Marine Boilers Make Use of Two Indicators in Which the Water Level Is Clearly Visible
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
QUIZ: Boiler System Components
9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: [email protected] Part of the recertification process is to obtain Continuing Education Units (CEUs). One way to do that is to review a technical article and complete a short quiz. Scoring an 80% or better will grant you 0.5 CEUs. You need 25 CEUs over a 5-year period to be recertified. The quiz and article are posted below. Completed tests can be faxed (301-990-9771) or mailed (9707 Key West Avenue, Suite 100, Rockville, MD 20850) to AWT. Quizzes will be scored within 2 weeks of their receipt and you will be notified of the results. Name: ______________________________________________ Company: ___________________________________________ Address: ____________________________________________ City: ______________________ State: _____ Zip: ________ Phone: ______________________ Fax: __________________ E-mail: _____________________________________________ Boiler Systems – Boiler Components By Irvin J. Cotton, Arthur Freedman Associates, Inc. and Orin Hollander, Holland Technologies, Inc. This is part two of a three-part series on boilers. In part one, the authors discussed boiler design and classification. Part two will discuss boiler components, and part three will describe the various chemistries used in boiler water treatment. Boiler Components The main components in a boiler system are the boiler feedwater heaters, deaerator, boiler, feed pump, economizer, boiler, superheater, attemperator, steam system, condenser and the condensate pump. In addition there are sets of controls to monitor water and steam flow, fuel flow, airflow and chemical treatment additions. Water sample points may exist at a number of places. Most typically the condensate, deaerator outlet, feedwater (often the economizer inlet), boiler, saturated steam and superheated steam will have sample points. -
RW Series Steam & Water Boilers
Form No. 6310 (09/03) Bryan “Flexible Water Tube” RW Series Steam & Water Boilers 8,500,000 to 21,000,000 BTUH Forced draft gas, oil or dual fuel fired Steam Boiler RW1050-S150-FDG Water Boiler RW2100-W-FDGO Originators of the “Flexible Water Tube” design A breakthrough in an industrial water tube boiler design. • True “flexible water tube” design F guaranteed shock free M • High quality steam for heat or C process J • Full five sq ft of heating surface K (2) D per BHP B E Quality construction features: G H A. Water side or steam side interior accessible for cleanout L and inspection, front and rear openings, upper and lower drums. I B. Large volume water leg downcomers promote rapid internal circulation, temperature equalization and efficient A heat transfer. C. Boiler tube and furnace area access panels: heavy gauge steel casing with 2" high-temperature ceramic fiber insula- tion, bolted and tightly sealed to boiler frame. D. Flame observation port in access door at rear of boiler. ensure exceptionally cool outer E. Dual side access; combustion chamber, tubes and burner surface. head are completely accessible from either side simplifying K. Bryan bent water tubes are maintenance and minimizing floor space. flexible, individually replaceable F. Minimum sized flue vent. without welding or rolling. Never more than two tube configura- G. Control panel: all controls installed with connections to tions. terminal strip. L. Pressurized design firebox H. Forced draft, flame retention head type burner. Efficient with internal water-cooled fur- combustion of oil or gas, plus quiet operation. -
Interactive Centre for Science and Technology in Łódź
Interactive Centre for Science and Technology in Łódź Detailed guidelines for the detailed designs of exhibits, exhibition arrangement and equipment DRAFT Address of the construction work: ul. Targowa 1/3 i ul. Tuwima 46, 54/58, Łódź, woj. łódzkie działki ewidencyjne nr: 180/46 i 180/47 - w obrębie S-6 Common Procurement Vocabulary (CPV): 32322000-6 Multimedia equipment 32321300-2 Audio-visual materials 79930000-2 Specialty design services 79822500-7 Graphic design services 72212783-1 Content management software development services 72212520-1 Multimedia software development services 71314100-3 Electrical services 51110000-6 Installation services of electrical equipment 39154000-6 Exhibition equipment 39150000-8 Miscellaneous furniture and equipment 32417000-9 Multimedia networks 31611000-2 Wiring sets 31500000-1 Lighting equipment and electric lamps 48780000-9 System, storage and content management software package 79950000-8 Exhibition, fair and congress organisation services 92110000-5 Motion picture and video tape production and related services 92312000-1 Artistic services Name and address of the Investor: EC1 Miasto Kultury ul. Targowa 1/3, 90-022 Łódź Address for correspondence: ul. Tymienieckiego 5 90-365 Łódź, woj. łódzkie Prepared by: DELTA. Stanisław Pochwała, ul. Kuźnicy Kołłątajowskiej 16/10, 31-234 Kraków 1 Kraków, luty 2013 Prepared by: DELTA. Stanisław Pochwała, 31-234 Kraków, ul. Kuźnicy Kołłątajowskiej 16/10, office: 31-060 Kraków, ul. Św. Wawrzyńca 15 The team - key personnel: arch. Łukasz Bigas, Maciej Pociecha, Tomasz Borsukiewicz, Karolina Kiryjczuk, Paweł Kotlarz, Mirosław Kołodziej, Maria Łukasiewicz-Rudkowska, Paweł Osmenda, arch. Małgorzata Pasek, Piotr Skindzier, Rafał Sworst, Bartłomiej Świerz, Stanisław Pochwała - Project Manager Legal basis of issue: - Order and guidelines of the Investor: EC1 Miasto Kultury, ul. -
Conventional Steam
DECEMBER 2019 Application Solutions Guide CONVENTIONAL STEAM Experience In Motion 1 Application Solutions Guide — The Global Combined Cycle Landscape TABLE OF CONTENTS THE GLOBAL CONVENTIONAL STEAM POWER FLOWSERVE PRODUCTS IN CONVENTIONAL PLANT LANDSCAPE . 3 STEAM POWER . 16 A Closer Look at Conventional Steam Conventional Steam Applications Power Technology . 5 Overview . 16 Basics . 5 Pumps for Conventional Steam Plants . 18 Plant Configurations and Sizes . 7 Valves for Conventional Steam Plants . 24 Flue Gas Desulfurization (FGD) . 8 Actuators for Conventional Steam Plants . 30 Conventional Steam Project Models . 11 Seals for Conventional Power Plants . 31 Seals for Wet Limestone Flue Gas THE CONVENTIONAL STEAM POWER- Desulfurization . 33 FLOWSERVE INTERFACE . 13 Business Impact and Focus Areas . 13 COMMUNICATING OUR VALUE . 34 The Big Picture . 13 Innovative Ways Flowserve Addresses The Flowserve Fit in Conventional Customer Challenges . 34 Steam Power . 13 APPENDIX . 35 PRODUCTS FOR STEAM POWER — Flowserve Value Proposition in Conventional Steam . 35 AT A GLANCE . 14 Sub-critical Versus Supercritical Pumps . 14 Power Plant . 36 Valves . 14 Reheat . 37 Seals . 14 Terminology . 38 Estimated Values by Plant Size . 15 Acronyms . 39 2 Application Solutions Guide — Conventional Steam THE GLOBAL CONVENTIONAL STEAM POWER PLANT LANDSCAPE Thermal power generation involves the conversion Combined cycle plants have become the preferred of heat energy into electric power. Fossil fuel power technology for gas-fired power generation for several plants as well as nuclear, biomass, geothermal reasons. The USC plant takes 40 to 50 months to and concentrated solar power (CSP) plants are all build; a combined cycle plant can be built in 20 to examples of thermal power generation. -
Watertube Boilers
Watertube Boilers Learning Outcome When you complete this module you will be able to: Describe various watertube boiler designs, including large generating units. Learning Objectives Here is what you will be able to do when you complete each objective: 1. Describe early designs and construction of watertube boilers. 2. Sketch and describe the design and construction of packaged watertube boilers. 3. Describe the design, construction, and components of large scale steam generating units. 1 BLRS 6016 INTRODUCTION The watertube boiler differs from the firetube design in that the tubes contain water rather than combustion gases. In the watertube boiler, the combustion gases travel over the outside surfaces of the tubes and transfer their heat to the water within the tubes. WATERTUBE BOILERS Longitudinal Straight Tube Boilers Fig. 1 illustrates one of the earliest straight tube boilers. The drum runs longitudinally in relation to the tubes. The straight inclined tubes run between vertical headers at the front and rear of the drum; these headers are connected to the drum at their top ends. The combustion gases make three passes across the tubes as indicated by the arrows in Fig. 1. AL_4_0_4.mov A AL4_fig1.gif Figure 1 Straight Tube Design (Longitudinal) The water circulates from the water space of the drum down the rear header, up the inclined tubes (at an angle of 15° to the steam drum), to the front header, and then back up to the drum. 2 BLRS 6016 Figure 2 AL4_fig2.gif Babcock & Wilcox Boiler (1877) The early boiler shown in Fig. 2 had an elaborate setting. -
Boiler a Boiler Is a Closed Vessel in Which Water Or Other Fluid Is Heated
Boiler A boiler is a closed vessel in which water or other fluid is heated. The fluid does not necessarily boil. (In North America the term "furnace" is normally used if the purpose is not actually to boil the fluid.) The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation,cooking, and sanitation. Contents • 1 Materials • 2 Energy • 3 Configurations • 4 Safety • 5 Superheated steam boilers 5.1 Supercritical steam generator • 6 Accessories 6.1 Boiler fittings and accessories 6.2 Steam accessories 6.3 Combustion accessories 6.4 Other essential items 6.5 Gas safe check • 7 Draught • 8 See also • 9 References • 10 Further reading Materials The pressure vessel of a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel, especially of the austenitic types, is not used in wetted parts of boilers due to corrosion and stress corrosion cracking. However, ferritic stainless steel is often used in superheater sections that will not be exposed to boiling water, and electrically-heated stainless steel shell boilers are allowed under the European "Pressure Equipment Directive" for production of steam for sterilizers and disinfectors. In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes(particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead. -
Steam Boilers
13 Steam Boilers I. Introduction. 2. Important Terms for Steam Boilers. 3. Essentials of a Good Steam Boiler. 4. Selection of a Steam Boiler. 5. Classifications of Steam Boilers. 6. Simple Vertical Boiler. 7. Cochran Boiler or Vertical Multi-tubular Boiler. 8. Scotch Marine Boiler. 9. Lancashire Boiler. 10. Cornish Boijr. 11. Locomotive Boiler. 12. Babcock and Wilcox Boiler. 13.44-Monl Boiler. 14. Loeffler Boiler. I. Benson Boiler. 16. Comparison Between Water Tube and Fire Tube Boiler. 13.1. Introduction A steam generator or boiler is, usually, a closed vessel made of steel. Its function is to transfer the heat produced by the combusijon of fuel (solid, liquid or gaseous) to water, and ultimately to generate steam. The steam produced may be supplied: - to an external combustion engine, i.e. steam engines and turbines, 2.at low pressures for industrial process work in cotton mills, sugar factories, breweries, etc., and 3.forproducing hot water, which can be used for heating installations at much lowerpressures. .j2,,.Jinortant Terms for Steam Boilers \./ Though there are many terms used in steam boilers, yet the following are important from the subject point of view: I. Boiler shell. It is made up of steel plates bent into cylindrical form and riveted or welded together. The ends of the shell are closed by means of end plates. A boiler shell should have sufficient capacity to contain water and steam. 2. Combustion chamber. It is the space, generally below the boiler shell, meant for burning fuel in order to produce steam from the water contained in the shell. -
Steam Handbook
Products Solutions Services Steam Handbook An introduction to steam generation and distribution 1 Steam Handbook An introduction to steam generation and distribution Dr. Ian Roberts Phillip Stoor Michael Carr Dr. Rainer Höcker Oliver Seifert 2 Endress+Hauser – Steam Handbook Impressum Publisher Endress+Hauser Flowtec AG, CH-4153 Reinach/BL Editor in chief Thomas Stauss Editorial team Michael Carr, Dr. Rainer Höcker, Dr. Ian Roberts, Romeo Rocchetti, Oliver Seifert, Thomas Stauss, Phillip Stoor Illustrations Kodotec (Lörrach, Germany) Layout, set Beatrice Meyer Steam Handbook, 1st Edition 2017 © Copyright 2017 by: Endress+Hauser Flowtec AG, CH-4153 Reinach/BL All rights reserved. This work is copyright protected in its entirety. All use in breach of copyright laws without the express permission of the publisher is forbidden. Duplication, translation, microfilming, storage and processing in any form of electronic media is prohibited. 3 Contents 5 Foreword 37 How steam moves 5 What this document is about? (simple explanation) 5 Who this document is for? 5 How to use the document? 41 On the motion of steam (detailed explanation) 7 A short history of 55 Some hazards of steam boiler designs 55 Boiling liquid expanding vapor explosion (BLEVE) 11 Why use steam? 56 Column collapse water hammer 11 What is steam used for? 59 Sub-cooled condensate induced 12 Where is steam used? water hammer 61 Flash steam explosion 13 A generic steam system 61 Overpressure in the distribution system 17 Types of industrial 61 Overpressure (inside a pressure vessel) -
Boiler (Steam Generator)
Boiler (steam generator) From Wikipedia, the free encyclopedia Jump to: navigation, search It has been suggested that this article or section be merged into Boiler. (Discuss) Contents [hide] 1 Steam generator (component of prime mover) 2 Boiler types o 2.1 Haycock and wagon top boilers o 2.2 Cylindrical fire-tube boiler o 2.3 Multi-tube boilers 3 Structural resistance 4 Combustion o 4.1 Solid fuel firing o 4.2 Firetube boiler o 4.3 Superheater o 4.4 Water tube boiler o 4.5 Supercritical steam generator 5 Water treatment 6 Boiler safety o 6.1 Doble boiler 7 Essential boiler fittings o 7.1 Boiler fittings 8 Steam accessories 9 Combustion accessories 10 Application of steam boilers 11 See also 12 References A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure (1–300 psi/0.069–20.684 bar; 6.895–2,068.427 kPa), but at pressures above this it is more usual to speak of a steam generator. An industrial boiler, originally used for supplying steam to a stationary steam engine A boiler or steam generator is used wherever a source of steam is required. The form and size depends on the application: mobile steam engines such as steam locomotives, portable engines and steam-powered road vehicles typically use a smaller boiler that forms an integral part of the vehicle; stationary steam engines, industrial installations and power stations will usually have a larger separate steam generating facility connected to the point-of-use by piping. -
Steamboilerexplo00th
UNIVERSITY OF CALIFORNIA ANDREW SMITH HALLIDIE: The Publishers and the Author will be grateful to will call ar.y of the readers of this volume who kindly their attention to any errors of omission or of commis- sion that they may find therein. It is intended to make our publications standard works of study and reference, and, to that end, the greatest accuracy is sought. It rarely happens that the early editions of works of any of the size are free from errors ; but it is the endeavor Publishers to have them removed immediately upon being discovered, and it is therefore desired that the Author may be aided in his task of revision, from time to time, by the kindly criticism of his readers. JOHN WILEY & SO^S. 43 & 45 EAST NINETEENTH STREET. STEAM-BOILER EXPLOSIONS IN THEORY AND IN PRACTICE. BY R. H. THURSTON, LL.D., DR. ENG'G, DIRECTOR OF SIBLEY COLLEGE, CORNELL UNIVERSITY; OFFICIER DE L'lNSTRUCTION PUBLIQUE DE FRANCE; PAST PRESIDENT AM. SOC. MECH. ENG*RS J FORMERLY OF U. S. N. ENGINEERS ; AUTHOR OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC. 1 ^THE XUustratefc. .3!' ; ^o;s\\K THIRD EDITION. SECOND THOUSAND. NEW YORK: JOHN WILEY & SONS. LONDON: CHAPMAN & HALL, LIMITED. 1903. COPYRIGHT, 1887, 1903, BY ROBERT H. THURSTON. PREFACE. THIS little treatise on Steam-Boiler Explosions had its origin in the following circumstances : In the year 1872 the Author received from the Secretary of the Treasury of the United States a communication in which he was requested to prepare, for the use of the Treasury Department, a report on the causes and the con- ditions leading to the explosions of steam-boilers, and began the preparation of such a report, in which he pro- posed to incorporate the facts to be here presented. -
Steam Boilers, Engines and Turbines
BOUGHT WITH THE INCOME' FROM THE SAGE ENDOWMENT FUND THE GIFT OF Henrg W. Sage .. 1891 A.^A..? 7:r..7.. s//.U.a,£... 3513-1 Cornell University Library TJ 275.W18 Steam boilers, engines and turbines, 3 1924 004 608 083 Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924004608083 STEAM BOILERS, ENGINES, AND TURBINES c6 a* r^T OJ I O ^ r/: CI :/j STEAM BOILERS, ENGINES AND TURBINES SYDNEY F. 'gfALKER M.I.E.E^ M.Inst.M.E., M.I.M.E., Assoc.M.I.C.E., Etc. AVTHOR OF "electricity IN MINING," ETC. NEW YORK D. VAN NOSTRAND COMPANY 23 MURRAY AND 27 WARREN STREETS 1908 PREFACE In the following pages the author has endeavoured to set forth the principles and practice of steam, as they are understood by modern engineers, for the use of the student, using the term in its wide sense, viz. to include all those to whom a knowledge of steam and of steam-using apparatus will be of service. "With the universal -em- ployment of power, a knowledge of the properties of steam is becoming daily of more and more importance to engineers of all branches, and to large numbers of business men and others who are not directly engaged in the practical application of steam appliances..^ The author has endeavoured to set out, in simple language, and with the aid' of only the very simplest forms of mathematics, the properties of water, of steam, of air, and of the gases that enter into the process of combustion, and he has also endeavoured to give a resume of the latest practice in steam, and a description of the latest appliances for its economical generation and use. -
A Practical Treatise on Locomotive Boiler and Engine
A PRACTICAL TREATISE ON LOCOMOTIVE BOILER AND ENGINE DESIGN, CONSTRUCTION, AND OPERATION BY LLEWELLYN V. LUDY, M.E. PROFESSOR OF EXPERIMENTAL ENGINEERING, PURDUE UNIVERSITY AMERICAN SOCIETY OF MECHANICAL ENGINEERS ILLUSTRATED AMERICAN TECHNICAL SOCIETY CHICAGO 1920 Copyright 1909, 1913, 1914, 1917, 1920, by AMERICAN TECHNICAL SOCIETY --------------- COPYRIGHTED IN GREAT BRITAIN ALL RIGHTS RESERVED - 2 - INTRODUCTION OF ALL heat engines, the locomotive is probably the least efficient, principally due, no doubt, to the fact that it is subject to enormous radiation losses and to the fact that it must carry its own steam plant. However, even with these serious handicaps, the utility and flexibilty of this self-contained power unit are so great that only in a comparatively few instances have the railroads been able to see their way clear to adopt electric locomotives and, even in these cases, only for relatively small distances. Stephenson's "Rocket" was in its day considered a wonder and when pulling one car was capable of a speed of probably 25 miles per hour. The fact that our present-day "moguls" can draw a heavy limited train at 80 miles per hour gives some indication of the theoretical and mechanical developments which have made this marvelous advance possible. In the development of any important device, what seem to us now as little things often have contributed largely to its success-- nay more, have even made that success possible. No locomotive had been at all successful until Stephenson hit upon the idea of "forced draft" by sending the exhaust steam out of the smokestack. This arrangement made possible the excessive heat of the furnace necessary to form steam rapidly enough to satisfy the demand of the locomotive.