its spectral properties in that the reflectance spectrum changes as a function of metal composition. However, more structural work on mixed metal cyanide crystals is required in order to be able to correlate the effect of metal composition on their one dimensional electrical, optical, and magnetic properties. I______o

o. Fig. k.k : Coordination sphere of Ba ion in compound VIJ"

O 91

A B c 0 PHI

C (I » Pt/Ni Pt/Ni* C(l*) -95.7( 2)

C(l> Pt/Ni Pt/Ni* C(2*) 92.9(2)

C(2) Pt/Ni Pt/Ni• c a n 92.9( 2)

CC2) Pt/Ni Pt/Ni* C { 2* ) 133.5(2)

PT* Pt/Ni C C 1 > 92.9(2)

PT* Pt/Ni C(2) 9-*. 0(2)

Table 9.3 : Torsion and tilt angles of VII - Bond Bond length (£)

P t / N i C(l) l-9£,3{6)

P t / N i C(2) 1.957(3)

0(l)(t)v 2.359(5)

S d 0 { 2 ) ( I ) 2.397(5)

— D { i ) ( i m 2. 911 ( 9 )

l.a Q(lXlV) 2.911(9)

3 a D { 1) ( V ) 2.559(3)

h a 0 C 2 ) { V ) 2.397(5)

J3 ----- N(2)(II) 2.929(7)

Ha ----- N(2)(VI) 2.929(7)

ha ----- N(1)(VII) 3.063(3)

3a ------N(1)(VIII> 3.063(5)

CCI) - Pt/Ni - C ( 2) 91.0(2)“ s Sym. operation :(I)*»Y,2;(11)l/2-xfY-l/2,Z (ill)-x fi-Y *—2»(xv)x«i-Vfi/2+z;(v>-x,yti /2 (VI)1/2-X,Y-l/2*1/2-Z;(VII)X-l/2*r-l/2f7 5 (V III)1/2-X » Y-l/2 »1/2-Z.

Table 9*9 S 3ort.J lengths and angles of VII Ator.ic positional parameters X 1 0 * * 4 isotropic temperature factor X 1 0 * 5 3

Atom X Y Z U

Pt 0 0 0 19(2)

Ni 0 0 0 19(2)

Ba 0 3693(3) 2500 27(2)

0(1) 969(3) 4965(3) -570(7) 37(1)

0(2) 1399(4) 3100(4) 6580(7) 43 ( 1)

C(l> 1537(5) 539(4) 911(9) 31(1)

M(l> 2402(4 ) 943(4) 1376(9) 42(2)

C ( 2 ) 663(4) 1305(4) 577(8) 29(1)

W(2) 1017(5) 2054(4) 905(10) 45(2)

* Equivalent isotropic temperature factor

Table 4-5 : Atomic positional parameters of VII • Ani sotropic thera al parameters X 1 3 S S 3

Atom Ull 1122 U 33 U23 U13 U12

P t 14(3) 17(3) 22(3) 0 3 0

Ni 14(3) 17(3) 22(3) 0 3 0 iia 34(3) 23(3) 23( 3) 6(1) 1 1 ( 1 ) 11(1) u(l) 21(2) 39(2) 47(2) 1(2) 6(2) 3(2)

□ 12) 29( 2) 43(2) SQ(3) 5(2) 6(2) 1(1)

C{1) 27(2) 29(2) 32(2) 2(2) 6(2) 1(1)

N(l> 2K 2) 43(3) 43(3) -4(2) 2(2) 3(2)

C( 2) 24(2) 27(2) 32(2) 0< 2) 6(2) 5(2)

N(2) 3 ?. ( 3 ) 33(3) 5 3(3) 10(2) 16(2) 1(2)

Table 4^6 : Anisotropic thermal parameters of VI 95

t_ £ J" r*. C 3 M^CifTOJ TfV«S£ C 9 5 9?^-4£?^AJ xt/r.sj .r 3 c j:.--•3M,n p *»—0 ^ ? j n .- s t ^ iv ' — — ^ t j r — f-x a tp»‘i5 \ ' H -ar* £ x •»4-'-tju" 4> — *n./‘ J%**r\it+—r j ■A£r0/*-3£*t,r*:,*'K.Fi3 3*»*** £ y* i tTkr 3 *i—»*aj— <—x x —xpo a « ai i « i f i ——x'~———— m i i i i m i i n i i m — rtv j J* .T 3 £3 Xrn Si" CIVX —3 i#‘—10 ST 0 —X •* 3 C*** tr»tf K j/l 'IjJ ^ X < ^ ^ 5 5 \T T ? * —5(M£ 2 3 ■*■ = a 4, c / / s e r h * ''» s y — 0x —v vtn«.w * /*t? s*»/c7'\T/Mnr-x< 2 c"?iT-£t\*v o xf^c- ^"3* — — a r+nnrrf* a c£ .crf-*»yv-:rF''——v——>W——fu _ —— ru — —

1 *•* »n J1 t-TSUSX J39\C>V?O t'»'\iT J,,p- 3 ‘'H/' — f*' /iKl^p.^mKff-*2 X 0 2Aj 3Aj3 fi 0 3 jm M i l ——— — — — — lI M ——— — - — t I I —•»««• — I • t I *-»»*» t I * • 1« t r iat l •

^ i/*«n x ***—d .*v— u — 7*T^ s i/'iftN £f»«r»4 7 * «£:♦** it 3 ?* aic s^k cc^'V^'aT ^ r - \ r ois ij s ; - z t r 3? 2 »?* *-. £Kh.r'> 'vj’j’j* 1 ££ \ i -3 i s'vv-x •>-c,>-^ c — — - £is\rs 2 T£CIV» —2 X 2 —O' 73^1 3lFri.Aj{r X 2 —2 CP'fcF**f«*j“K‘. —IVX AlAir- 3 y"i 3 XXA — —-*AJ/‘,'"L — 3 r-*‘X'VI«— — , . M4n I I I n — — — M 1 M M I M M M M M I M H M — xA X3 i/rxh sc** cr;K±:T3« 2 x 0 t ,; 2 3 x 2 3 3X***c s T ^ ^ ffT ^ a c a : ■\jJ'— -330 ^ 3*o" : vj* J’-cxsci^ 0 —xtf* e eao -**t c -i —-* ;cc rT ^ /^ t :j\*'sas/str r> #< = s cN 'to js t 1 1--a_— — ——■*» a» c 2 v 3 rrf'X T F T j^t^iv cc* ; ‘uffrrM ***irF% F\,V Ftna

I •Flflffc ?**CrtJ?££C 51X3 CS^FIThC'l ST^»'Fjr»F —3* 3 X* X 3 0 0 2 A. ■**—T ►**/■* TA — 2 »-l\.SC£?'V,t'\IS£r5 — — —• _4• —i | * | —— — » — >I I • • I — — —• •1 I I • «

(j fUCM^A2TtfJ'ffil‘CClV'V,»A»*£OC -JSJ*'^C7J’? -CiTiT^Ai ? »«-ffT*FC-^*'N-eplf e^V7 xtr3 — — 33< r:i-sitstsiv^ ? tt? ■cc^x^iaiisiJ'r ® c O p tr 2 K 3 3f^ir«oi,ifctrp».«^ 9 3 ? x 2 a «—x » 3 "**v — aaj — axu^ ax3urtn^xx£T — x E ,»,l7= f/T tf 3^*3F*2er^—33/* 3 2 ,3.TS'«" 0 3 3 C2P>»« £ ir-*—■ r»»3 s \ t —3 »*t^ viA.f* — — "vj A .2—■ aj ap*»*—•■——p - F tif /tT tr ;/? j'.tirrw x ^ F ^ ^ ? — A——— -* An.——— j i«sccs?cc:r = :e£:ccccc5 cc 3 cscccscci — - < ttjff 2 22“ 0“ 2

X cx:— Ai3 — — — —— f%i3xx cx^^irr-ir —— -fc MH ru 3 c»c£ —— ix— —•-

(j £N<^K*rj«; - £••» r*^*^x r* — ? ~-j* r 3 *"ir 3 y r r r v-ac ? iT—^ 0 3 2 ■ ./ t c t f u •at j *& c t ? ^ a i t 3 3 x>* 3 — £ U. TTANttffc/'H —C —c XA,«3“Pta.T 0~C 22 E"*MVf?JN J* X •“LTXlVir'C ETf"N#«*-tP» TX—r* fijf*?'* r - —2 «v^ ,F—» —x 3 rj* .^?f!rrv ;x XX —X r- jn « iT"» fV— 3 3 A.m**1*' ■" "" — ^ 3f*ht/*c v* t *VXn0>^7CN«*Fc^fv*>‘iTirtr3ni4idMfU^ v xitxipxi ^C N « 3-P«c»i>flj9n.ffh' 1^ 3 ^ F H XPsfV X 1C 0F1 CiTlrV F'Xf'X — — X*Xl S)Tir*»f"-in — — V £ — c;r- /'IT?' 3 X ■"if'X x:u (TffirilT'* ■ ^ 3 X 3 2 T e Fft,aF9f\,i\;7 pwcp * £ 7iN£rirr'rtjcp«r*jini^r»'"" j c c ttiT£win,»,3r F - i i ' h T » i r ^ x x ^ 3 “ r —» fUXfU*-—— — — — (V*»‘l\J — — — — m *~+ _i :3cc3c: c«c3£.-e see ccccccrsfle ccc:cc 3 ^ 333 3333«rtP J‘J’*iniT (£<£«£ £«Khr-KP>P*NM*-f>-"- x *v»£«\*c»''|Fi/»3iX3 ——— ——— x^ —————— y -r/'-n icrfI » I I ——————i xxa''*^—r,*-iTF“—‘»fj*p»3 i i i i i » i i i i u 3*x i!reJ»A7*t,i'ST? = <),£N£N ^ r x-^f x*? r*c 3 x —x- vx ^ x—-= ■** fi *.c u. — 3*x 2 i-frnT': fisiTc«»-T3 Vr- t5 \ - 3 - - — X *" r ■? *5— VC r ^ J" £•*■-. f*^ = -f» j-y ^ -r —X X f 3 r rr-c»-r-F*c-033»c^^0,^XT7“CL* — c —*-a- v —r — M h cr v— » £«"if A*"i v —vj-r^trj- i?/3 T •- 3A.M— •- — X——— — *f .X"X— i — — | l- l- l • I M II » I*- II I — —• — t P I — r»rv £ v 2 —0f^AjAjr»*V030x r e a a cc **-£ii\i/r 3'*'— £ 3 Ar_"—r ~ ciahrfsch x u.e 3X ic#*.».c33TF*3 c £ — C 003 00 2IT7C X ITF* tt —C .—pk»- 0 3ir*FlTN-lT — *r-VF»0-jn*^3 CX—3 •• CA.C 3 ; i\*<-l\.-«'r,n,p'fc tr— 7 0 iffV"1 t»-N-iv^Aii 3 s cChff y - r l — ■ ^X iW '-—— — — — — pn*w

£ 13 C«r Xa O—F'kTP^J w m tf'J" z IMS' 0X = 1 3 £ —•nj-ir-3*— PJ*C ^ — 0.r*0 - ,,,/? .W t:T 1 £ fl.5 £ tC 2 /• Kl — T rnm frrtw m* —^— — ——— — — —— ——— | • ——————III t t i l —— — I ——II * l i l t Tatjle ^.7 : OlDserved and calculated structure factors of compound VII. M L IftFo MFC 11 KL inFfi lnFc II 4 I i hf n 1 OFC H rt L I UFO MFC n A L lOFil MFC lb 1 P'ld Ph? ft 2 59b his -IS 3 2 4 l ft 421 • ft s ? ftM 443 - J ? P5IT P55 3 1 b 1 159 1 f P 14 ft 2 MS 207 •13 3 2 35? 141 • 7 5 ? 7rtO 7 35 • I 2 P450 ?of>n 1b 1 ?W P«P — 17 ?. 705 hftft •II i P 410 3«7 • 5 P fa 1 4 fan5 1 7 P 32ori ?7ftb lb | ?h? PH7 -IS 1 2 1 ftbP 1035 -ft t 2 hOl hftl • 3 5 2 Hi r 7flfa i 7 ? 2U0h ?01 (I 1 h 1 2t4 ?fth ? 1341 13 72 *7 1 ? bPA 621 -1 5 ? 4 M *i?n 5 7 P 1901 1 4? I — 7 1 7 1 11b -IhS *11 2 1?92 1 MO *5 1 2 377 Ifth 2 1515 12PA 7 7 2 IftUt 1 ft? 1 — 5 17 1 4?1 -ft Oft ? 1043 1077 -3 1 ? hftft htft 3 5 2 Oftb 43A 9 7 ? 137 4 1379 • J 17 1 587 -5*ifa -7 2 210ft PI 10 -I 3 2 3rm 24H 5 S ? hSP bPrt 1 1 7 2 I IP*# 1 ISrt • 1 17 1 550 -ho| •5 2 Pftit lilrt? I 3 ? PPh •ftb 7 h ? bi.rt fa7 7 1 3 7 P ftrtfa 9 r*U 1 7 1 *5117 -Strt *1 2 PftSfl 1124 3 1 2 5b 1 551 ft 5 ? 7fth b?7 •Ift rt 2 31 1 249 17 Sort -5 to -t ? tl'fft 3 a V} S 3 2 *#7 3 1« 71 11 5 P 3#5 37 4 -12 rt ? 291 poft 17 1 ft-lrt •5*1*1 I 2 lft4h Plho 7 3 ? SIP SPrt 1 3 5 d 3ftft tftfa • |u rt 2 14b to 1 7 Oft - ihft 1 ? 2272 25i*2 ft t 2 tftft 33? lb ? 501 hbb -n rt ? 125 -35 • t. I* 170 10ft s 2 an/ft PPiO It 3 ? ftPt ft 30 14 b ? Sort 544 -fa h ? 4b4 4 th 1 m 1 1ST 3*5 T ? 2ni2 PlPft 13 3 2 ft3h ft?4 IP b P 757 75P • ft rt 2 SM 50fa — ? in ♦110 «?«! 9 P n s s I 143 -lb 4 -a bft7 Aft 3 10 h 2 M 4ft fa 1 LI •P H P 1 59 • 37 I rt 1 4?H 107 11 2 1173 121ft -1ft 4 ? I0ft7 1‘lBt • rt ? ftt 1 ft t 4 0 fa 2 171. 1?H 1* «il ft 2-1 11 2 R7fe OOP -12 4 2 ISIS I Sob -h h 2 ft 1 3 ftnft d fa 2 471 3ft? 10 1 2*iu V P -lb P P hOS 507 -10 ft 2 1 ft 7 J Ifthft • ft fa 2 IftTrt 151? *t rt P I 14 To ■ S 1*» 111 -OS -ift P 2 ftfft 7ftp -ft 4 2 PP07 PftSH •a 2 1470 1 4iJ | b rt ? 1 fa‘i 104 -If. tl P pnn PriP -12 ? 2 Hbft HOft -h 4 ? P44b ?ssa n b ? 1 itrtft 1115 rt a ? 4 1 rt 3 7b • 4 0 ? tftS ?4S • tn ? IMb 1123 -b 4 ? ?/>l3 Pft?7 ? ? 1 1 rtl luS? t« ri 2 3P2 271 -1? 0 2 14H I 10 -ft 2 IbOft 1t>1? -2 4 2 30PP 3134 4 h ? 1 IP4 1140 12 t) ? ??ft 197 -in 0 SIS S11 -b 2 2 1031 Ifth-J 0 4 P Pftftf, 3?hft b b 2 10 7 7 |i>6t •15 ft 2 M h 594 — h 0 ? 24fa 274 -ft ? 2 1P10 iPSrt 2 4 2 pHftft Pftft? h b 2 rtft 7 ftni • 13 9 2 h?4 7911 •h 0 a Oil -1TP -2 2 1244 1 loft 4 *1 2 ?50P Pbftft 10 2 7 ft t ?ft4 -11 9 2 111fa 11 2P — 4 n ? hi 'i •U1 ? 1h7 Oft 12 ? ? OPl Mft7 *13 s 2 517 htft -/ 7 ? 1 ft ft *• ?(Mt 1 9 2 1634 17 *m 10 ft ? 1'ift 571 14 2 691 b35 *11 5 2 hftO 714 -5 7 2 21 Pft 2231 5 ft 2 llbl lto3 Q IPPh t i o l •a 2 P loPfa 170b 1 15 ? 1 fttlH 1375 5 i rtft 7 fifth •lh U 3 in? 4 hS a I H d l»Wh -P P 2 lo 3ft lb 10 3 1 S 2 1 I4'L 1 1 1b 7 3 711 735 • Id 4 1 fa? fat I *1 ? OHO opo n P? ISSft lhftH h IS ? | uT 7 1 1 3b ft 5 3 lb 33ft • rt 4 3 344 355 -to 10 ? ft 7ft ftsl ft 2 P ? IH79 1 7ft 0 7 15 ?. ftbh ftft? 1 i 35H Hft • h 4 3 140 1 DO -IP 1« ? tno ftl'i 4 P P 1715 lbr>7 -ft lb ? ?3ft 213 I 3 3 P 7 S Pbb • M 4 4 -Jo 14? -1 1 7 lu ? I'IMO 10 7 1 b P 2 1 dftl 14 15 -b lb 2 IPO 1 01 1 h ? 4 3ft7 -37ft -2 ft 3 Pfa7 226 •n |ft p 458 oDft ft ? ? l?fi? I P 1II • *l lb 2 lh? 1 17 1 ft ? 1 4S7 0 *|i -450 4 411 4U1 in p 114h 1PI0 1ft P 2 1 4 02 ft tn *2 1b 2 PS? PSb IP P 1 fa 75 -nft n 2 4 1 IfaS •14ft —4 11] ? 1547 15*7 1 P ftfcO 4 ftp i n i IP 4 S 17? 1 5ft 1 0 ? 1 \\7 I HO -4 1 P 55« 57P -7 17 2 h«? M2 -? 3 ?n th*pnfti -15 5 3 ilrt * V? 10 ? IPftO 1 POn -1 1 ? ijtiH hlS *S 17 2 hftb hftl ir ? .3 15**2-Ibft3 •13 5 3 231 •244 1 o ? 1 loo 11 oP 1 5 P 5M 547 •3 1 7 ? 7?t 734 P 1 1? ftw-lft51 -1 1 5 3 *ihfa • Oft’l It' 10 a (mi F r>l 5 5 2 b?l bPft • 1 17 2 7no 721 ft P 1 nftft -5P1 -ft 5 3 75/ -79ft IP r* p fcP7 ft.lO S 5 ? 5*3 h*lo 1 IT P 7*i7 7*13 h d 3 rtl 7 •fahb *7 5 3 4rti;-ioi't -1 t 11 ? P/ ii PH 7 4 2 ft 7b 4 7*1 I IT 2 bh/ hhft rt d 4 517 •53ft • 5 5 3 1IP 4 -I14? -1 1 11 ? PftH P77 q 1 2 APS 411 S 17 7ilo N 2 713 I'l 2 t 575 -57fa • 3 5 3 1240-lPlb • \ i ? 3 1** H o • |ll •I 2 35ft M« •ft 1* 2 b7 3 bftft IP 2 5 ?ftr, -ib t *1 5 3 74.1 -bfa3 • f 11 ? Pift ??t -ft 4 2 347 147 *? 1 H P bftft 75? 1 1 3 3 asft 45h 1 5 3 hfaft -718 —s 11 p tr# Pn 7 —fa 4 P 417 ft 10 It 1 ft P oft | HftO 1 f 3 4 72 4fah 3 5 i Mfau • 1 *,l>5 — 4 11 a 1*14 -1 1 1 -T a P 472 47h 2 1 H P hup Hfth • ft 3 3 fafth /»rt 5 5 1 H9| teHNCJ — 1 11 ? I Oft 107 -2 4 ? SS3 54H • 17 1 3 ?P1 P*I5 -7 3 3 h(:'l 5M 7 3 507 • 55 3 11 3/8 P’lft LI 4 2 57 A 5M • IS 1 3 Pfth Pflh *5 3 3 Mr. ft bft 0 9 C 1 ftpfa • ohr. 11 a ftt.S ft I 0 P ft P 505 fthb -1 t 1 3 3ftrt 3H3 * S 3 t 5 ? t 5fti> It ft 1 3PP *

M«£ s I S l- s»e iv e ft ei k Pftft 44»t ft ill n ­ SkF fUl ft I S* SiP k/P ft PI i a n I 1 1 sue n/e ft ei Q i lift (J hft ft t* to 1 IE lit. t> I £" M* kij> ftlip b tf 4ph lev ft il f - kte use ft ?i P wet 1<*U ft b s Shi H i ft i I 1* £SP ftkP ft 4 1 ^15 tfSF n 11 s- hft 1 tiu I ft et II WES 1 XS ft h 1 uyi ini ft I l i ­ I* eft per n h Uhft Lib ii ■u ? kb iei ft et P- X 44 S4i ft h 1 b it h9I ft I st* ••ii 94 h P Pftto tfSto n w i 11 H •U1 I ft et ft- bi»» xos ft b 1 • h£9 sin ft 4 Ul ' l-M lue ft it Oito S rib n M 5- iei esi ft et W* ft PH Shb ft b £ - 44b WVh ft 4 tf hri- no ft P* ppiM tftfb ri « t b* ftp I iSl ft pt P- I L4 faS4 t» b S- ft Ob D9b ft 4 9 lul ?£i ft h- Ktotf ihtf t* 4 1 q» *n»e St ’ 11 pi iM IPS 1VS ft b £* ISM IrfU ft 9 to •II* opt ft 4- hSU esu ft «l tf- ibi Vbt ft ei ei IkC biV ft b to­ UbM bbt’l ft 4 P M>e e»p ft tf- hV 1 w i b SI s h ii bUH ft 11 b it ft 1 lift ft b ll* it in I ill If 9 b iue xie ft ■M* ftsi e n n SI I* bftM 1 ftkol ft 11 t WtrE SWF ft ti FI* i?Pi ?96 tltfft ft ft I ?• e«ft i 1 Ph 1 H n i - MUIp ftPiP Ir k e- M b £11, t 9 wi­ I'.JHP 4h V I £ F 4Sft *Fb ft s 1 t>* wf»ei u iei ft 11 fr* lih l *M f» I ft 4 ft- hkO ?b“ ft S ll HI IP hPlp £* I S IV ?££ h * I Ub i r*ni Sb'M b 11 11 SSNl vexi ft V 4- /lb 9iH ft S b (►blip ftwoe £ t- SHI SS£ ft t< I ft* WiW etw ft 11 1 1 i 4S 1 PPSI ft tf p- XU£1 bbill ft S £ hiep toi'rP F 1 - sow S 44 h hi tft* Its FbS ft ut V PbPl OiPt ft k Ul- MSI il'bl ft b S 41 ie PlhP k S- t»F9 |49 ft t 1 i WF9 iiw ft 01 4 hi 1 1 bbi> t ft k e i- PIS1 Odbl ft S 1 l h X 1 Stxl £ / - M i ib£ ft I 1 s Sr»ft Vhft II (It ft P(6 kPb ft 4 ti i- ft/*M bh <* 1 ft s I 1 Mi I h£h I » (• M b ”Sb ft i 1 F es^ te i ft IM P Wh£ hU£ ft X u H U / ibU? 1* s l- kM.hl F£M F 11- |Mf, i/M L f 1 I l IS (iftS ft 01 1] SEE 1«S£ ft X h I k il 01 HI tl s F- t i l l lu ll F E I- F*»H Ihtf ft FI I* kbW M i ft 01 P- nte tie ft i £ ftWX i b til ft s S- esv 9itf f SI* M b hf»(l ft LI C- HSi e i i ft (II ft- ini wiie ft X S Pibl bl-bl ft s £* £14 / e 9 e PI lh/ b94 ft 2 M ibwe bftn? ft 0 () Xbft bPR I ftl n £41 i l l E tf 1 IMP 4(P 6 S l- Itw biw ft ? k wftve v i^e ft 0 e- ISS tiS I IM P £PP b i i E 11 l- I »r I * U Hi u II t# 16 4'lfa ft e 9 XLitt irhwe ft M u- Sux / £4 V ft I 4 £ ph IHIt F M 1- nh. uPl u 0 HUI t ni lit ft ? ft Msse ftnse ft II 9- VP1 VPi 1 ft 1 e* b (/Ir inli £ 1 t b- (MF- £££ 4 ft buf 1 VV 1 1 ft e ? iftbl svue ft 1] k* Its WPS V M ft* toPF Oil f 1 I i - M.l* hhf rf P VIF 1 tfftPI ft p n ewd i ftf u * ft tl 1 ft e Q* iM'b pnal ft tj 91 PHE* III f V 1 to hh?- bliC F ul U1 hMP* S 1 tf b4f t be& 1 ft e ti­ i'SF- VWE t PI (i Ibh* h i ft I V 1 £ hhl>- V9tr £ 01 tf £hl- SSI tf tf* if Hit p'tm ft ? nt* e ftSF £ PI h* IF ft* 11/tr 1 £1 t t u - sex £ Ul ft 141- Si 1 tf P l- F**S Pll9 ft ? p t* 11 bV bufc £ tl t iSP- M i 1 £ I 1 t?b - iftUl f 01 e tokl* iftl tf ftl* SIS UtoS h ? wi­ inti H 1 ft £ tl 1 0S4* W94 £ I I l- l-d t Hi £ 111 ij p ie - SIP £ tl iSft ISft ft i ll WFft bftft £ XI I- 9bP* bit £ V I F- k ?(.- btU F 01 ?- XM- IFF £ to rf£h tf Sft ft i b hkft Wnft £ i l S- SS9- 1 ftp F t [ S* SKi- bbi F ul h - x st- ■19£ £ £ topS Pbft ft t tt»ft V XI s* Pf|9B 044 £ V i X * ex x V ul xe>* kftk £ S sns PVS ft i s i/ft Uift £ it X* ilft* Phi £ £ 1 Ii* MU- ft 1 9 £ ul s- ■' F X * S“ i X \ F'ip 44? ft i F / 1?* ?ee £ Pi ft £ Ift* IPft S 1 I 11* its F 01 Ul- U'll»- OtfS i 1 M e wee ft 1 t we* o e £ 9 1 e SUI hill I PI 111 «bli* SbS £ Ul e i- tolb* LCU X I* ♦Mi Iftftf ft 1* e?s* UV £ I 91 0 PIP tee V ? 1 4 It>f- bbk F ul tf l- II to li • £ I - eeul ftSOl ft F * use* ft I *M p- li p ftue £ ei ft 011 esv F b M bt»r* l?l. i S* Ui't U'in ft i S* tie* eie £ PI ft* 9WF uut £ ei ? uni, 0?4 £ b to tf£b- e ts X £- ww> Ibk ft i i* lee- tee £ 91 4- ft l£ m £ ei \l «.ei. tf lib £ to £ bfth- Ul ft £ 6- pif tfftF ft i b- tve* bee V 41 P- r»9p ft we t ei P* btfS ?4b £ to r, hXP- M e X M- VI* tbt ft i 11- e* i- it i V SI i Pit H4£ I pi 1'* liH'l 4il9 V to £ SSP- vsp / 1 1- usv h it ii 1 !• le i- bt 1 t SI S Ski kki 1 el 4 • shs t?M E to I 4wp i» top 4 ei eu* tftoft fr SI* tu e - k SI I bft 1 ofti £ Pi 4* nt.i ib i k to l- S"> Si-k 4 i F si V* HIP bue £ el Pt* I'm* fa£tf 1 to S- 1'Su ftSH 4 soei 4£ll ft u t? n it* MHt L SI i* ffb 1 bk I 1 I b i IV potf F b X- Poll totoUl 0 ft t 3 0 ft s 334 •3'lb -3 7 5 521 4U7 2 »o 5 (.7 7 5Q 7 — M 1 4 5 453 -47s Irt s HI ?'*7 2 ft 5 ?21 -Iftft -) 7 5 4hft ftrtft 4 10 S 5 /| hft 3 •ft 1ft 5 4*io •ft 30 1 u s *>04 4'*0 -IS S s 3?fl 31ft 1 1 S 57rt 4ft 3 rt 10 S Hllh 307 1 4 5 4] I -345 1? s *i?H «.V -1 s s s 3fth 3Hrt 3 7 S 3ftft 3rtb rt 10 5 3«? 3rt7 Ift 5 4?q -ft?7 1 LI ? s ?OM oil -11 s s ftftft ftft I S 7 s 314 2ft? -13 11 5 1rt3 • 1 7ft 2 14 5 307 -SIS ■ II ? s 45*' O.t 3 •ft i rtftl rtdrt *1 7 5 213 lfti •11 11 5 1 7rt -1711 Ift 5 304 • fti.O — b ,» *1 1225 121 S -/ s s rtrtb hrtl •1? H 5 I 7H Ibrt -0 11 5 231 -2 1 0 • / 1*3 5 154 m d 2 s f31 7 ftuS -5 s s ftHft SIS •Ift H S 10ft 1 Oh *7 11 5 dirt -?S? •s 15 S |7*| 1*4 — 2 s lort? 1hi ,»*i -3 s s 7 43 7 22 • rt H 5 215 d«5 -S 11 5 1 h? -15ft — | 15 5 1 ii 1 10b f» ?. s 7H Q 7 7,1 -1 s s ftftS Hftt, -rt H 5 1 11 121 - 3 U 5 sin -207 -ft lb 5 m 1 Ob d s ftftn 7».? 1 *i s 04! 7«2 -4 H 5 33 1 310 -1 1 1 s 4 37 -4114 •? it 5 i h 7 154 ft 2 s f,hti 7 nh 3 s s 571 542 -2 ft 5 232 1 H7 1 11 5 J?5 -271 -1? 1* h 90 -3 ? s 77? 77rf S s % ftHS 44 3 ti H 5 PdH 221 3 11 S ISft -1 3rt • l«i ti rt m i •5b H s 414 *l«*0 7 s s 3?*l 305 ? H 5 114 5? S ) 1 1 h l -143 -rt rt rt ? 31 I4h 10 s 310 ?4*l 4 s s 23h 231 ft A S 21 7 20b 7 11 5 1 5rt -130 -b 11 rt ?-ift 222 IS 3 s 20rt -P51 •Ift 6 s 2A4 -277 rt A S 1 24 tftl -10 1? 5 1 24 - l ? f t — 4 11 rt 210 2 1 9 1 3 3 H 120 -31* -t? rt s S41 *5*42 -1 3 5 3ft? •331 -ri 12 S 221 - 2 d b ■ ? 11 b in n - 1 Irt 1 3 s 153 •3S-» -to h s A2ft • 43ft • n ft 5 42H -431 -rt 12 5 2? 4 -240 ii 0 6 1 "1 -rt 3 s 3 lh • 153 •rt rt s bbS -b5? -ft ft H OfeO • 4rtd -4 1? 5 317 -ii.ft 2 I rt IS9 1 ftrt -7 3 s 41.7 -ft'l? -0 h s 7«3 • 7ht *7 ft S 53S • 54A •2 12 S d?ft -??h 4 n rt 2 in 221 -5 3 s A17 • ft 3ft -ft rt s ftftrt -40? -S ft 5 rt 7 I -h71 ft 12 S 1 *lh -147 11 rt 2oi) 1 hb ■1 3 s 7 Sh • 7 ft f) -2 rt s *154 -«7? -3 ft S 715 -7D7 2 1? s m i -10? n l. rt 233 ?S1 •i 3 s ft?7 •1*1 ft 6 s 737 -733 • I ft s *»? 3 -rt«l ft I? 1 25.1 -2n1 -lb 1 rt ?S»S rt4| 3 s h2? ... . ? 6 s Art! -AO 3 1 ft 5 oftl -rtilq h Id 5 1 no -IrtO •13 1 rt SI3 H?7 4 3 s SSI •Snrt 4 o s 5H7 •Son 3 ft S h In -rtftl •1 L i:< S 4 4ft 3h ? - 1 1 1 rt Mol 1119 5 3 s I >10 • 411 o b s aftb • fttirt 5 ft s 415 -Ullh B n 13 i, id? 3 ? 3 -0 1 0 1255 1?0K 7 » 5 £52 -?27 rt b s ftb9 • fto2 / ft 5 2rtb -2t7 -7 13 i ib rt 371 - 7 1 b 12H5 1254 •s s tSftft |44ft -1ft ft rt 12A2 12*15 *13 7 rt 7ft5 HI)? •? 10 rt Pi) '* rtl 0 3 1 7 3n5 3hS ■ j b I7?i 1711 -rt ft rt 1324 1 3/n •11 1 rt o7n ftftft fl 1** t Hrtl Hon 5 1 7 ?'J*i dhl • h I Mil 1 3VJ *5 4 b 1443 1 Srtft «■< J rt I 1 4ft I 1 3A ? 10 it Mo 715 -1 ft 2 / 37 7 I tv i?io 12'M -ft 4 rt 14 74 tSSrt -7 7 rt 1 34 -bTft la r> Oil I 05/ ii ft 1, 1 Hi rt 2 piftft 3 7 rt 1054 1 o«7 5 11 6 27 1 2 55 -? 2 7 b?5 -hi 0 IP 2 rt h'l 5 rt? 3 rt ft rt 745 ftlrt S 7 rt ftnS 427 • 1*i 12 *> ntio 043 0 d 7 rtSH -Ii74 1 -11 s rt 5t>l ?ftH • 10 H rt ftl 102 *4 12 rt 04 3 O/H d 7 ?n| -264 *0 ? ti Q43 1A OP • 4 s rt 327 331 • h rt It 07 55 -2 12 b 104/ 104 3 •13 « 7 m ? 1 *6 —? ? ft Olio S| 7 -7 5 b £7 n 2 7ft • 4 rt rt 1 H Cl 111? fj 12 rt lor.? 1 filiO -11 3 7 3S7 15? i> ? I* 7*l7 ft 30 -5 s rt U?|) • 2 ti rt 21? ?oo ? 12 rt oSu 02? -0 3 / 43/ 42? 2 ? ft AS 4 9oP -3 s rt Irtft 352 0 rt 6 1*3 130 -0 1 3 rt 3 1 n 3i>3 *7 3 / 4 1 h MlS a ? ft »4? iiSft -I *1 r« 31? US 2 H rt 1 04 Ift • 7 i i b 337 3 3ft •5 3 7 27ft 2rt? ii ? n Sn« t, I 1 s rt 3«IH PHft rt rt rt ?3h 207 *5 13 rt Sir, 3 30 - i 3 1. 4S5 fthU 0 2 h S 31 ',1ft 3 s rt Sftl S20 • n ft h h? 7 blO -3 I 3 rt 3111 3?n *1 3 7 3 39 314 IS 3 h 220 210 5 s rt aaf- «I? • u ft n b 35 rtAft -1 1 1 rt 3 7., 3rt7 1 3 7 31.1 Ml 1 3 1 h 24? ?M 7 s b 3H7 3o? 4 rt 7110 /7ft I 11 b U?'1 3rtO * .3 t 331 il? tl 3 ft ?<*! PH? -1ft rt rt artft «t»? - 7 ft rt 10 17 1054 -rt 1ft rt ?*'! 205 b J 7 i I J V? 3 ti ?rtl ?<> L *1? rt rt 457 444 -5 ft h 050 1004 -ft 14 h 3o? 554 *1 ft 11 7 l*o n o f ft 17? 1 14 *1 0 b rt SOI oftS •3 ft rt 021 433 -2 1** rt 32? 3.) 1 ■ b ft / 120 79 • ‘j 3 ft 17S lr*1 -rt rt rt 543 Sort -1 <1 rt rtftft ftl / it 10 rt ?7n ? 3rt —ft 4 7 175 1 72 ■ i * (■ ?!*■ 1 ft ft -h b rt rt77 7nft 1 ft rt 1017 ftl 7 -1 3 1 7 ?Hft ?r.? 4 / 171 I 3« 3 ft 3 d2 3 7*1 -ft rt rt SSI Sft ft 3 ft rt 002 77? -II t 7 M 1 ft 3o7 ft 7 m u 54 3 ft 37 ft 377 -2 rt t, 737 OhH S ft rt *7rt 74rt -0 1 7 5 h 7 ftrtft - t 3 5 7 3/0 -1/1 1 1 ft ?7I 2'2 0 h b h /rt h4S •1? 14 rt hrtti h 3/ -7 1 1 544 552 - I t k / 370 -394 S 3 h ?M 2 3ft d Ii h hSt Sftft -lb to rt 5ft 1 5/7 -5 1 7 4 MU DOS •0 b / ilh -Sh*> 7 3 ft 33? 331 *1 n rt sns fth I • H 14 h 7 4 rt 7S? -3 1 / ‘35 3 545 4 7 ftrt? - m74 1 a a h OS ft Nil 0 rt rt rt 54.3 SftH - h 14 rt JhS rioft *1 1 / 3*14 3n5 — 5 5 7 S5ft -554 1* a ft 104/ t07f> rt rt b 521 444 • ft 10 rt 70S 7ftft 1 1 7 CIO) ftftft 5 / *lrt9 • f t i | vo 00 Jl K L torn 1 *Ffi II K L 10FQ |OFC N K L tOFil 10FC H ft L HIFU IfifC I* A 1 OFli 10FL -1 4 7 o?o -Mo -2 A 7 129 -12? -if* il rt 0*4 400 -7 1 H 74ii MHH -1 7 0 1*4 1 40 s t «i t -'■Ii* 0 M 7 154 -15o • H fl h lUMY 11UH *4 1 M 7*7 hrtS •] rt 10h 1 P 1 1 5 7 i? ’l -4.V -11 rt 7 171 M9 •rt 0 rt 11/1 1 l?o -1 J H 91* 957 7 ** I4i| 71 4 5 7 114 • in A • 0 rt 7 04*1 oM -4 ■I rt 1171 11 14 -1 n 93h 41? • rt a rt K?0 090 I? 7 IM «;*■> *7 0 7 m 39 7 •2 0 rt YrtS 9 30 1 1 H 1)91 *17 -rt rt rt *17 *40 1ft ti 7 4 00 i!M -4 '» 7 05b 04h A II rt 115 '1 915 1 1 tl 7 20 714 -rt rt rt 0 1? *42 •h l> 7 9M '.1 t M rt 7 441 015 ? ft rt rti 7 041 -ft <1 K IM • 9 -2 rt * H 7* A4h * 7 OM M'i *1 rt 7 413 0 5 -11 H ?32 ?H4 -? 4 H l ru 79 u rt H 772 ?** -'1 t, 7 of>4 »*0 1 1 •i 7 150 IM •rt H ?1 H 2**1 ?. 4 H ?■’? 1 rt 7 -/ 4 rt ? /0 ?hll -? r> 7 7 0'* l.H 1 rt 7 141 W • 7 rt 210 155 -11 5 *1 rti'7 b?4 - 5 S rt 25? 241 II l* 7 07 » Sl*4 *1" to 7 345 - M l *5 rt 25H 255 • 4 5 H 1,40 F4rt -1 9 rt ?00 ?19 2 (> 7 o ii/* 1-9 -rt 1 • 7 151 -3*? •1 H M2 IP? • 7 5 rt /*i5 7*1 *1 9 rt ?!/ 241 4 I* 7 *4h'i t**o -u 1 H 7 1*7 * 1rt« • t rt ? 19 1 9 3 -4 4 H 7 14 Tftrt 9 2?4 -?1 * LI 7 7 *>1,7 *?r«4 *0 10 7 5*4 • SH 1 rt ?4n 244 -1 5 n 7 rtn 774 -/ 9 101 -Q 7 7 ?'*9 *?1 ? *? II* 7 545 -5?? \ rt ?M 219 -I 5 •1 74ii 7?7 •4 4 M o *117 *7 7 7 ft 7*1 n |0 7 19* -M4 *1? ?. rt *11 / 425 1 5 H M 2 745 -4 9 274 -?97 •S 7 7 ?97 • ?*M 11I 7 1411 • MS •10 2 rt oM 410 • I'ii h H 411 4W *1 4 ?*i? -?4S • i 7 7 1«o - tun ••* It 7 lh? trtli -A 2 rt nan 4 1 4 • rt h tl 441 5 7? •rt 2 4 3*h i*i| -1 7 7 ?J* -215 *7 11 7 ?»0 ?rm •r» ? rt 5?9 51o -h rt n 41] 44? •rt ? 4 1 10 4 7 7 ?n* • 4 11 7 ?«/ Irtj -rt ? rt 5?t 574 - 4 b * 414 5 1n -0 2 •t irt? u ii 7 1 7 t ?|4 -1 HI *5 11 7 I 34 12rt -? 2 rt 455 uVj -? rt rt ■ rtn Mrt •? ? 9 5o4 127 4 7 7 ?; n •?*■? 1 11 7 ?al aio n 2 rt 5 lit 440 II t> A 5 1*. 517 -7 J 4 2?h •crt 1 to rt 7 | oh -11? -rt I? 7 151 151 ? ? H Ortrt Art? ? rt rt 40? *19A •5 5 4 194 -?in -p h 7 1 *34 * 147 * -rt 1? 7 1 *7 M? -11 1 rt 7rt7 7*1 • 4 / rt 124 111 - i i 4 244 •244 -h H 7 110 -1?«l •? I ? 7 1 til 150 -rt 1 rt 795 A1 3 • 7 rt 101 191 •5 5 4 3o7 -4 A t 104 • |02 -I? 0 H *32 71b

VO VO REFERENCES

1. 6.H. Stout and L.H. Jensen, 'Xray Structure determina­

tio n 1, McMillan Co., Col1ier-McMi11 an Limited, LONDON,

1970.

2. L.V. Azaroff, 'Elements of Xray crystallography'.

McGraw H ill, Inc., New York, 1968 .

3. I. Earle and J. Earle, Acta. Cry St.. 21 . 860 (1966).

4. D, Sayre, Acta. . Cry St.. 5_, 60 (1952).

5. A.A. Patterson, Z. Er i s t . A90, 517 (1935).

6. W.D.S. Motherwell and W. Clegg, PLUT078, 'Program for

plotting molecular and crystal structure'. University of

Cambridge, England (1978).

7. Carroll I. Johnson, 'ORTEP-II: A Fortran Thermal-Ellip­

soid Plotting Program for Crystal S tru ctu re I l l u s t r a ­

tions, Oak Ridge National Laboratory, ORNL-5138, 1976.

8. A.J. Carty, Orcanomet. chcm. Rev., A, 7, 191 (1972).

9. I. Omae, Coord, chem. Rev,, 2_8, 97, (1979).

10. 'Structure Determination Package', Enraf-Nonius, Delft,

Holland, 1980.

11. Terry J. Delord, Ph.D Dissertation, Louisiana State

University at Baton Rouge, 1982.

12. R.B. Roof, J r., 'A Theoretical Extension of the Reduced

Cell Concept in Crystallography', Los Alamos Scientific

laboratory, LA-4038, 1969.

100 101

13. I.D. Brown, M.C. Brown, F.C. Hawthorne : BIDICS. "Bond

Index to the Determination of Inorganic Crystal Struc­

tures", McMaster University, Hamilton, Ontario, Canada

L85 4H1.

14. G.M. Sheldrick, 'Program for Crystal Structure Deter­

mination', SHELX76, University of Cambridge, England,

1976.

15 . S.F. Watkins, 'CLASSIFY', Fortran Program for the IBM

3033 Computer, Louisiana State University.

16 . James E. Huheey, 'Inorganic Chemistry: Principles of

Structure and Reactivity', Second Edition, Harper and

Row, Publishers, Inc., New York, 1978.

17 . G.J. Gainsford and R. Maseon, J. Of eanoie t a1. ch em. ,

80, 395 (1974).

18. M. Zocchi, G. Tiegli, and A. Albinati, J. ch em. So c.

Dal ton. 883 (1973).

19. J. Selbin, K. Abboud, S.F. Walkins, M.A. Gutierrez and

F.R. Fronczek, J. Or eanome ta l . Chem. . 241. 259 (1983 ).

2 0 . M.R. C hu rch ill, H.J. Wasserman, and G.J. Young, Inor g.

Chem. . 19, 762 (1980).

21 . G. LeBorgne, S.E. Bouaoud, D. Grandjean, P. Braunstein,

J. Dehand, and M. Pfeffer, J. Or ga nom e t a 1. Chem. , 136,

375 (1977).

22 . M.R. Churchill, Perspect. Struct. Chem. , 3_, 91 (1970).

23 . F.R. Fronczek, M.A. Gutierrez and J. Selbin, Crv s t.

S tru ct. Commun. 11. 1119 (1982). 102

24. L. Pauling, 'The Nature of the Chemical Bond, 3rd. e d .,

Cornell Univ. Press, Ithaca, N.Y., (1960) p. 224.

25. T. Selbin and H.A. Gutierrez, to be published.

26. V. Wong-Ng, P.T. Cheng, V. Kochman, H. Lnth, and

S.C. Nybnrg, Inor a. Chem. , 18. 2620 (1979).

27. M.R. Churchill and R. Mason, Nature, 2 04, 777 (1964).

28. J.B. Lambert and S.M. Wharry, J. Ore. Chem. . Vol. 46 .

16, 3193 (1981).

29. Program 'DATARD', S tru ctu re D eterm ination package,

Enraf-Nonins, Delft, 1980.

30. G. Germain, P. Main, and M.M. Woolfson, Acta. Crystal-

lo e r.. Ser. A. 27, 368 (1971).

31. E.R. Howells, D.C. P hillips, and 0. Rodgers, Acta.

Cry st . . 3, 210 (1950).

32. S. Arnott and, W.E. Scott, J. Chem. Soc. Perkin II, 324

(1972) .

33. S.C. S hirley and G.A. Jeffrey, Acta. Cry st . . B24, 830

(1968).

34. F. Leung, H.D. Chanzy, S. Perez, and R. H. Marchessault,

Can. J. Chem. , 54, 1365 (1976).

35. P. Zugenmaier and G. Rappenecker, Acta. Cry st . . B3 4. 164

(1978) .

36. S.C. Shirley, and G.A. Jeffrey, Acta. Cry st ., B24. 830

(1968).

37. D. Cremer and J.A. Pople, J.. Am. Chem. Soc., 9_7, 1354

(1975).

38. A. Warshel and M. Levitt, QCPE. 11. 247 (1974). 103

39. B.6. Anex, M.E. Ross, and M.W. Hedgcock, J. Chem. Phv s..

£6, 1090 (1967).

40. M.L. Moureu-Col in. Struct. Bonding. (Berlin), 1J), 167

(1972).

41. B.G. Anex, S. I. Foster, and A.F. Fncalaro, Chem. Phv s.

L e tt. . 18, 126 (1973).

42. B.G. Anex, R.L. Mnsselman, J. Phv s. Ch em. . 84 . 883

(1980).

43. S.F. Walkins, 'TEANAL' Fortran Program to calculate

thermal ellipsoid dimensions, Louisiana State Univer­

sity.

44. See reference 24.

45. R.L. Maffly, P.L. Johnson, and J.M. Williams, Acta.

Crvst. . B3 3 . 884 (1977).

46. R.L. Musselman, L.C. Steelier and S.F. Watkins, Inor g.

Chem. . 19, 3400 (1980).

47. W.C. Hamilton, Act a. Cry st ., 18. 502 (1965).

48. Terry J. Delord, Ph.D. Dissertation", Louisiana State

University at Baton Rouge, 1982,

49. S.F. Watkins, K.A. Abboud, K.J. Voll, T.A.W. Koerner

Jr., and E.S. Youngthan, Ca rbohvdr. Res.. 119. 49

(1983).

50. R. Norrenstam, Acta. Cry st., A37. 764 (1981).

51. W.L. Dual and D.A. Norton, 'A tlas of Steroids Struc­

tu re', vol. 1, pg. 18 FF.

52. L. Pauling, 'The Nature of the Chemical Bond, 3rd. ed.,

Cornell Univ. Press, Ithaca, N.Y., (1960). 104

53. T.A.W. Koerner, Jr.. Ph.D. Dissertation, Louisiana State

University, Baton Rouge (1975).

54. R.J. Voll, T.A.W. Koerner, Jr., P.A. Bartlett, N.S.

Bhacca, D.C. Lankin, and E.S. Younathan, Ca rbohv .

R es.. 91, 145, (1981).

55. L.Que, Jr., and G.R. Gray, Biochemistry. 13, 146,

(1974).

56. Personal communication with Dr. R.L. Musselman, Depart­

ment of Chemistry, Principia College, Epsah, Illin o is. APPENDIX A 106

The structure of 2,5-anhydro-D-Mannitol (Compound II) in 1 13 53—55 solution has been studied by H- and C-NMR . These

techniques imply the average conformation of the molecule to

contain a two-fold axis of rotation and a ^Tg conformation.

In contrast, the structure of the molecule in the A Q c ry s ta l was shown to deviate from exact Cg symmetry and

ideal ^Tg conformationj it was proposed that extensive

intermolecular hydrogen bonding involving the hydroxyl groups as well as the ring oxygen was responsible for the distor­

tions. Hydrogen bonding also accounted for the difference in

C-0 distances of the ring oxygen. An additional deviation

from Cg symmetry was revealed by the conformation adopted by the hydroxymethyl groups attached to C(2) and C(5), +gauche and -gauche respectively. Two-fold symmetry requires that the same conformation be adopted by these groups, either

+gauche or -gauche.

If hydrogen bonding is responsible for these deviations, it was hoped that the deuterated derivative (compound VIII) would confirm this. The derivative was prepared in which all hydroxyl hydrogen atoms of IX were replaced by deuterium, and its stru c tu re was determined by X-ray diffraction methods.

It was hoped that a decrease in hydrogen bonding, as a result of this replacement, would reflect on the ring conformation and the two C-0 bond distances of the ring oxygen.

CRYSTAL STRUCTURE OF VIII

The crystal data yielded the la ttice constants in Table

A.I. 107

Table A.l

Crystal Data

Formula

Formula Weight 168.26

Cell Constants

a 7.876(1)X

b 8.561(1)X

c 11.443(1)1

Volume 771.1(4>X3

z 4

Density (calc.) 1.449 (g/cm3)

Space group P 21 2 1 2 1 Crystal size (mm) 0.30 i 0.30 z 0.20

X(Cu - KQ) 1. 5 4183 X

Minimum rel. transmission 92.9%

Reflections measured (w/26 Scan) 1043

with I > 3 a (I) 9 09

Weights (W "1 )

Final residual factors

R - Jl IFoI - |Fcl I / ^ |Fol 0.0287

Rw =

Table A.l Crystal data of 2,5 - Anhydro — (1,3,4,6 - 0

- 2H4) - D - Mannitol 10S

Bond lengths and angles are shown in fig. A.l, and selected torsion angles in fig. A.2. The atomic coordinates and their anisotropic thermal parameters are listed in tables A.2 and

A.3. Observed and calculated structure factors are listed in table A.4,

No significant differences were observed in the gross features of compounds IX and VIII. In VIII, the two C-0 bonds of the ring are still significantly different,

1.447(1)1 and 1.434(1)1, compared to, 1.450(4)1 and 1.435(3)1 in IX. The conformation of the ring as shown in fig. A.3 is nearly ^Tg and the hydroxymethy 1 groups attached to C(2) and

C(5) adopt +gauche and -gauche, respectively.

Significant changes were observed in the bonds involving

D(l) and D(4), as shown in table A.5. But the hydrogen bond involving the ring oxygen, as well as the whole pattern of hydrogen bonding in this molecule, remained unchanged.

In conclusion, it is believed that hydrogen bonding is strong in these compounds and any change introduced by the deuterium atoms is insignificant. 1.416(1) Fig. A.l : Bond lengths and angles of compound VIII compound of angles and lengths : Bond A.l Fig. ej C 110 . 7 5 (

1 1055 ) C ( 1 ) 1 . 508 ( 2 )

Fig. A.2 : Selected torsion angles of compound VIII 06

C6

Fig. A.3 : Stereo view of compound VIII. Ill Atomic p o s itio n a l param eters X 10**9 (H K 10**3)

Isotropic temperature factor X 10**3 (H X 10**2)

A tom X V 2 U

C(I) -9 903(5) -3932(6 ) -3339(5) 3b( 1 ) vw

C(2) -6995(5) —9169(9) -6926(9) 23(1) JL.

C( 3) -6111(5) -3663(5) — 33^1(9) 27(1) aw

C(9) -9293(5) -5016{5 ) -8669(9) 23(1) aw

A. C(5) -5350(6) -6921(3) -6559(9) 29(1) V

C(fa) —8 957(7) -7773(6) -9365(9) 3b( 1) aw

aw 0(5) -6377(9) —5527(3) -3779(3) 37(1) mr*

0 (1 ) -3369(9) — 38S6(>) -3966(9) 90(1) aw

D( 3> —6c»72( 5) -2206(9) —8301(3) 36(1) A.

aw 0 (9) -10679(9) -5191(9) -7929(3) 37(1) V

A. 0 (c) -6 369(b) — T259(5) -10^36(3) 99(1) ***

H ( 11 ) -937(9) -363( 3 ) -756(6) 9(2) H{ 12) -993(9) —229(9) — S3t» ( 6 ) 6 (2 ) H<2> -596(9) -903(7) -972(6) 9(2) H( 3 ) -797(7) -361(7) -759(5) 9(1) H{9) -959(6) -951(7) -991(5) 3(1) H ( 5 ) -305(7) -676(7) -763(5) 3(1) H{ 61) -172(9) —S30(9) — 909{6) 7(2) H(52) -767(9) -396(9) -925(6) 9(2)

00(1) -339(9) — 357(9 ) — 959(3) 5(2) D0( 3) — 901(9 ) -159(9) -616(7) 7(2) D0(9> -1155(9 ) -973(9) -821(6) 5(2) DO ( 6 ) -936(9) -796(9) -1093(7) 5(2)

* equivalent isotropic temperature factors

Table A»2 ! Atomic positional parameters of VIII 113

A torn Ull U2 2 U 33 U23 111 3 Ul 2 c m 2b ( 2 ) 39(2) 42(2) -3(2) 0 (2 ) 2 (2 )

C ( 2 ) 25(2 ) 29(2) 30(2) -2 (2 ) 1(2 ) 1(2 )

CC 31 27(2) 27(2) 27(2) 0 (2 ) 1(1 ) -4(1)

C(4) 23(2) 34(2) 27(2) 1(2 ) 0 (2 ) -2 ( 2 )

C ( 5 ) 23(2) 23(2) 32(2) -1 (2 ) -3(2) -2 (2 )

C(b) 41(2) 29(2) 39(2) -2 (2 ) - 1(2 ) 3(2)

a(5> 25(2) 26(1) 60(2) -7(1) -1 (2 ) -4(2)

Q( 1) 2 3(2) 54(2) 44(2) 3(2) 2 (2 ) -4(2)

□ ( 3) 43(2) 27(1) 36(2) 2 (1 ) 4(2) -13(2)

0(4) 24(2) 44( 2) 42(2) 1 0 (2 ) 4(1) -4(2)

□ ( b) 56(2) 42(2) 35(2) — 5(1) 2 (2 ) 15(2)

Anisotropic thermal parameters X 10**3

Table A* 3 : Anisotropic thermal perimeters of VIII - 5/ h—T£ew^ " A fl£ < h»—iT /C 5 A i"« 3 * ^3 £ w e a—tf*.—tu^u n a/V - V hb " —.VtV —a ^ r U * —a \ t7i-V .£»«=—v*CJ i-£f VP A£apV - OKCfPMVirAX pt f/ a 7 « K lff/X K tV Sp ANX9 irr V f^PlM C K O ^ S ^ V p X r-C A AP£?ac £rv£*tvtre*p*t\j*p— £*r »».— £rv£*tvtre*p*t\j*p— r>c N rr*A a*p»»"*»n*r\;tvar\i*c M i v ^ / ^ c f r i r - r j '-A ttV * p r'V iT »3p-tf‘,r7 ,«at\.£'-'A p j* r m * t a a C%T7C ■r*£t\| * — * - J — w \* * y -i\ ; \ f '-rM v » — — \ k . i < . £ = e — m * c » m i a 4 > r < 4 n i / c ’ .« > * 9 r d 7 « tfe * * i P 1 t * * * c p n » c y * / i \ » * » r * « T ■ J —r; r —— —rv— ——— rv —*rA;— — AJ — ^t sc7<4« -orvT45'*4 esxca7r<'4?«r <^7tc - £ cKr»hr»r«^xxTC£ wwqaTT*rxir;r;r^ir»nrsr.o-a.fi*£•*£'£££*•►.►.»*j 9Vff9oxirriTirirrir££££££j p. p. p. £9 —r£r>— »**c*f— vc**»fv—a——— rv ■»£*»* t*» r t irrucr i / — i a a ru£Xr*> m —f t j v fj — r — — **—v v u u m ru *»*.—rv ru tv — — — — — — rv — — AJ ^ — — — flj — t ■■— — ■ •■ £ — i rtx^irr-wancjajc- £ c«*y itp- £ £ — £#* — £*■£ —aArA** — j’anj—cp- ir — trxtKxc^aiwrar.-aw*arn.c =,r^ s’ a, »c»' f P* — r * iP ? £ tfi = * « 'a » c ,» » ,r a t ^ i ’v ’s ^ r , = * » 9 ■i*"'’ A,U- t ax'—— T z - r - x f * 1 — i f - —at J 4 — f?*a37K»4*r ?» PfT Jt4T—ff:? * a 3^7/KJ»347*vrc •*o»raca? a c a r » o * —• ji r r — v — r * "^— v v — —rv — a — tv— tv — ru f** ——J" ^ rv— — ru rv —j i «*c xm jx — p stctccicp *—

E-a—."/* —tvpiaiAca—Aip* r a EA-rae—a.!"*/** — jj 5 3 3 7 4 £;rii-v* p stsanc c n a s t s p. £A;—rvi/iK-rv^*' r\ v ma ■t £** —rf“ d ,n^ 3^ ? —- * — r v A ———-- t v r v A ' v r v A A J A . i * * ^ ^ ^ ^ * , , * A m ^ p , > a 9 aAl—AJ— V — f v— vv — — — • rvrv— rv—— 4f . — t f v r t * * < C*"f 9C94?- C-*?""f- O *«*- a >,. iv * f « p r ^ ( ^ x p iv k s iv a *^ p *—**• — A,p*vtf‘£r»« c—' «— *.r Anrirp'rv— A a .iry —* . r j rvz-r^'VjaT'v^^* 5r\4jc aj ptTK'p7'”<-*p7—nj «if NXif \ — v IV rv — r\j j-«'v/tp-*x*vx»? rvr.^p*.y . * p ^ . r v r ? » x v * x * - p t / v ' « - j a^p- «^*,rxj' — a - rc-s —«v^***,Pr*x:j,'p a ^ -p p ^ a c — "ir.ffc p c ? o -‘ er~*9r'9 ' r 9 * ~ r e e-J‘9 p 9

-««— *t * w 3 3 3 —rv +>9 rnmmt 0 *« t 4 1 1 K 1. 10FI1 |«'C H K L tflFQ 1 Oh C HK L I OF 11 10FC w to L MFH MFC H 6 L MFI1 MFC M 3 1 3 1 3 2 1 4 1 <1 qni 4| 3 4 3 A 63 4b 3 7 a 2ft 27 7 1 5 61 60 ? 4 4 I'lh 10ft 0 •1 M»l 144 to 1 4 29 ?9 7 •i 70 69 9 1 5 3? 3? M 4 5 4? 4 | a q M2 1 '10 1 to 1 2 a I2h S 7 to 42 50 9 I 4 4H hi 4 5 4 ? l 10 1 4 18 16 n J 4 in 00 7 b 5 ftto S? to M l 5 to 254 250 9 4'l 46 1 4 6 1 70 ll 7 4 I ft 17 « u 2 * i a 12ft 123 II 1 o to ?« 25 2 3 4 h? 64 I / 4 79 81 4 i n It « to q 65 n? 1 10 28 ?4 1 3 5 1 to 7 140 2 f 5 ft? 9| 4 1* 1 7 3 to 4 70 70 10 0 ?« ?ft a 3 4 M b 167 3 7 5 7? 7 ? •J 43 ito 4 to 4 122 12? 1 l> 4 49 4/ 4 3 4 Ov 96 to 7 5 24 ?to 4 44 tol 5 to to Mb 141 ? n S 2ftH 270 n 3 4 411 UK 5 1 5 37 37 ? 4 21 2'I to to 4 41 IH 3 0 5 21? ? 9to 7 3 5 ito H? 6 r 5 M hi 2 ft 17 n Itoh 7 to 4 <17 44 4 0 4 9(1 toto ft 3 4 rift 40 1> 8 4 1 31 Mb ? 4 4| toto 13 s 4 2? 21 4 0 4 12 M ft to 4 6to 7ft 1 6 4 46 4to 2 4 IS* |nto II b 4 tol HA 6 0 4 95 45 1 « 4 I'M 99 2 4 nil 54 2 4 44 41 b to 20 M t n S 1Q0 1(1? 2 * 4 ?■»? ?on 3 8 4 44 Sb ? 4 •M 4 3 h 4 ftft ft? 8 0 S 1ft 1? 3 to 4 4*i 95 to 6 4 5ft Ml 2 4 rt'i ft? 3 ft 0 3« 34 0 0 4 14 I ft to • 4 1 ?4 l?ft 5 ft s uto 44 2 4 3'i 37 4 b to M4 152 *.l 1 4 71 rb 4 to 4 107 |i>9 1 9 s Mir 39 2 '1 I to Ito 5 6 to 56 47 1 I 5 son ?98 h « 4 1? 17 2 *f 4 54 56 2 4 ?5 2 to h 4 to? 03 2 l 4 111 0 98 7 to 4 nh n4 3 4 4 to? 04 3 •1 133 1 34 7 b to 20 M 1 t 4 ?3H 244 ft to 4 19 1 ft q S S 11 13 3 4 M* M6 0 7 4 4b aq 1 4 105 fib 0 4 4 94 9? U In 4 04 toH H f, M? M l 7 3 b 51 So 1 ft ft 5to 40 ft ^ 7 ?2 ?n ? 7 7 in 71 0 ft I'M 3*7 1 b 43 to 3 2 H ft to* 44 n J 7 1 9 to 201 5 7 7 6ft 9? I) li 4 1 no * to h 113 1 1 1 1 ft ft ?to 22 i i i 11 9 II? to 1 7 17 1? 0 6 3*4 3<‘h 1 to 6 117 It! ft b 2ft 10 2 1 7 M 7 to b f ) ?n 29 n h 1 to to Mi» ? to b 1 on 1 nft 4 ft ft 44 ml 9 3 7 7? 79 (1 6 7 ?4 3» i> b SI S a h 158 Jb'l 4 ft 25 22 a 3 7 I?to I2n 1 0 7 19 ?o 0 h 31 32 4 4 ft nft 92 1 4 ft 37 38 4 3 7 6H 6 7 2 4 7 4ft 4ft 0 b 37 HS to ft 4H 60 9 b 12 1 .3 h S 7 Hu 7 ft 3 6 7 9 11 0 h 42 42 to to 6 MO 15 3 4 ft to? 40 7 3 7 59 45 to 8 7 4fl 54 b 2u*i 7 to b tol to? 1 t] 7 32 32 8 3 7 tol 91 11 9 7 29 itl i> 115 112 2 to ft 27 28 ? 0 7 to? 39 II to 1 147 151 1 4 7 in 34 b 147 l‘*l 5 ft 154 151 3 n 7 I 7a MO 1 a 7 lift IM 2 4 7 2*1 ?ft to 41 to? 1 5 ft 94 97 to ii 7 108 11? ? to 7 19 19 II u lift lo t h 124 127 2 S b « 7 50 4 0 7 17 37 3 to 7 ?nu 207 1 u IM 1«'5 h 74 Ml 3 5 ft 61 61 ft 0 7 135 M l o <« 7 16 9 164 2 o ft 34 32 to 40 94 4 ft ft 01 8ft 7 o 7 24 21 4 to f 13 16 to u 6ft 64 b 44 to-’ 4 5 ft 1 to 1 to H 0 7 64 ft* ft to 7 «7 99 5 w ft 07 04 n 37 30 5 b 4? 4a 0 1 7 ?to4 21ft 7 to 7 to? 9h 7 U 6 69 71 2 to too ft? 7 to ft 29 ?9 1 i 7 103 M 2 0 4 7 HI 84 fl u H 2i> 20 2 to Q Ito ft ft Ibto 1ft? i 1 7 39 32 1 4 7 4b 4ft 0 1 H 7 9 1 f H2 8? 1 4 7 M 2? 2 1 ft ?ilft ?i»5 ? to 74 i*n 1 ft ft 4b 47 4 1 7 47 4ft to 4 7 49 59 3 1 8 lfttl 1 no 2 to 117 j .m 6 ft 17 31 b i 7 fti b5 4 5 7 41 41 to 1 8 97 1 l>0 2 to 33 13 5 b h 117 ltn 7 l 7 42 49 6 4 7 M 1? 5 1 0 17 1ft 2 to 15 20 6 b 74 79 ft 1 7 to? 42 7 4 7 12 14 b 1 ft |o.3 loft ? to 7to ?to 7 ft b 22 2to (i 2 7 oa to4 0 ft 7 7f. 79 7 t h 17 M 3 to I h II 143 n 7 ft 24 25 i ? 7 184 164 1 6 1 ftft 64 6 1 6 53 45 I to 115 1 Ito t 7 ft 7 J 77 ?? 7 ttoh lull ?. ft 7 137 1J9 ii 2 n 110 Into 3 6 74 U 1 3 7 b 23 2d 1 ? 7 137 111 9 b 7 tol n 1 1 2 8 ft? bl 3 to 134 *5 4 7 b 4? SO 0 2 7 46 97 to b I ftu 60 2 2 n 36 27 3 b ton oo 5 7 ft 21 23 4 ? 7 27 30 6 6 7 16 17 3 2 8 12 il l?h 3 to 77 77 n 7 ft ?b 25 ft 2 7 2.9 27 o / 7 in ?ft to 2 ft hi t>3 to 4 to n to to 94 7 7 84 82 1 7 7 to J ton 5 2 8 68 60 3 44 ft ft 2 115 L tnru MFC H ii t UiFU 1 AFC H H L 1 Up II I0FC H N L Jlif ti ioft H A L IOFU MFC fa is In A 7 H Art AS 1 4 4 27 as 1 1 to 4« |bti 2 h lu no 37 M 1 VI Mb 1 rt rt 7 t 73 3 rt 4 Sil 49 a I in inn It* 4 6 in ao if H “ 1 «*rt a A rt rt I J'* 4 4 4 1 5 IS 1 I rt ia !S 1 7 11? M fad ri M2 1 v» s A rt 1 S It A a *1 Afa Art 1 10 hp nl a F 1 Cl 2 i 22 A 12S ia? a n rt IA 3 IA1 h 4 9 17 19 1 In 42 rtf t o i l 29 29 9 b‘1 Ml A n rt 72 72 ii s 4 10b 107 1 in rtd rt 1 a o n 74 /9 A It IS i U 11 147 ISO n 2S 21 S A rt 2*1 an 2 s 4 hi fad a in li-* 1 So S 1< 1 1 hi hi + 47 41 7 n <> as 2‘» 3 A 4 S 7 Art d 1 n 24 as h u i a fa h i n IM 0 1 rt IAS ISrt 4 A 4 <17 4/ a 10 rtrt «S " I n |nf 107 M fa* 1 » rt 49 1-i A A 4 24 12 a 1» fah *d 1 1 ! 1 hi h 4 H O'* »S a 1 rt M l 1 At fa S 9 SI SI a in SO Sn d i n q<> os H AH AS i 1 rt 102 MS it fa 9 2h as a l» 1/ 14 i 1 1 1 37 is A <14 I'M rt I rt 1 fa 7 17-1 1 6 9 1U si a 1 n SI *»a 4 1 1 1 ii Si H hh nS A i rt A3 on 2 fa 4 rtrt 40 i in TA ni fa 111 4fa 9*1 H op 42 fa \ rt AN 7S S r» 4 i i 11 i in 71 t ! u a ii sn b / M 2n a* 7 I rt 70 7n rt fa 4 irt frt i 10 00 i»2 i a n so Srt rt hh nr^ (1 ? rt HA Ad n 7 9 /rt fS 3 in fa* hi d a 1 1 rt 7 49 h rt'i A? 1 ? 0 UN on 1 7 9 7n A1 s 10 29 )n 3 a u so Sfa rt 12 1 ?rt an S i l l AS Sfa A n dn S 1 rt I t) 111 1 11 in HU a i s 10 rt 7 Ufa n rt 11 72 fa4 H s* la a 3 q lit 114 rt ■1 in Sfa Ab s M 1«»7 llih 1 » 11 on fan rt n? 41 A 1 rt 1J 1? A (1 10 Jf* Ifa s I ii 5/ so 2 9 11 73 7S rt d? a** rt 1 rt 1 7 1 '1 b n lu is IT s 11* 1 fa Ifa i 4 i) lot M i H h? h Oh 1 I 3 as in u n i t no 39 11 VI AH 4 1 ia A2 SI 4 A 12 IS IS I 13 ?t 22 1 <* 13 ifa 3S 11 11 M A I ia 21 22 0 rt Id tin 120 1 1 i 24 50 a (-in at an 11 a? 27 n ?. 12 HA 34 1 0 12 39 37 I 1 S 72 7rt I 1 1 rt 3* 37 12 4* 4*1 1 a 12 A 2 rt 12 S) 30 1 1 s CIS rtrt o a to ii 11 It? 111 17 2 a 12 St AA 1 a 12 bl bl a 1 3 9d 42 i a in in Ifa ia aa as S a 12 fal fad A 5 te 31 33 l a IS Art Art 116 Table A.5 Hvdroeen Bonds Angl e 1 1 l 0 0 0------D(X) D-----0(£) >0 O -D -0 {

0 i _ _ D ----- o4 * 1.84(3) 0.85(2) 2.682(1) 172(3)

O4" - "D-----°3 (II) 1.73(3) 0.95(2) 2.681(1) 180(3)

°3 - ~D °1 (III) 2.04(3) 0.69(2) 2.719(1) 170(4)

05------o6 (IV) 1.98(2) 0.95(2) 2.869(1) 154(3)

1 ♦Hydroxyl groups in symme try-related molecules are as follows: (I) X + 1, Y -2,1- 1/2, -2 - 3/2; (III) X - 1/2, -Y - 1/2, -Z - 2; (IV) X + 1/2, -Y 2.

Table A.5: Hydrogen bonding in compound VIII. APPENDIX B 119

In order to calculate the thermal ellipsoid dimensions

(r.m.s. displacements of an atom along three cartesian axes) program TEANAL^^ was w ritte n by Dr. S.F. Watkins. The program uses, as input, the unit cell dimensions and aniso­ tropic parameters. R.m.s. displacements of atoms are

calculated in addition to the angles between the principal axes and lattice or bond vectors.

These calculations were applied to the thermal ellip­ soids of the average Pt/Ni atom and to the two independent C and N atoms in Ba[PtQ 59 N ig ^ ^ (CN) 41 . 4 ^ 0. It was hoped that the ellipsoid dimensions would yield more definite information about disorder in this compound.

A carbon atom in an M(CN)^ group is expected to vibrate significantly more perpendicular to the M-C bond direction.

The minimum displacement is expected in the M-C direction.

Inspection of table B.l and B.2 shows that, in all cases, the largest displacement (r-max.) is not exactly perpendicular to the plane of the ligands. At the same time the minimum displacement (r-min.) is not along the M-C bond.

The fact that the minimum displacement of the C and N atoms is not parallel to the M-C bond direction supports the conjecture of disorder observed in compound VII. However, it is impractical to try to resolve those thermal ellipsoids each into two partial atoms because of the relatively small values of r-min. 120

Table B.1

At on r-min. (A) r-mid (A ) r-max (A)

Pt/Ni 0 .1 1 9 0.131 0.158

C1 0.159 0.171 0.189

C2 0.144 0.170 0.184

N1 0.162 0.208 0.238 n 2 0.178 0.192 0.245

Table B.2

Atom Ancle Between

r-m i n and M-C r-mid, M-C r—ma x

C1 55° 35° 92 0

C2 77° 26° 78<> 6 0° N1 146 0 7 6 °

No 5 7° 2 9 ° 7 7° VITA

Khalil Abdallah Abboud vas born in Ras—Baalbek, Lebanon, on November 19, 1953. He is the fourth eld e st one of six children of Bahjat and Abdallah Abboud. He graduated from

Ashrafieh High School in June 1 9 7 1 . After studying for one year in the College of Sciences in the Lebanese University, he transferred to the College of Pedagogy and received his

Bachelors degree in Chemistry Education in 1977. He received his C.A.P.E.S. in 1978. During 1979 he was appointed as assistant principle to Ashrafieh High School.

He began his graduate studies in 1980 at Louisiana State

University in Baton Rouge after having been awarded a scholarship from the Lebanese University. He is presently a candidate for the degree of Doctor of Philosophy in Chemistry.

121 EXAMINATION AND THESIS REPORT

Candidate: Khalil Abboud

Major Field: Inorganic Chemistry

Title of Thesis: Structural Chemistry of Several Compounds Elucidated By Single Crystal X-Ray Diffraction

Approved:

Professor Chairman

Dean of the Graduate (School

EXAMINING COMMITTEE:

I___

C c—1

C T C t a J h L

n

Date of Examination:

July 22, 1985