Steamboating Guide Edition 2 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sight Glass Level Gauges Data Sheet Sight Glass Level Gauges
Level Measurement Sight Glass Level Gauges Data Sheet Sight Glass Level Gauges Description Accessories Level Gauges for direct reading of Iiquid levels in vessels and ■ Drain and vent tanks. ■ Illumination ■ Heating Applications ■ Scale ■ Refineries ■ Frost protection ■ Off-shore ■ Ultraviolet protection ■ Oil and gas ■ Corrosion protection ■ Power stations ■ Lining/coating PTFE/Halar, rubber ■ Chemical plants ■ Thermofluid oil installations Certificates ■ Refrigerating plants ■ Test certificates according to DIN EN 10204 ■ Cyrogenic services ■ Sour gas regulation NACE ■ Tests to customers requirements Rating ■ Pressure rating PN 6 – 250 Neccessary data ■ Operating temperatures from – 200 up to + 400 °C Glass type, Design pressure (p), Design temperature (T), center to center distance (ME), visible length (SL), materials, Product groups process connection, ex classification, quantity ■ Reflex type ■ Transparent type with glass or mica Special constructions available upon request. ■ Refraction type For further details please use our datasheets. ■ Tubular type Chambers ■ fixed, flanged, pivoted, screwed or weldable ■ interrupted or continuous visible length Materials ■ Forged steel, stainless steel, suitable for pressure equipment according to EN or ASME ■ Particularly corrosion resistant materials as Duplex, Monel, Inconel, Hastelloy, Titanium, etc. Shut-off valves ■ handwheel or quick closing lever ■ with ball check ■ flanged or union connection Data Sheet Sight Glass Level Gauges ∙ 06/2013 Page 1 of 54 Sight Glass Level Gauges Type Overview -
Introduction to Steam Generating Unit (Boiler)
Introduction to Steam Generating Unit (Boiler) A boiler is a closed vessel in which steam is produced from water by combustion of fuel. How a Boiler works:: Water is pumped into the boiler at operating pressure Heat of flue gases vaporizes water to form steam Steam formed is passed into steam space above the water space Applications of steam generatorss (Boilerss)) The steam generators or boilers are integral components of steam turbines which are used as prime movers to drive generators to produce electricity in all thermal and nuclear power plants. These are used in the industry for example in heating systems or for cement production, textiles. These are used to produce distilled water for medicines, pharmaceuticals and other usage. The boilers are used in cold countries for heating large buildings, in agriculture as well for soil steaming. Components of a steam generator (Boiler) Boiler drum, tubes, furnace Boiler mountings Boiler Accessories Boiler mountings are devices which are required for proper operation, safety and control of the boiler. Examples ar ee water level indicator (WLI), pressure gauges (PGs), steam stop valve, safety valves, fusible plug, feed-check valve, blow-off cock, manhole and mudhole, etc. Boiler accessories are devices which are used to increase the efficiency of a boiler. Examples are air preheater, economizer , ss, uperheater , feedpump or injector, baffles, etc.. Boiler classification: 1.1. Tube content: (i) Fire tube boiler and (ii) water tube boiler 2.2. Axis of shell: (i) Horizontal, (ii) vertical, (iii) inclined 3.3. Location of furnace: (i) Externally fired, (ii) internally fired 4.4. -
Establishing Relieving Capacities
Establishing Relieving Capacities Prepared for Chief’s meeting October 9, 2019 By Joseph F. Ball, P. E. Overview of Session • Review of Section IV Pressure Relief Capacity Requirements • ASME Requirements • NBIC Installation Requirements • Establishment of Relieving Capacity for Section IV Pressure Relief Valves Section IV Capacity Requirements The Basics: Overpressure protection requirements are defined by boiler manufacturer. Nameplate shall include: (HG-530.1(a)(3)) Safety or safety relief valve capacity (minimum) as determined according to HG-400.1(d) and HG-400.2(e) Heating area must be marked Section IV Capacity Requirements The Basics: Same for cast iron or aluminum (HG-530.2(c)(3)) – depends upon number of sections Section IV Capacity Requirements The Basics: Modular Boilers • Each module has its own nameplate with capacity required for that module • Aggregate capacity (and heating area) is applied to a single nameplate for the combined unit Section IV Capacity Requirements The Basics: HG-400.1 (d) The minimum valve capacity in pounds per hour shall be determined by dividing the maximum Btu/hr (kW) output at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646). In every case, the requirement of (e) shall be met. (e) The safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed, and operated at maximum capacity, the pressure cannot rise more than 5 psi (35 kPa) above the maximum allowable working pressure. Section IV Capacity Requirements The Basics: HG-400.2 (e) The required steam-relieving capacity, in pounds per hour (kg/hr), of the pressure-relieving device or devices on a boiler shall be determined by dividing the maximum output in Btu/hr (kW) at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646). -
See 1912/1913 Bulletin 8-4 (Pdf Images
.· ' ·. _--Series VIII. _' N~mber iv. BlJLLETlN. THE_ -OF . ·-. • • j • • University. - g · of l.\lotre Dame ---_ I\lOTRE . DAME~ II'JDIANA -j : • , : .. -. ·. , , . ( · . ' ·. ! . ·. _.! . i I ' : : ~ : - _.· . .; .· ·. ·- .:. · GENERAL CATALOGUE -. _ __.. ' l9J2·:·J 9J3 - . _- . .. - ·PUBLISHED QUARTERLY AT -NOTRE Dl\.ME '•· :- - _ f. THE U~I"VERSITY PRESS -. , APRIL,. J9'J3 · .-·- Entered. at th~ Postoffice, N~tr ~ Dame~ Indiana, ~s sec~!'ld~das s m attertl tl[y 17, J 90.5 :- ... _, -~ ,- .... UNIVERSITY OF NOTRE DAM E Noire Damn, Imliana Series VIII* Ntmifeer IV* BULLETIN OF THE University of Notre Dame NOTRE DAME, INDIANA GENERAL CATALOGUE 1912-1913 PUBLISHED QUARTERLY AT NOTRE DAME THE UNIVERSITY PRESS APRIL, 1913 Entered at the Postoffice, Notre Dame, Indiana, as second-class m atter, July 17, i 9 0 s 2 BULLETIN OF THE DIRECTORY OF THE UNIVERSITY The FACULTY—Address: THB UNIVERSITY OF NOTRB DAM#, NOTRE DAME, INDIANA. The STUDENTS—Address: As for the Faculty, except that the name of the H a l l in which the student lives should be added. A Postoffice, a Telegraph Office, a Long Distance Tel ephone, and an Bxpress Office are at the University. The University is two miles from the city of South Bend, Indiana, and about eighty miles east of Chicago. The Lake Shore and Michigan Southern, the Grand Trunk, the Vandalia, the Indiana, Illinois & Iowa, the Chicago and Indiana Southern, and the Michigan Cen tral railways run directly into South Bend. A trolley line runs cars from South Bend to the University every fifteen minutes. The Latitude of the University is 41 degrees, 43 minutes, and 12.7 seconds North, and 86 degrees, 14 minutes and 19.3 seconds W est of Greenwich. -
INDEX for FORMS Under Indian Boiler Regulations, 1950
INDEX for FORMS under Indian Boiler Regulations, 1950 ___________________________________________________________________________ Form No. Description Page ___________________________________________________________________________ Form I Memorandum of Inspection or Registration Book 1 - 29 Form II Inspecting Authority's Certificate of Inspection during 30 Construction (Reg. 4-C)…… Form II-A Inspecting Authority Certificate of Inspection during Construction in respect of the boiler made to foreign code 31 Form II-B Inspecting Authority Certificate of Inspection during the Inspection of boilers for which variation from standard Have been permitted 32 Form III Constructor's Certificate of Manufacture and Test 33-42 (Reg.4-d) Form III-A Certificate of Manufacture and Test for Steam Pipes 43-44 Form III-A(I) Certificate of manufacture and test of steam pipes for 45-46 Which variations have been permitted Form III-B Certificate of Manufacture and Test for tubes 47-48 Form III-B(I) Certificate of manufacture and test 49-50 Form III-C Certificate of Manufacture and Test of Boiler mounting 51 And Fittings. Form III-D Certificate of Manufacture and Test 52 Form III-E Certificate of Manufacture and Test 53 Form III-F Certificate of Manufacture and Test of casting & forging 54 Form IV Steel Marker's Certificate of Manufacture and results of Test 55 Form IV-A Certificate of Manufacture and Results of Tests in lieu of 56 Form IV. Form V Provisional Order under section 9 of the Indian Boilers 57 Act, 1923 Form VI Certificate for use of a Boiler 58-59 -
Westinghouse Technology 7.1 Main and Auxiliary Steam Systems
Westinghouse Technology Systems Manual Section 7.1 Main and Auxiliary Steam Systems TABLE OF CONTENTS 7.1MAIN AND AUXILIARY STEAM SYSTEMS ................................................... 7.1-1 7.1.1 Introduction .......................................................................................... 7.1-1 7.1.2 Main Steam System Description ......................................................... 7.1-1 7.1.2.1 Safety Considerations ............................................................ 7.1-2 7.1.2.2 Accident Considerations ........................................................ 7.1-3 7.1.3 Main Steam System Component Descriptions .................................... 7.1-4 7.1.3.1 Flow Restrictors ..................................................................... 7.1-4 7.1.3.2 Main Steam Instrumentation .................................................. 7.1-4 7.1.3.3 Power-Operated Relief Valves ............................................... 7.1-5 7.1.3.4 Steam Generator Safety Valves ............................................ 7.1-6 7.1.3.5 AFW Pump Steam Supplies .................................................. 7.1-6 7.1.3.6 High Pressure Drains ............................................................. 7.1-6 7.1.3.7 Main Steam Isolation Valves .................................................. 7.1-7 7.1.3.8 Main Steam Check Valves ..................................................... 7.1-8 7.1.3.9 MSIV Bypass Valves .............................................................. 7.1-8 7.1.4 Auxiliary Steam System -
Steam Power Plant
www.getmyuni.com Steam Power Plant A power plant is assembly of systems or subsystems to generate electricity, i.e., power with economy and requirements. The power plant itself must be useful economically and environmental friendly to the society. The present book is oriented to conventional as well as non-conventional energy generation. While the stress is on energy efficient system regards conventional power systems viz., to increase the system conversion efficiency the supreme goal is to develop, design, and manufacturer the non-conventional power generating systems in coming decades preferably after 2050 AD which are conducive to society as well as having feasible energy conversion efficiency and non-friendly to pollution, keeping in view the pollution act. The subject as a whole can be also stated as modern power plants for power viz electricity generation in 21st century. The word modern means pertaining to time. At present due to energy crisis the first goal is to conserve energy for future while the second step is todevelop alternative energy systems including direct energy conversion devices, with the devotion, dedication and determination remembering the phrase, “Delve and Delve Again till wade into”. CLASSIFICATION OF POWER PLANTS Power Plant 1. Conventional - Steam Engines Power Plants - S team Turbine Power Plants - Diesel Power Plants - Gas Turbine Power Plants - Hydro-Electric Power Plants - Nuclear Power Plants Thermoelectric Generator 2. Non-conventional Thermoelectric generator Fuel-cells Power Plants Photovoltaic solar cells Power S ystem MHD Power Plants Fussion Reactor N PP Power S y stem Biogas, Biomass Energy Power sy stem Geothermal Energy Wind Energy Power System Ocean Thermal energy conversion (OTEC) Wave and Tidal Wave Energ y Plantation Scheme A power plant may be defined as a machine or assembly of equipment that generates and delivers a flow of mechanical or electrical energy. -
T H E G E N E R a T
Newsletter of THE PALMERSTON NORTH MODEL ENGINEERING CLUB INC Managers of the “MARRINER RESERVE RAILWAY” Please address all correspondence to :- 22b Haydon St, Palmerston North. PRESIDENT SECRETARY TREASURER EDITOR Robert Edwards Stuart Anderson John Tweedie Doug Chambers (06) 355-1489 (06) 357-7794 (06) 358-0150 (06) 354-9379 September [email protected] [email protected] [email protected] [email protected] 2012 No 382 PNMEC Home Page www.pnmec.org.nz Email:- [email protected] TRACK RUNNING T This is held on the FIRST and THIRD Sunday of each month, from 1 pm to 4 pm Summer and 1 pm to 3 pm during the Winter. All club members are welcome to attend and help out with loco coaling, watering and passenger marshalling - none of the tasks being at all H Visiting club members are always welcome at the track, at the monthly meeting, or if just visiting and wishing to make contact with members, please phone one of the above office bearers. E Sender:- PNMEC Place 22b Haydon St, stamp Palmerston North here G E N E This Months Featured Model R A T O R - 2 - The steel work on the axles shows evidence of Report on the blacksmith’s skills so that indicates that the August Meeting. model may date back to the early 1900s. Richard Lockett started off the evening with a brief talk on the sharpening of lathe tools and drills. Merv George was asked to talk about the bench grinder and rest he had brought in. This grinder was fitted with a diamond grinding wheel and was used solely for sharpening drills. -
Hydraulic Valve Remote Control System
HYDRAULIC VALVE REMOTE CONTROL SYSTEM OVERVIEW Nordic Flow Control’s compact design for our Hydraulic Valve Remote Control Systems does not compromise on power. Our systems operate at a higher torque level even with our smaller actuators. Submerged applications are available, and maintenance is possible even during operation. By having a hand pump in a deck box with solenoid valves, manual operations are now possible. Our Hydraulic Valve Remote Control Systems are tried and tested in the harshest conditions. The system consists of the hydraulic actuator, a power unit, solenoid valve cabinet, and the control station with operating system. Our actuators and control systems are able to match and operate valves with no limitations. BENEFITS • Able to operate bigger size valves with smaller actuators • Able to use for submerged applications • Cost efficient • Reliable • Able to operate at hazardous areas • Simplicity of design and control Nordic Flow Control Valve Remote Control Systems 1 COMPONENTS ACTUATORS Nordic Flow Control’s actuators are manufactured using sophisticated machinery in our own production plant. They convert hydraulic energy directly into a mechanical rotating movement by using the rack and pinion principle, elimi- nating cost from intensive servicing, maintenance and the sensitivity of transmission elements. Our actuators are created for durability, performance and cost effectiveness. Our new NRA series actuators are now more compact and provide higher torque at even smaller sizes. They have a longer life span, with higher efficiency. Polymer bearings for smaller actuators and ball bearings for bigger actuators are used to reduce friction between the parts. Mounting is according to ISO5211 standards, but can be customised to meet other requirements. -
NBIC Pressure Relief Device (PRD) Inspection Guide
NBIC Pressure Relief Device (PRD) Inspection Guide This guide provides a basis for NBIC Inspectors use in reviewing Pressure Relief Devices (PRD’s) for compliance with the National Board Inspection Code (NBIC). It is only intended to provide general guidance, and must be used in conjunction with NBIC, Part 2 for specific details of inspection. 1. Description and Overview Pressure relief devices are used to provide a means of venting excess pressure which could rupture a boiler or pressure vessel. A pressure relief device is the last line of defense for safety. If all other safety devices or operating controls fail, the pressure relief device must be capable of venting excess pressure. 2. Types of Devices There are many types of pressure relief devices available for use in the boiler and pressure vessel industry. This inspector guide will address the most common devices found on boilers and pressure vessels. Virtually all jurisdictions require a pressure relief device to be manufactured and certified in accordance with the ASME Code in addition to being capacity certified by the National Board. The most common types of pressure relief devices are: Pressure Relief Valve – A pressure relief device designed for emergency or abnormal over pressure conditions and designed to reclose after the pressure has been reduced. Safety Valve – This device is typically used for steam or vapor service. It operates automatically with a full-opening pop action and recloses when the pressure drops to a value consistent with the blowdown requirements prescribed by the applicable governing code or standard. Relief Valve – This device is typically used for liquid service. -
See 1913/1914 Bulletin
Series IX. NumberJV. ·. .' '· BULLETIN .· . ·.·· . -.: OF THE. .' ·.. , I' ' .University of . Notre Dartie . NOTRE DAlVfE, INDIANA . -~ . --·- . .. -_;.- • ' . .· . GENERAL CATALOGUE : .. .· 1913-~9i4 . ' . - . : - . , . ..· .. --.. ·THE UNIVERSITY. PRESS · - ·• 'APRIL, 1914 I .· . · Entered at the Postoffice,N~treDari:J.e,'Indiari;,as second ~das s niat ter,Jtily 17 1905 · · · . .' . .. ... · . .. , . ·. : , · -·-· .. "', . •, ' ; .. ' . .. ' .. ' :- . ·.. UNIVERSITY OF NOTRE DAM E No Ira Damo, Indiana Series IX. Number IV. BULLETIN OF TH E University of Notre Dame NOTRE DAME, INDIANA ' GENERAL CATALOGUE 1913-1914 PUBLISHED QUARTERLY AT NOTRE DAME THE UNIVERSITY PRESS APRIL, 1914 Entered at the Postoffice, Notre Dame, Indiana, as second-class matter, July 17,1905 2 BULLETIN OF THE DIRECTORY OF THE UNIVERSITY The FACULTY—Address: THE UNIVERSITY OF NOTRE DAME, Notre Dame, Indiana. The STUDENTS—Address: As for the Faculty, except that the name of the Hall in which the student lives should be added. A Postoffice, a Telegraph Office, a Long Distance Tel ephone, and an Express Office are at the University. The University is two miles from the city of South Bend, Indiana, and about eighty miles east of Chicago. The Lake Shore and Michigan Southern, the Grand Trunk, the Vandalia, the Indiana, Illinois & Iowa, the Chicago and Indiana Southern, and the Michigan Cen tral railways run directly into South Bend. A trolley line runs cars from South Bend to -the University every fifteen minutes. The Latitude of the University is 41 degrees, 43 minutes, and 12.7 seconds North, and 86 degrees, 14 minutes and 19.3 seconds West of Greenwich. The elevation is about 750 feet above the sea. From this it is clear that the location is favorable for a healthful climate where students may engage in vigorous mental work without too great fatigue or danger to health. -
Instruction Manual GS-4 Daylight Live Steam Alcohol Fired
Instruction Manual GS-4 Daylight Live Steam Alcohol Fired Southern Pacific GS-4 4-8-4 No. 4449 ACCUCRAFT COMPANY 33268 Central Avenue Union City, CA 94587 ACCUCRAFT Tel: 510 324-3399 T R A I N S Fax: 510 324-3366 email:[email protected] Copyright 2005 GS-4 Daylight Live Steam – Alcohol Fired GS-4 Daylight Live Steam – Alcohol Fired Prototype Information: NOTES: Californians who witnessed the early runs of the Southern Pacific red, orange and black consists declared them to be “the most beautiful trains in the world”. The striping on locomotive, tender, and the length of the train presented a bright, cheery image to a nation emerging from the Great Depression. In 1941, Lima built 28 GS4-class 4-8-4s, and were numbered from 4430 -- 4457. No. 4449 was the only Daylight painted GS-class preserved after lying stationary for years in a park in Portland, Oregon, she was resurrected in red, white and blue livery in 1975 to pull the American Freedom Train around the U.S.A to commemorate the Bicentennial of American Independence. Since then, the 4449 has been meticulously maintained. Today, the 4449 is occasionally run on special trips. 1 10 GS-4 Daylight Live Steam – Alcohol Fired GS-4 Daylight Live Steam – Alcohol Fired General information About 4. Place taped locomotive on Accucraft GS-4 Daylight Model: a level flat surface. Carefully cut the tape along the wood board side Operating a model live-steam 3. Always make sure the fire is surface. Be sure to cut both sides locomotive is much different from out before refueling the locomotive.