Hydraulic Valve Remote Control System

Total Page:16

File Type:pdf, Size:1020Kb

Hydraulic Valve Remote Control System HYDRAULIC VALVE REMOTE CONTROL SYSTEM OVERVIEW Nordic Flow Control’s compact design for our Hydraulic Valve Remote Control Systems does not compromise on power. Our systems operate at a higher torque level even with our smaller actuators. Submerged applications are available, and maintenance is possible even during operation. By having a hand pump in a deck box with solenoid valves, manual operations are now possible. Our Hydraulic Valve Remote Control Systems are tried and tested in the harshest conditions. The system consists of the hydraulic actuator, a power unit, solenoid valve cabinet, and the control station with operating system. Our actuators and control systems are able to match and operate valves with no limitations. BENEFITS • Able to operate bigger size valves with smaller actuators • Able to use for submerged applications • Cost efficient • Reliable • Able to operate at hazardous areas • Simplicity of design and control Nordic Flow Control Valve Remote Control Systems 1 COMPONENTS ACTUATORS Nordic Flow Control’s actuators are manufactured using sophisticated machinery in our own production plant. They convert hydraulic energy directly into a mechanical rotating movement by using the rack and pinion principle, elimi- nating cost from intensive servicing, maintenance and the sensitivity of transmission elements. Our actuators are created for durability, performance and cost effectiveness. Our new NRA series actuators are now more compact and provide higher torque at even smaller sizes. They have a longer life span, with higher efficiency. Polymer bearings for smaller actuators and ball bearings for bigger actuators are used to reduce friction between the parts. Mounting is according to ISO5211 standards, but can be customised to meet other requirements. With no need for valves to be dismounted, maintenance work during normal operations is possible, cutting down- time needed for repairs. A set of repair kit will be provided for every actuator supplied. Features • Compact and simple rack and pinion design • No external tubing • Replaceable brass rings • Submerged/Non-submerged • High reliability • Left chamber is equivalent to right chamber, and spares are interchangeable for the same model of actuators • Can be converted to spring return using the same actuator body • Bypass valve included for easy purging of line • Suitable for all Quarter-turn Valves • Adjustable OPEN/CLOSE positions • Meets the requirements from major classification authorities like American Bureau of Shipping, Det Norske Veri- tas, Lloyd’s Register of Shipping, Germanischer Lloyd, Bureau Veritas, China Classification Society and others • Suitable for Marine and Offshore applications Benefits • Minimal parts/spares purchase required • Maintenance is possible during “live” operations, with no need to dismount valve during servicing and mainte- nance • Ease of repair and maintenance Optional Equipment • Actuator-mounted Limit Switch (Continuous or ON/OFF) • Epoxy coating (Thickness and paint colour) • Submerged accessories • Emergency operation Hand Pump 2 Nordic Flow Control Valve Remote Control Systems A Closer Look At Nordic’s Actuators NRA SERIES DOUBLE ACTING ACTUATORS TECHNICAL SPECIFICATIONS Double Acting Hydraulic Actuator Single Acting Hydraulic Actuator Working Pressure 135 bar 135 bar Rotation 90o +/- 3o 90o +/- 3o Indication OPEN/CLOSE on shaft OPEN/CLOSE on shaft Protection IP65/IP68 IP65/IP68 Colour Black (Matte finish) Black (Matte finish) Hydraulic Media Recommended acid free hydraulic Recommended acid free hydraulic viscosity range 15 to 200 cSt viscosity range 15 to 200 cSt Working Temperature -15oC to 80oC (Standard) -15oC to 80oC (Standard) Nordic Flow Control Valve Remote Control Systems 3 TECHNICAL SPECIFICATIONS – ACTUATOR DRAWINGS 4 Nordic Flow Control Valve Remote Control Systems Nordic Flow Control Valve Remote Control Systems 5 CABINETS AND DECK BOXES Solenoid Valve Cabinet Nordic Flow Control’s Solenoid Valve Cabinet (SVC) centralised cabinet design houses all the non-IS solenoid valves that are used to control the direction of oil flow to the actuators. The solenoid valve cabinet is installed in safe, non- hazardous areas and the PLC I/O modules can be installed in the SVC per requirements. The SVC receives signals from the switches in the control consoles or from the computer system which activates the solenoid valves. Our SVC units come in standard 60, 72, and 96 control valve designs. The cable entry can be customised to be from the top, bottom or side to suit requirements. The Cabinet Consists of: • Solenoid Valves • Throttle Valves • Pressure Gauges • Feedback Indicator Switches • Quick coupling • CETOP 3 Manifolds • Flow switches and/or Volumetric Position Indicators (VPI) for ON/OFF or modulating feedback • PLC remote I/O Modules and necessary electrical components option in the processing compartment • High-Pressure Filter (Optional) TECHNICAL SPECIFICATIONS Working Pressure 135 bar Max Test Pressure 200 bar Fitting Connection 1/4” BSPP or 3/8” BSPP Intrinsically Safe Deck Boxes Nordic Flow Control’s watertight Deck Boxes with Centralised Intrinsically Safe (IS) solenoid valves are installed in hazardous areas. The cabinet consists of: • IS Solenoid Valves • Throttle Valves • Pressure Gauges • Feedback Indicator Switches • Quick coupling • CETOP 3 Manifolds • Flow Switches and/or Volumetric Position Indicators (VPI) for On/Off or modulating feedback • All barriers are located at the Safe Area • High-Pressure Filter (Optional) TECHNICAL SPECIFICATIONS Working Pressure 135 bar Max Test Pressure 200 bar Fitting Connection 1/4” BSPP or 3/8” BSPP 6 Nordic Flow Control Valve Remote Control Systems NORDIC’S Model SVC 60 Solenoid Cabinet is able to hold 10 manifolds, Totaling 60 Solenoid Valves. NORDIC’s Model SVC 72 Solenoid Cabinet is able to hold 12 Manifolds, Totaling 72 Solenoid Valves. Nordic Flow Control Valve Remote Control Systems 7 NORDIC’s Model SVC 96 Solenoid Cabinet is able to hold 16 Manifolds, Totaling 96 Solenoid Valves. Solenoid Valve Cabinet with Processing Cabinet 8 Nordic Flow Control Valve Remote Control Systems HYDRAULIC POWER UNIT Nordic Flow Control’s Hydraulic Power Unit (HPU) is approved for use on several vessel classifications and facilities. Its proven reliable and compact design allows it to be placed and used in confined areas. The HPU is designed for 100% standby. In the event of a power failure of the main input, the dual input feature enables the auxiliary input to cut-in automatically. The control unit consists of a local starter cabinet or a remote operation panel in the control console with a manual switch for selecting the pump to be operated, giving the end user the flexibility to control the necessary functions both remotely and locally. Nordic Flow Control Valve Remote Control Systems 9 Our HPU is delivered as a one skid-mounted unit, and it contains the following main components: • Oil reservoir with a capacity to be calculated depending on the number of actuators • Electric motors to be controlled from separate starters • Hydraulic pump • Valves and Manifolds • Accumulator and charging kit • Starter Control Panel and Control Panel • Sight Glass • Level Switches • Pressure Switches for START/STOP of pumps at preset values • Safety Valves • Pressure Gauge • Oil temperature monitoring The HPU has been reviewed as an extremely reliable power unit. From standard to customised units, they are very well designed. Our standard units come with two motors, for back up purposes and to extend the lifespan of our HPU. All motors, the electrical cabinets and all other equipment come with IP55 protection to ensure greater performance. Our HPU is designed to be user-friendly. The layout for the electrical and hydraulic components is placed systematically and the open design allows for easy access during maintenance. Features • Excellent dependability • Local and remote control • Low level, high pressure, high temperature alarms • Automatic and manual control for motor START/STOP • Backup reservoir allowing for auto transfer between the two reservoirs if needed • IP56 protection on motors electrical cabinet and equipment • Comes in three standard sizes of 150, 250 and 350 litres reservoirs TECHNICAL SPECIFICATIONS Reservoir Volume 150l 250l 350l Pump Capacity / 2 Pumps 7l/min 14l/min 14l/min Max Working Pressure 170 bar Electric Motor (2 nos) Voltage 440 V/60 Hz/3 Ph/4 pole Power Consumption 2.2 kw/each 4 kw/each 5.5 kw/each Bladder Accumulator 20l 50l 2 x 32l 10 Nordic Flow Control Valve Remote Control Systems Nordic Flow Control Valve Remote Control Systems 11 12 Nordic Flow Control Valve Remote Control Systems Nordic Flow Control Valve Remote Control Systems 13 HYDRAULIC SYSTEM ACCESSORIES Double Pilot Block The Double Pilot (DP) Block is designed to be used on both our NRA and NHR series of double acting actuators. It contains a throttling valve which is used for adjusting speed when regulating the valve’s opening and closing speeds. DP Block THROTTLE VALVE Features • A Double Pilot (DP) Check Valve with hydro-lock function to provide for loss of pressure in oil chamber caused by external factors • Throttling Valve for speed adjustment to minimise water hammering effect • A pressure relief valve set at 160 bars to prevent over-pressurising the actuators by releasing the hydraulic oil from the chamber if the pressure inside goes higher than 170 to 180 bar • A hand pump connection that allows emergency operation by means of a portable Hand Pump • Quick coupling to connect the hand pump
Recommended publications
  • Establishing Relieving Capacities
    Establishing Relieving Capacities Prepared for Chief’s meeting October 9, 2019 By Joseph F. Ball, P. E. Overview of Session • Review of Section IV Pressure Relief Capacity Requirements • ASME Requirements • NBIC Installation Requirements • Establishment of Relieving Capacity for Section IV Pressure Relief Valves Section IV Capacity Requirements The Basics: Overpressure protection requirements are defined by boiler manufacturer. Nameplate shall include: (HG-530.1(a)(3)) Safety or safety relief valve capacity (minimum) as determined according to HG-400.1(d) and HG-400.2(e) Heating area must be marked Section IV Capacity Requirements The Basics: Same for cast iron or aluminum (HG-530.2(c)(3)) – depends upon number of sections Section IV Capacity Requirements The Basics: Modular Boilers • Each module has its own nameplate with capacity required for that module • Aggregate capacity (and heating area) is applied to a single nameplate for the combined unit Section IV Capacity Requirements The Basics: HG-400.1 (d) The minimum valve capacity in pounds per hour shall be determined by dividing the maximum Btu/hr (kW) output at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646). In every case, the requirement of (e) shall be met. (e) The safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed, and operated at maximum capacity, the pressure cannot rise more than 5 psi (35 kPa) above the maximum allowable working pressure. Section IV Capacity Requirements The Basics: HG-400.2 (e) The required steam-relieving capacity, in pounds per hour (kg/hr), of the pressure-relieving device or devices on a boiler shall be determined by dividing the maximum output in Btu/hr (kW) at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646).
    [Show full text]
  • Steamboating Guide Edition 2 2010
    Steamboating SampleGuide Pages Second Edition Steamboating Guide Edition 2 2010 Edited by Roger Calvert and Rob van Es The contributors and editors of this publication have made every effort to ensure the accuracy and relevance of the data presented and the validity and appropriateness of the recommendations made. It is, however, ultimately the responsibility of the owner of a boat to check the data and take the final decisions, in the context of the proposed design. If necessary, appropriate professional advice should be sought. Neither the contributors, the editors, nor the SBA can accept responsibility for any direct or indirect consequences arising from the use of the data or from following the recommendationsSample of this publication. Pages Copying of parts or the whole of this document by members of the SBA is permitted, subject to the terms published on the SBA web site. Otherwise, copying is not permitted without the permission of the SBA, except as allowed under copyright law. Table of Contents Preface Section A – Introduction 1 Hulls 1-1 2 Boiler Types 2-1 3 Engine Types 3-1 4 Fuels 4-1 Section B – Steamboat Operations 5 Boiler Fittings 5-1 6 Steam Plant Installation 6-1 7 Boiler Operation and Maintenance 7-1 8 Steam Ancillaries 8-1 9 Boat Handling Advice 9-1 10 Boiler Inspection and Testing 10-1 11 Trailers and Towing 11-1 Section C – Technical 12 Propulsion 12-1 13 Valve Setting 13-1 14 Data and Performance 14-1 15 Boiler Design Considerations 15-1 16 Workshop Techniques 16-1 Glossary 17-1 Index 18-1 Sample Pages Preface The aims and objects of the Steam Boat Association are: (i) To foster and encourage steam boating and the building, development, preservation and restoration of steam boats and steam machinery, by all possible means.
    [Show full text]
  • Poppet Valve
    POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end.
    [Show full text]
  • History of a Forgotten Engine Alex Cannella, News Editor
    POWER PLAY History of a Forgotten Engine Alex Cannella, News Editor In 2017, there’s more variety to be found un- der the hood of a car than ever. Electric, hybrid and internal combustion engines all sit next to a range of trans- mission types, creating an ever-increasingly complex evolu- tionary web of technology choices for what we put into our automobiles. But every evolutionary tree has a few dead end branches that ended up never going anywhere. One such branch has an interesting and somewhat storied history, but it’s a history that’s been largely forgotten outside of columns describing quirky engineering marvels like this one. The sleeve-valve engine was an invention that came at the turn of the 20th century and saw scattered use between its inception and World War II. But afterwards, it fell into obscurity, outpaced (By Andy Dingley (scanner) - Scan from The Autocar (Ninth edition, circa 1919) Autocar Handbook, London: Iliffe & Sons., pp. p. 38,fig. 21, Public Domain, by the poppet valves we use in engines today that, ironically, https://commons.wikimedia.org/w/index.php?curid=8771152) it was initially developed to replace. Back when the sleeve-valve engine was first developed, through the economic downturn, and by the time the econ- the poppet valves in internal combustion engines were ex- omy was looking up again, poppet valve engines had caught tremely noisy contraptions, a concern that likely sounds fa- up to the sleeve-valve and were quickly becoming just as miliar to anyone in the automotive industry today. Charles quiet and efficient.
    [Show full text]
  • Automatic Flow Control Valves 6
    Automatic Flow Form No.: F143.6 Control Valves Date: 8.06 Guide Specifications Supersedes: F143.5 5.99 Guide Specifications A. Manufacturers: 5. For 2 1/2” and larger flanged connections: 1. Flow Design, Inc., Autoflow or approved equal. Ductile-iron body suitable for mounting wafer Models YR, AC, MC, WG, WS, WB, WR style between standard 150# or 300# flanges. or WT. The long flange bolts and nuts shall be provided with each control valve. Flow Design Model WS B. Design: or equal. 1. The GPM for the automatic flow control valves 6. All valves shall be factory leak tested at 100 psi shall be factory set and shall automatically limit air. the rate of flow to within 5% of the specified D. Minimum ratings: GPM over at least 95 percent of the control 1. 1/2” through 2” pipe size: 400 PSIG at 250°F range. 2. 2 1/2” through 14” pipe size: 600 PSIG at 250°F 2. For 1/2” - 2“, the flow cartridge shall be 3. 16” through 30” pipe size: 250 PSIG at 250°F removable from the Y- body housing without the use of special tools to provide access for E. Flow Verification (choose one): regulator change-out, inspection and cleaning 1. The differential pressure across the Automatic without breaking the main piping. (Access shall Flow Control Valve shall be measured for flow be similar to that provided for removal of a verification and to determine the amount of Y-strainer screen). system over heading or under pumping. 3. PUMP HEAD REQUIREMENT: 2.
    [Show full text]
  • Review of Advancement in Variable Valve Actuation of Internal Combustion Engines
    applied sciences Review Review of Advancement in Variable Valve Actuation of Internal Combustion Engines Zheng Lou 1,* and Guoming Zhu 2 1 LGD Technology, LLC, 11200 Fellows Creek Drive, Plymouth, MI 48170, USA 2 Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 22 January 2020; Published: 11 February 2020 Abstract: The increasing concerns of air pollution and energy usage led to the electrification of the vehicle powertrain system in recent years. On the other hand, internal combustion engines were the dominant vehicle power source for more than a century, and they will continue to be used in most vehicles for decades to come; thus, it is necessary to employ advanced technologies to replace traditional mechanical systems with mechatronic systems to meet the ever-increasing demand of continuously improving engine efficiency with reduced emissions, where engine intake and the exhaust valve system represent key subsystems that affect the engine combustion efficiency and emissions. This paper reviews variable engine valve systems, including hydraulic and electrical variable valve timing systems, hydraulic multistep lift systems, continuously variable lift and timing valve systems, lost-motion systems, and electro-magnetic, electro-hydraulic, and electro-pneumatic variable valve actuation systems. Keywords: engine valve systems; continuously variable valve systems; engine valve system control; combustion optimization 1. Introduction With growing concerns on energy security and global warming, there are global efforts to develop more efficient vehicles with lower regulated emissions, including hybrid electrical vehicles, electrical vehicles, and fuel cell vehicles. Hybrid electrical vehicles became a significant part of vehicle production because of their overall efficiency, and they still pose a significant cost penalty, resulting in a stagnant market penetration of 3.2% and 2.7% in 2013 and 2018, respectively, in the United States (US), for example [1].
    [Show full text]
  • Westinghouse Technology 7.1 Main and Auxiliary Steam Systems
    Westinghouse Technology Systems Manual Section 7.1 Main and Auxiliary Steam Systems TABLE OF CONTENTS 7.1MAIN AND AUXILIARY STEAM SYSTEMS ................................................... 7.1-1 7.1.1 Introduction .......................................................................................... 7.1-1 7.1.2 Main Steam System Description ......................................................... 7.1-1 7.1.2.1 Safety Considerations ............................................................ 7.1-2 7.1.2.2 Accident Considerations ........................................................ 7.1-3 7.1.3 Main Steam System Component Descriptions .................................... 7.1-4 7.1.3.1 Flow Restrictors ..................................................................... 7.1-4 7.1.3.2 Main Steam Instrumentation .................................................. 7.1-4 7.1.3.3 Power-Operated Relief Valves ............................................... 7.1-5 7.1.3.4 Steam Generator Safety Valves ............................................ 7.1-6 7.1.3.5 AFW Pump Steam Supplies .................................................. 7.1-6 7.1.3.6 High Pressure Drains ............................................................. 7.1-6 7.1.3.7 Main Steam Isolation Valves .................................................. 7.1-7 7.1.3.8 Main Steam Check Valves ..................................................... 7.1-8 7.1.3.9 MSIV Bypass Valves .............................................................. 7.1-8 7.1.4 Auxiliary Steam System
    [Show full text]
  • Directional Control Valve 2-, 3- & 4-Way Din Poppet
    2-, 3- & 4-WAY DIN POPPET DIRECTIONAL CONTROL VALVE 195 West Ryan Road 414-764-7500 Oak Creek, WI 53154 [email protected] www.elwood.com/fluidpower.html Poppet Directional Valves Features A modern concept in water hydraulics Zero Leakage Pilot Designed to Suit Application Positive, drop tight sealing is achieved by poppet type plung- For heavy duty mill type applications, our standard air actuat- er assemblies with replaceable seating discs which close ed pilot valve (Brochure 82) is furnished. This valve requires against heat treated stainless steel seats. no secondary operating media. Extended Poppet Seal Life Six Poppet Models Available The dynamic seals never cross ports during operation, there- Designed for dual speed, 4-way applications. fore, cannot extrude into ports. These seals are wear com- pensating. Interchangeability with Competitor Valves Direct replacements with competitor valves via simple adapter Minimum Valve Space Requirements plates. Compact subplate mounted design reduces space require- ments by as much as 50%. Easy Valve Maintenance All normal maintenance can be performed at the top side of the valve without removing the valve from the system. The internals are designed elim- inating all “press” fitted as well as “selectively” locked parts or assemblies. Cavities conform to international DIN standards and are sleeved to facilitate seal and parts replacement. Directional Control Function Flexibility Change the valve function by simply removing the top plate and arranging plugs for the appropriate function. Less Inventory Required Minimize spare inventory requirements through commonality of components between 2-, 3- and 4-way valves. Built-in Flow Controls Totally independent “meter-in” and/or “meter-out” flow control from either port is accomplished by simply limiting the poppet stroke by use of the ex- ternally stainless steel flow control screw.
    [Show full text]
  • NBIC Pressure Relief Device (PRD) Inspection Guide
    NBIC Pressure Relief Device (PRD) Inspection Guide This guide provides a basis for NBIC Inspectors use in reviewing Pressure Relief Devices (PRD’s) for compliance with the National Board Inspection Code (NBIC). It is only intended to provide general guidance, and must be used in conjunction with NBIC, Part 2 for specific details of inspection. 1. Description and Overview Pressure relief devices are used to provide a means of venting excess pressure which could rupture a boiler or pressure vessel. A pressure relief device is the last line of defense for safety. If all other safety devices or operating controls fail, the pressure relief device must be capable of venting excess pressure. 2. Types of Devices There are many types of pressure relief devices available for use in the boiler and pressure vessel industry. This inspector guide will address the most common devices found on boilers and pressure vessels. Virtually all jurisdictions require a pressure relief device to be manufactured and certified in accordance with the ASME Code in addition to being capacity certified by the National Board. The most common types of pressure relief devices are: Pressure Relief Valve – A pressure relief device designed for emergency or abnormal over pressure conditions and designed to reclose after the pressure has been reduced. Safety Valve – This device is typically used for steam or vapor service. It operates automatically with a full-opening pop action and recloses when the pressure drops to a value consistent with the blowdown requirements prescribed by the applicable governing code or standard. Relief Valve – This device is typically used for liquid service.
    [Show full text]
  • Software Controlled Stepping Valve System for a Modern Car Engine
    Available online at www.sciencedirect.com ScienceDirect Procedia Manufacturing 8 ( 2017 ) 525 – 532 14th Global Conference on Sustainable Manufacturing, GCSM 3-5 October 2016, Stellenbosch, South Africa Software Controlled Stepping Valve System for a Modern Car Engine I. Zibania, R. Marumob, J. Chumac and I. Ngebanid.* a,b,dUniversity of Botswana, P/Bag 0022, Gaborone, Botswana cBotswana International University of Science and Technology, P/Bag 16, Palapye, Botswana Abstract To address the problem of a piston-valve collision associated with poppet valve engines, we replaced the conventional poppet valve with a solenoid operated stepping valve whose motion is perpendicular to that of the piston. The valve events are software controlled, giving rise to precise intake/exhaust cycles and improved engine efficiency. Other rotary engine models like the Coates engine suffer from sealing problems and possible valve seizure resulting from excessive frictional forces between valve and seat. The proposed valve on the other hand, is located within the combustion chamber so that the cylinder pressure help seal the valve. To minimize friction, the valve clears its seat before stepping into its next position. The proposed system was successfully simulated using ALTERA’s QUARTUS II Development System. A successful prototype was built using a single piston engine. This is an ongoing project to eventually produce a 4-cylinder engine. ©© 2017 201 6Published The Authors. by Elsevier Published B.V. Thisby Elsevier is an open B.V. access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the organizing). committee of the 14th Global Conference on Sustainable Manufacturing.
    [Show full text]
  • Analysis of the Design of a Poppet Valve by Transitory Simulation
    energies Article Analysis of the Design of a Poppet Valve by Transitory Simulation Ivan Gomez 1, Andrés Gonzalez-Mancera 1 , Brittany Newell 2 and Jose Garcia-Bravo 2,* 1 Mechanical Engineering Department, Universidad de Los Andes, Bogota 111711, Colombia; [email protected] (I.G.); [email protected] (A.G.-M.) 2 School of Engineering Technology, Purdue University, West Lafayette 47907, IN, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-765-494-7312 Received: 10 February 2019; Accepted: 2 March 2019; Published: 7 March 2019 Abstract: This article contains the results and analysis of the dynamic behavior of a poppet valve through CFD simulation. A computational model based on the finite volume method was developed to characterize the flow at the interior of the valve while it is moving. The model was validated using published data from the valve manufacturer. This data was in accordance with the experimental model. The model was used to predict the behavior of the device as it is operated at high frequencies. Non-dimensional parameters for generalizing and analyzing the effects of the properties of the fluid were used. It was found that it is possible to enhance the dynamic behavior of the valve by altering the viscosity of the working fluid. Finally, using the generated model, the influence of the angle of the poppet was analyzed. It was found that angle has a minimal effect on pressure. However, flow forces increase as angle decreases. Therefore, reducing poppet angle is undesirable because it increases power requirements for valve actuation. Keywords: poppet valve geometry; CFD valve simulation; valve optimization 1.
    [Show full text]
  • BASIS SAFETY CONTROLS for HOT WATER and LOW-PRESSURE STEAM BOILERS By: Tom Vana, Factory Representative, Mcdonnell & Miller, Inc
    Service Application Manual SAM Chapter 630-36 Section 20 BASIS SAFETY CONTROLS FOR HOT WATER AND LOW-PRESSURE STEAM BOILERS By: Tom Vana, Factory Representative, McDonnell & Miller, Inc. HOT WATER SPACE HEATING BOILERS SAFTETY RELIEF VALVES Good engineering tells us that every hot water boiler must have a safety relief valve that will keep the pressure at or below the maximum allowable working pressure of the boiler. But until recently the methods of accomplishing this objective were not clearly understood. Figure 70F51A shows one method of attempting to provide protection against over-pressure which is unsafe for these reasons: 1. The relief valve does not comply with the ASME Boiler code requirements. 2. Its capacity is unknown. 3. It is installed in the wrong location. 4. It can inadvertently be isolated from the boiler due to lime or scale build-up in boiler feed line. 5. The function of a relief valve has nothing in common with a pressure reducing type fill valve. A combination of the two units is based on price consideration—not performance. The first basic step in providing correct safety control for a hot water boiler is to make sure that an ASME relief valve is installed. The ASME Code states: “Every hot water heating boiler shall have at least one officially rated pressure relief valve set to relieve at or below the maximum allowable working pressure of the boiler… Relief valve shall be connected to the Copyright © 1966, 2009, By Refrigeration Service Engineers Society. -1- top of boilers with the spindle vertical if possible…. No shutoff of any description shall be placed between the relief valve and the boiler, nor on the discharge pipe between such valve and the atmosphere.” Figure 70F51B shows the correct and safe installation of the relief valve.
    [Show full text]