USCG ME Exam

Total Page:16

File Type:pdf, Size:1020Kb

USCG ME Exam United States Coast Guard Marine Engineer Exam Questions Steam Knowledge Question Choice A Choice B Choice C Choice D Illustration BOOK Answer Number Question 13 1 D A bridge gage is normally used to determine turbine bearing oil clearance diaphragm tip clearance blade axial clearance bearing wear ____________. 13 2 B Coast Guard Regulations (46 CFR) requires machinery driving within the space outside of the space at the throttle station within the fireroom the fuel oil transfer and fuel oil service pumps to be fitted with a concerned concerned remote means of stopping that machinery ____________. 13 3 D If a ship is to be laid up for an indefinite period, the saltwater side left filled with saltwater left filled with saltwater drained and refilled with drained and dried out of the main condenser should be ____________. with the sea valves with the sea valves open saltwater after closing after closing the sea closed the sea valves valves 13 4 D According to U.S. Coast Guard Regulations (46 CFR), which of Fire pump Boiler Feed pump Fuel oil transfer pump All of the above the following pumps is required to have a pressure gage provided on the discharge side of the pump? 13 5 D Assume that steam has formed in a boiler in which all of the The steam pressure and The pressure will The pressure will remain The pressure will steam stop valves are closed, and the water level is held volume will remain increase and the volume constant and the volume increase and the specific constant. When there is an increase in the temperature of the constant. will remain constant. will increase. volume will decrease. steam and water in the boiler, which of the following effects will occur on the pressure and the specific volume of the steam? 13 6 B When a mixture of steam and water in a boiler has reached the supercritical end point critical end point vaporization end point saturation end point point at which NO further change in state can occur with the addition of heat, the mixture is considered to have reached its ____________. 13 7 D Which symbol shown in the illustration is used to identify a stop- A B C D See illustration check valve on a drawing? number(s): SG-0014 13 8 D If the water level cannot be seen in the lower part of the boiler Increase the feedwater Check the DC heater Blowdown the boiler. Secure the boiler fires. gage glass, which of the following actions must be carried out going to the boiler. water level. immediately? 13 9 D The item labeled "C" in the illustration, is the ____________. low pressure drain high pressure drain low pressure vent low pressure steam See illustration connection connection connection supply connection number(s): SG-0025 13 10 D Fuel oil solenoid valves at the burner fronts should be of the permit the operator to permit the operator to prevent the furnace filling prevent the furnace filling manual reset type to _____________. secure each burner secure each burner after with oil during a power with oil after restoration during a blackout a blackout failure of power 13 11 C Axial movement in a gear-type flexible coupling is provided for by each gear sliding on its the variable oil clearance external teeth on the adjusting the pitch of the _____________. shaft between retaining in the quill shaft floating member sliding teeth on the pinion and collars between internal teeth high speed gears on the shaft ring 13 12 B A sectional (sinuous) header boiler is classified as which of the Bent tube Straight tube Express D-type listed boiler types? 13 14 B Which of the following fuel oil characteristics establishes the Fire point Flash point Specific gravity Viscosity danger point when transferring, pumping, and firing procedures are concerned? 13 15 C When condenser tube ends are rolled into both tube sheets the belled joints at both tube threaded brass ferrules expansion joints in the metallic packing pressed different rates of material expansion is compensated for by ends on the tube ends condenser shell around the tube ends utilizing _________. 13 16 A The Butterworth heater shown in the illustration receives steam 130 psi 140 psi 143 psi 850 psi See illustration at approximately _______. number(s): SG-0005 13 17 B The BTU value of fuel oil is determined by a/an ___________. open cup test calorimeter hydrometer viscosimeter This document, and much more, is available for dowload at Martin's Marine Engineering Page - www.dieselduck.net United States Coast Guard Marine Engineer Exam Questions Steam Knowledge 13 18 B The variable capacity pressure atomizing fuel oil burner functions maintain a constant fuel provide a wide range of provide a constant fuel maintain smokeless fuel to _____________. temperature combustion return pressure oil atomization 13 19 D As the pH of the boiler water approaches zero, the water soft alkaline neutral acidic becomes increasingly _____________. 13 20 B A combustion control system diaphragm type air flow transmitter fan discharge windbox furnace smoke box receives its high pressure signal from the boiler ____________. 13 21 C Concerning the classification of steam turbines, a compound consisting of reaction consisting of one Curtis consisting of a high made up of impulse and designed turbine is a unit _____________. stages and a dummy stage and reaction pressure turbine, reaction staging piston blading crossover pipe, and low pressure turbine 13 22 B A sectional (sinuous) header boiler is classified as a/an bent tube type straight tube type "A" type "D" type ______________. 13 23 D The required number of pounds of steam generated per hour to overload capacity for efficiency of each boiler efficiency of each full power capacity of develop contract shaft horsepower and maintain the specified each boiler fireroom each boiler pressures and temperatures in the plant, when divided by the number of installed boilers, will give the ____________. 13 24 B Which type of energy is associated with the water of an operating Chemical Thermal Mechanical Specific boiler? 13 25 D Condensate return lines from tank heating coils are led to the atmospheric drain tank main condenser DC heater contaminated drain _____________. system 13 26 A In which of the listed components is chemical energy converted Furnace Superheater Steam drum Economizer to thermal energy with regards to boiler operation? 13 27 A Coast Guard Regulations (46 CFR) regarding hydrostatic testing the hydrostatic test shall not less than fifty percent the hydrostatic test a pipe with a nominal of main steam piping state that ____________. be applied from the of the lagging shall be pressure must be size of six inches or boiler drum to the throttle removed each time the maintained on the piping more is not required to valve hydrostatic test is applied for a minimum of one be hydrostatically tested hour 13 28 A If the water level in a steaming boiler is dropping rapidly and secure the fires and then secure the steam stop blowdown the guage speed up the feed pump cannot be kept at the normal level by standard practices, you secure the steam stop and then secure the fires glass to find the true to raise the water to should _____________. water level normal 13 29 C The total heating surface of any steam generating unit is Those parts of a boiler Those parts of a boiler Those parts of a boiler Those parts of a boiler comprised of which of the listed surfaces? which are exposed on which are exposed on which are exposed on which are exposed on one side to only the one side to only the one side to the water or one side to only the water being heated and steam being heated and steam being heated, and water being heated and on the other side to the on the other side to the on the other side to the on the other side being combustion gases, such combustion gases, such combustion gases. directly exposed to the as the economizer as the superheater furnace flame. surfaces. surfaces. 13 30 C A combustion control system, diaphragm-type, air volume windbox casing furnace smoke pipe regulator receives its low pressure signal from the boiler _______________. 13 31 A In a cross-compound main propulsion unit, the astern turbine is low pressure end of the high pressure end of the low pressure end of the high pressure end of the usually installed at the _____________. low pressure turbine low pressure turbine high pressure turbine high pressure turbine 13 32 A The purpose of a "peep" hole in the boiler casing is to examine the condition of check the operation of check for excess smoke examine the condition of _____________. the flame the soot blowers in the stack the refractory cones 13 33 B Which of the listed characteristics is determined by calculating Fireroom efficiency Boiler efficiency Plant efficiency Each of the above the amount of heat absorbed by the water and steam, then dividing by the available heat in the total pounds of fuel oil burned? This document, and much more, is available for dowload at Martin's Marine Engineering Page - www.dieselduck.net United States Coast Guard Marine Engineer Exam Questions Steam Knowledge 13 34 C If a centrifugal main feed pump were operated at shutoff head A decreased water level An increased water level Flashing at the suction Excessive diaphragm with the recirculating line closed, which of the following conditions in the DC heater. in the steam drum. side of the pump. seal wear in the could occur? feedwater regulator.
Recommended publications
  • Sight Glass Level Gauges Data Sheet Sight Glass Level Gauges
    Level Measurement Sight Glass Level Gauges Data Sheet Sight Glass Level Gauges Description Accessories Level Gauges for direct reading of Iiquid levels in vessels and ■ Drain and vent tanks. ■ Illumination ■ Heating Applications ■ Scale ■ Refineries ■ Frost protection ■ Off-shore ■ Ultraviolet protection ■ Oil and gas ■ Corrosion protection ■ Power stations ■ Lining/coating PTFE/Halar, rubber ■ Chemical plants ■ Thermofluid oil installations Certificates ■ Refrigerating plants ■ Test certificates according to DIN EN 10204 ■ Cyrogenic services ■ Sour gas regulation NACE ■ Tests to customers requirements Rating ■ Pressure rating PN 6 – 250 Neccessary data ■ Operating temperatures from – 200 up to + 400 °C Glass type, Design pressure (p), Design temperature (T), center to center distance (ME), visible length (SL), materials, Product groups process connection, ex classification, quantity ■ Reflex type ■ Transparent type with glass or mica Special constructions available upon request. ■ Refraction type For further details please use our datasheets. ■ Tubular type Chambers ■ fixed, flanged, pivoted, screwed or weldable ■ interrupted or continuous visible length Materials ■ Forged steel, stainless steel, suitable for pressure equipment according to EN or ASME ■ Particularly corrosion resistant materials as Duplex, Monel, Inconel, Hastelloy, Titanium, etc. Shut-off valves ■ handwheel or quick closing lever ■ with ball check ■ flanged or union connection Data Sheet Sight Glass Level Gauges ∙ 06/2013 Page 1 of 54 Sight Glass Level Gauges Type Overview
    [Show full text]
  • Clayton-02 A2
    QTY. PART NUMBER QTY. PART NUMBER QTY. PART NUMBER QTY. PART NUMBER 1 CLAYTON-UF-1-01-LH SIDE BEAM 1 CLAYTON-BR-3-01-BOILER SHELL 1 CLAYTON-RG-5-01-LH-CRANKCASE SIDE 1 CLAYTON-MP-6-31-CRANKSHAFT CHAIN SPROCKET 1 CLAYTON-UF-1-02-RH SIDE BEAM 1 CLAYTON-BR-3-02-BOILER FOUNDATION RING 1 CLAYTON-RG-5-02-RH-CRANKCASE SIDE 1 CLAYTON-MP-6-32-LUBRICATOR CRANK RING 1 CLAYTON-UF-1-03-FRONT CROSS BEAM 1 CLAYTON-BR-3-03-BOILER FIRE BOX 2 CLAYTON-RG-5-03-CRANKSHAFT BEARING HOUSING 1 CLAYTON-MP-6-33-LUBRICATOR CRANK PIN 2 CLAYTON-UF-1-04-CROSS BEAM-1 1 CLAYTON-BR-3-04-BOILER CLINKERING 2 CLAYTON-RG-5-04-CRANKSHAFT BEARING 1 CLAYTON-MP-6-34-REVERSER ENGINE CRANK 1 CLAYTON-UF-1-05-CROSS BEAM-2 5 CLAYTON-BR-3-05-BOILER BUSH TYPE-A 2 CLAYTON-RG-5-05-CRANKSHAFT BEARING CAP 1 CLAYTON-MP-6-35-REVERSER LINK ROD 2 CLAYTON-UF-1-05-CROSS BEAM-2 3 CLAYTON-BR-3-06-BOILER BUSH TYPE-B 1 CLAYTON-RG-5-06-CRANKCASE OIL FILLER BOSS 2 CLAYTON-MP-6-36-REVERSER LINK ROD END 1 CLAYTON-UF-1-06-CROSS BEAM-2 LH-MOUNTING BRACKET 4 CLAYTON-BR-3-07-BOILER MOUINTING BRACKET 1 CLAYTON-RG-5-07-CRANKCASE OIL FILLER CAP 1 CLAYTON-MP-6-37A-LUBRICATOR CRANK ARM ROD 1 CLAYTON-UF-1-07-CROSS BEAM-2 RH-MOUNTING BRACKET 1 CLAYTON-BR-3-08-BOILER DOOR HINGE BRACKET 1 CLAYTON-RG-5-08-CRANKCASE FRONT 1 CLAYTON-MP-6-37B-LUBRICATOR CRANK ARM ROD END-1 2 CLAYTON-UF-1-08-FRONT BEAM ANGLE 1 CLAYTON-BR-3-09-BOILER CLINKER DOOR 1 CLAYTON-RG-5-09-CRANKCASE BOLTING FLANGE 1 CLAYTON-MP-6-37C-LUBRICATOR CRANK ARM ROD END-2 2 CLAYTON-UF-1-09-MID BEAM SUPPORT ANGLE 1 CLAYTON-BR-3-10-BOILER CLINKER DOOR HINGE
    [Show full text]
  • QUIZ: Boiler System Components
    9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: [email protected] Part of the recertification process is to obtain Continuing Education Units (CEUs). One way to do that is to review a technical article and complete a short quiz. Scoring an 80% or better will grant you 0.5 CEUs. You need 25 CEUs over a 5-year period to be recertified. The quiz and article are posted below. Completed tests can be faxed (301-990-9771) or mailed (9707 Key West Avenue, Suite 100, Rockville, MD 20850) to AWT. Quizzes will be scored within 2 weeks of their receipt and you will be notified of the results. Name: ______________________________________________ Company: ___________________________________________ Address: ____________________________________________ City: ______________________ State: _____ Zip: ________ Phone: ______________________ Fax: __________________ E-mail: _____________________________________________ Boiler Systems – Boiler Components By Irvin J. Cotton, Arthur Freedman Associates, Inc. and Orin Hollander, Holland Technologies, Inc. This is part two of a three-part series on boilers. In part one, the authors discussed boiler design and classification. Part two will discuss boiler components, and part three will describe the various chemistries used in boiler water treatment. Boiler Components The main components in a boiler system are the boiler feedwater heaters, deaerator, boiler, feed pump, economizer, boiler, superheater, attemperator, steam system, condenser and the condensate pump. In addition there are sets of controls to monitor water and steam flow, fuel flow, airflow and chemical treatment additions. Water sample points may exist at a number of places. Most typically the condensate, deaerator outlet, feedwater (often the economizer inlet), boiler, saturated steam and superheated steam will have sample points.
    [Show full text]
  • Steamboating Guide Edition 2 2010
    Steamboating SampleGuide Pages Second Edition Steamboating Guide Edition 2 2010 Edited by Roger Calvert and Rob van Es The contributors and editors of this publication have made every effort to ensure the accuracy and relevance of the data presented and the validity and appropriateness of the recommendations made. It is, however, ultimately the responsibility of the owner of a boat to check the data and take the final decisions, in the context of the proposed design. If necessary, appropriate professional advice should be sought. Neither the contributors, the editors, nor the SBA can accept responsibility for any direct or indirect consequences arising from the use of the data or from following the recommendationsSample of this publication. Pages Copying of parts or the whole of this document by members of the SBA is permitted, subject to the terms published on the SBA web site. Otherwise, copying is not permitted without the permission of the SBA, except as allowed under copyright law. Table of Contents Preface Section A – Introduction 1 Hulls 1-1 2 Boiler Types 2-1 3 Engine Types 3-1 4 Fuels 4-1 Section B – Steamboat Operations 5 Boiler Fittings 5-1 6 Steam Plant Installation 6-1 7 Boiler Operation and Maintenance 7-1 8 Steam Ancillaries 8-1 9 Boat Handling Advice 9-1 10 Boiler Inspection and Testing 10-1 11 Trailers and Towing 11-1 Section C – Technical 12 Propulsion 12-1 13 Valve Setting 13-1 14 Data and Performance 14-1 15 Boiler Design Considerations 15-1 16 Workshop Techniques 16-1 Glossary 17-1 Index 18-1 Sample Pages Preface The aims and objects of the Steam Boat Association are: (i) To foster and encourage steam boating and the building, development, preservation and restoration of steam boats and steam machinery, by all possible means.
    [Show full text]
  • RW Series Steam & Water Boilers
    Form No. 6310 (09/03) Bryan “Flexible Water Tube” RW Series Steam & Water Boilers 8,500,000 to 21,000,000 BTUH Forced draft gas, oil or dual fuel fired Steam Boiler RW1050-S150-FDG Water Boiler RW2100-W-FDGO Originators of the “Flexible Water Tube” design A breakthrough in an industrial water tube boiler design. • True “flexible water tube” design F guaranteed shock free M • High quality steam for heat or C process J • Full five sq ft of heating surface K (2) D per BHP B E Quality construction features: G H A. Water side or steam side interior accessible for cleanout L and inspection, front and rear openings, upper and lower drums. I B. Large volume water leg downcomers promote rapid internal circulation, temperature equalization and efficient A heat transfer. C. Boiler tube and furnace area access panels: heavy gauge steel casing with 2" high-temperature ceramic fiber insula- tion, bolted and tightly sealed to boiler frame. D. Flame observation port in access door at rear of boiler. ensure exceptionally cool outer E. Dual side access; combustion chamber, tubes and burner surface. head are completely accessible from either side simplifying K. Bryan bent water tubes are maintenance and minimizing floor space. flexible, individually replaceable F. Minimum sized flue vent. without welding or rolling. Never more than two tube configura- G. Control panel: all controls installed with connections to tions. terminal strip. L. Pressurized design firebox H. Forced draft, flame retention head type burner. Efficient with internal water-cooled fur- combustion of oil or gas, plus quiet operation.
    [Show full text]
  • Nine Mile Point Nuclear Station, Units 1 and 2
    May 8, 2019 Mr. Bryan C. Hanson Senior Vice President, Exelon Generation Company, Nine Mile Point Nuclear Station, LLC 4300 Winfield Road Warrenville, IL 60555 SUBJECT: NINE MILE POINT NUCLEAR STATION UNITS 1 AND 2 – INTEGRATED INSPECTION REPORT 05000220/2019001 AND 05000410/2019001 Dear Mr. Hanson: On March 31, 2019, the U.S. Nuclear Regulatory Commission (NRC) completed an inspection at your Nine Mile Point Nuclear Station Units 1 and 2. On April 25, 2019 the NRC inspectors discussed the results of this inspection with Mr. Peter Orphanos and other members of your staff. The results of this inspection are documented in the enclosed report. NRC inspectors documented three findings of very low safety significance (Green) in this report. Two of these findings involved violations of NRC requirements. The NRC is treating these violations as non-cited violations (NCVs) consistent with Section 2.3.2.a of the Enforcement Policy. If you contest the violations or significance or severity of the violations documented in this inspection report, you should provide a response within 30 days of the date of this inspection report, with the basis for your denial, to the U.S. Nuclear Regulatory Commission, ATTN: Document Control Desk, Washington, DC 20555-0001; with copies to the Regional Administrator, Region I; the Director, Office of Enforcement; and the NRC resident inspector at Nine Mile Point. In addition, if you disagree with a cross-cutting aspect assignment or a finding not associated with a regulatory requirement in this report, you should provide a response within 30 days of the date of this inspection report, with the basis for your disagreement, to the U.S.
    [Show full text]
  • United States Patent (10) Patent No.: US 7,325.400 B2 Cunningham Et Al
    USOO7325400B2 (12) United States Patent (10) Patent No.: US 7,325.400 B2 Cunningham et al. (45) Date of Patent: Feb. 5, 2008 (54) RANKINE CYCLE AND STEAM POWER 5,850,739 A 12/1998 Masnoi PLANT UTILIZING THE SAME 6,003,317. A 12/1999 Neubert 6,234,400 B1* 5/2001 Guyer ....................... 237,121 (75) Inventors: Carla I. Cunningham, Orlando, FL s: R 23: R SS MichaelA S. Briesch, Orlando, FL 6,457.95044 B1 10/2002 CooperaSSlly et al. FOREIGN PATENT DOCUMENTS (73) Assignee: Siemens Power Generation, Inc., Orlando, FL (US) DE 2 242302 3, 1974 DE 33 27 838 A1 12, 1983 (*) Notice: Subject to any disclaimer, the term of this DE 35 31 469 A1 1987 patent is extended or adjusted under 35 DE 36 16 797 A1 11, 1987 U.S.C. 154(b) by 686 days DE 195 24 216 A1 1, 1997 M YW- y yS. FR 974 116 2, 1951 GB 885643 12, 1961 JP 2002-303105 * 10/2002 (22) Filed: Jan. 9, 2004 * cited by examiner (65)65 PriorO PublicationDO Dat Primary Examiner—Hoang Nguyen US 2005/O15O227 A1 Jul. 14, 2005 (57) ABSTRACT (51) Int. Cl. FOIK I3/00 (2006.01) A steam power plant (100) implementing an improved (52) U.S. Cl. ........................................... 60/645; 60/670 Rankine cycle (55) wherein steam is injected (82, 96) (58) Field of Classification Search .................. 60/651, directly into the energy addition portion of the plant, and the 60/671, 645, 670 resulting two-phase flow is pressurized by multiphase See application file for complete search history.
    [Show full text]
  • O-Steam-Price-List-Mar2017.Pdf
    Part # Description Package Price ======== ================================================== ========= ========== O SCALE STEAM CATALOG PARTS LIST 2 Springs, driver leaf........................ Pkg. 2 $6.25 3 Floor, cab and wood grained deck............. Ea. $14.50 4 Beam, end, front pilot w/coupler pocket...... Ea. $8.00 5 Beam, end, rear pilot w/carry iron.......... Ea. $8.00 6 Bearings, valve rocker....................... Pkg.2 $6.50 8 Coupler pockets, 3-level, for link & pin..... Pkg. 2 $5.75 9 Backhead w/fire door base.................... Ea. $9.00 10 Fire door, working........................... Ea. $7.75 11 Journal, 3/32" bore.......................... Pkg. 4. $5.75 12 Coupler pockets, small, S.F. Street Railway.. Pkg.2 $5.25 13 Brakes, engine............................... Pkg.2 $7.00 14 Smokebox, 22"OD, w/working door.............. Ea. $13.00 15 Drawbar, rear link & pin..................... Ea. $5.00 16 Handles, firedoor............................ Pkg.2. $5.00 17 Shelf, oil can, backhead..................... Ea. $5.75 18 Gauge, backhead, steam pressure.............. Ea. $5.50 19 Lubricator, triple-feed, w/bracket, Seibert.. Ea. $7.50 20 Tri-cock drain w/3 valves, backhead.......... Ea. $5.75 21 Tri-cock valves, backhead, (pl. 48461)....... Pkg. 3 $5.50 23 Throttle, nonworking......................... Ea. $6.75 23.1 Throttle, non working, plastic............... Ea. $5.50 24 Pop-off, pressure, spring & arm.............. Ea. $6.00 25 Levers, reverse/brake, working............... Kit. $7.50 26 Tri-cock drain, less valves.................. Ea. $5.75 27 Seat boxes w/backs........................... Pkg.2 $7.50 28 Injector w/piping, Penberthy,................ Pkg.2 $6.75 29 Oiler, small hand, N/S....................... Pkg.2 $6.00 32 Retainers, journal........................... Pkg.
    [Show full text]
  • Conventional Steam
    DECEMBER 2019 Application Solutions Guide CONVENTIONAL STEAM Experience In Motion 1 Application Solutions Guide — The Global Combined Cycle Landscape TABLE OF CONTENTS THE GLOBAL CONVENTIONAL STEAM POWER FLOWSERVE PRODUCTS IN CONVENTIONAL PLANT LANDSCAPE . 3 STEAM POWER . 16 A Closer Look at Conventional Steam Conventional Steam Applications Power Technology . 5 Overview . 16 Basics . 5 Pumps for Conventional Steam Plants . 18 Plant Configurations and Sizes . 7 Valves for Conventional Steam Plants . 24 Flue Gas Desulfurization (FGD) . 8 Actuators for Conventional Steam Plants . 30 Conventional Steam Project Models . 11 Seals for Conventional Power Plants . 31 Seals for Wet Limestone Flue Gas THE CONVENTIONAL STEAM POWER- Desulfurization . 33 FLOWSERVE INTERFACE . 13 Business Impact and Focus Areas . 13 COMMUNICATING OUR VALUE . 34 The Big Picture . 13 Innovative Ways Flowserve Addresses The Flowserve Fit in Conventional Customer Challenges . 34 Steam Power . 13 APPENDIX . 35 PRODUCTS FOR STEAM POWER — Flowserve Value Proposition in Conventional Steam . 35 AT A GLANCE . 14 Sub-critical Versus Supercritical Pumps . 14 Power Plant . 36 Valves . 14 Reheat . 37 Seals . 14 Terminology . 38 Estimated Values by Plant Size . 15 Acronyms . 39 2 Application Solutions Guide — Conventional Steam THE GLOBAL CONVENTIONAL STEAM POWER PLANT LANDSCAPE Thermal power generation involves the conversion Combined cycle plants have become the preferred of heat energy into electric power. Fossil fuel power technology for gas-fired power generation for several plants as well as nuclear, biomass, geothermal reasons. The USC plant takes 40 to 50 months to and concentrated solar power (CSP) plants are all build; a combined cycle plant can be built in 20 to examples of thermal power generation.
    [Show full text]
  • Instruction Manual GS-4 Daylight Live Steam Alcohol Fired
    Instruction Manual GS-4 Daylight Live Steam Alcohol Fired Southern Pacific GS-4 4-8-4 No. 4449 ACCUCRAFT COMPANY 33268 Central Avenue Union City, CA 94587 ACCUCRAFT Tel: 510 324-3399 T R A I N S Fax: 510 324-3366 email:[email protected] Copyright 2005 GS-4 Daylight Live Steam – Alcohol Fired GS-4 Daylight Live Steam – Alcohol Fired Prototype Information: NOTES: Californians who witnessed the early runs of the Southern Pacific red, orange and black consists declared them to be “the most beautiful trains in the world”. The striping on locomotive, tender, and the length of the train presented a bright, cheery image to a nation emerging from the Great Depression. In 1941, Lima built 28 GS4-class 4-8-4s, and were numbered from 4430 -- 4457. No. 4449 was the only Daylight painted GS-class preserved after lying stationary for years in a park in Portland, Oregon, she was resurrected in red, white and blue livery in 1975 to pull the American Freedom Train around the U.S.A to commemorate the Bicentennial of American Independence. Since then, the 4449 has been meticulously maintained. Today, the 4449 is occasionally run on special trips. 1 10 GS-4 Daylight Live Steam – Alcohol Fired GS-4 Daylight Live Steam – Alcohol Fired General information About 4. Place taped locomotive on Accucraft GS-4 Daylight Model: a level flat surface. Carefully cut the tape along the wood board side Operating a model live-steam 3. Always make sure the fire is surface. Be sure to cut both sides locomotive is much different from out before refueling the locomotive.
    [Show full text]
  • 1 11/19 DIVISION FIFTEEN MECHANICAL Section 15010
    DIVISION FIFTEEN MECHANICAL Section 15010 General Provisions Section 15050 Basic Materials and Methods Section 15250 Insulation Section 15350 Natural Gas Piping Section 15351 Compressed Air Piping System Section 15401 Domestic Water Piping System Section 15405 Soil, Waste, and Vent System Section 15406 Roof Drainage System Section 15420 Plumbing Equipment Section 15422 Domestic Recirculating Pump-ECM Section 15423 Domestic Recirculating Pump Section 15424 Domestic Electric Water Heaters Section 15425 Domestic Gas Water Heaters Section 15426 Condensing Domestic Gas Water Heater Section 15432 Domestic Water Pressure Booster System Section 15436 Small Rainwater Harvesting System (above ground) Section 15450 Plumbing Fixtures and Trim - Elementary Schools Section 15451 Plumbing Fixtures and Trim - Intermediate & High Schools Section 15500 Automatic Sprinkler System Section 15540 Fire Pump Assembly Section 15601 Atmospheric Modular Boilers Section 15604 Fuel Oil Piping & Accessories Section 15605 Fuel Oil Transfer Pumps Section 15607 Underground Storage Tank and Accessories Section 15608 Underground Storage Tank Removal Section 15616 Boiler and Water Heater Vent Section 15620 High Efficiency Boilers Section 15622 Cast Iron Boilers & Burners Section 15624 Steel Boilers and Burners Section 15625 Boiler Burner Replacement and Boiler Conversion Section 15651 Refrigeration Piping Systems Section 15655 Combination Split System Air Handler/Remote Air Cooled Condensing Units Section 15674 Water Cooled Chiller Section 15676 Air Cooled Chiller Section
    [Show full text]
  • Rankine Cycle
    MECH341: Thermodynamics of Engineering System Week 13 Chapter 10 Vapor & Combined Power Cycles The Carnot vapor cycle The Carnot cycle is the most efficient cycle operating between two specified temperature limits but it is not a suitable model for power cycles. Because: • Process 1-2 Limiting the heat transfer processes to two-phase systems severely limits the maximum temperature that can be used in the cycle (374°C for water) • Process 2-3 The turbine cannot handle steam with a high moisture content because of the impingement of liquid droplets on the turbine blades causing erosion and wear. • Process 4-1 It is not practical to design a compressor that handles two phases. The cycle in (b) is not suitable since it requires isentropic compression to extremely high pressures and isothermal heat transfer at variable pressures. 1-2 isothermal heat addition in a boiler 2-3 isentropic expansion in a turbine 3-4 isothermal heat rejection in a condenser 4-1 isentropic compression in a compressor T-s diagram of two Carnot vapor cycles. 1 Rankine cycle: The ideal cycle for vapor power cycles •Many of the impracticalities associated with the Carnot cycle can be eliminated by superheating the steam in the boiler and condensing it completely in the condenser. •The cycle that results is the Rankine cycle, which is the ideal cycle for vapor power plants. The ideal Rankine cycle does not involve any internal irreversibilities. Notes: • Only slight change in water temp through pump • The steam generator consists of boiler (two-phase heat transfer) and superheater • Turbine outlet is high-quality steam • Condenser is cooled by water (eg.
    [Show full text]