A Practical Treatise on Locomotive Boiler and Engine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newsletter 155 Spring 2012
NEWSLETTER 155 SPRING 2012 Puddlers’ Bridge on the Trevithick Trail, near Merthyr Tydfil. Reg. Charity 1 No. 246586 CHAIRMAN’S ADDRESS Creating links The recent opening of the Sustrans bridge, covered elsewhere in this issue, to connect two lengths of the Trevithick Trail near Merthyr Tydfil came about a year after the University of Swansea published an investigation into the Welsh Copper Industry.* Both these significant events in industrial history depended upon Cornwall’s links with Wales. In the first instance, Richard Trevithick’s ingenuity and development of the high- pressure steam engine in Cornwall took form as the world’s first steam powered railway locomotive in Wales. It is well known for having pulled a train loaded with 10 tons of iron and some 70 passengers nearly ten miles. This was 25 years before the emergence of George Stephenson’s Rocket. The second event depended mainly on the little sailing ships that carried thousands of tons of copper ore from Cornwall and returned with the Welsh coal and iron that powered Cornwall’s mines and fed its industries. Investigations have shown that much of the copper smelting in Wales and shipping was controlled by Cornish families. Cornwall had similar industrial links to Bridgnorth, Dartford and other places throughout the country; all depended to a great extent upon Cornish ingenuity. This Society appears to be the only link today between Cornwall’s industrial archaeology and that of other parts of the country. If we are to encourage the study of Cornwall’s industrial archaeology we need to develop these links for the benefit of all concerned, wherever they may be. -
Newsletter 180 Summer 2018
NEWSLETTER 180 SUMMER 2018 Robert Metcalfe leading the AGM weekend walk around Wheal Owles. Reg. Charity 1 No. 1,159,639 the central machinery hall, and consists of REPUTED TREVITHICK a single-cylinder return crank engine of the ENGINE vertical type, which there is every reason to consider it being one of Richard Trevithick’s design. Whilst it bears no maker’s name nor any means of direct identification, it presents so many well-known Trevithick features that it may be pretty certainly set down as a product of the ingenuity of the Father of High-pressure Steam. The engine was employed for over fifty years, down to 1882, at some salt works at Ingestre, Staffordshire, on the Earl’s estate. Prior to that it had been used for the winding at a colliery at Brereton, near Rugeley, and is thought to have been built at Bridgnorth. It is known that Haseldine and Co, of that place, built many engines to Trevithick’s design, under agreement with him. The engine is somewhat later than the other examples of his, close by, and is therefore of peculiar interest in enabling the course of gradual improvement to be easily followed. Thanks to Peter Coulls, the Almost everything about the request for a copy of The Engineer article machine is of cast iron, and probably its (Volume 113, page 660 (21st June 1912) original boiler was too. This, however, had about the mystery Reputed Trevithick long disappeared - they generally burst High-pressure Engine was successful. A - steam having been supplied at Ingestre copy of the article promptly arrived in the by an egg-ended boiler, 8.5 ft long by post and is reproduced here in full: 3 ft in diameter, set with a partial wheel draught and working at 35 lb pressure. -
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
History of the Automobile
HISTORY OF THE AUTOMOBILE Worked by: Lara Mateus nº17 10º2 Laura Correia nº18 10º2 Leg1: the first car. THE EARLY HISTORY The early history of the automobile can be divided into a number of eras, based on the prevalent means of propulsion. Later periods were defined by trends in exterior styling, size, and utility preferences. In 1769 the first steam powered auto-mobile capable of human transportation was built by Nicolas-Joseph Cugnot. In 1807, François Isaac de Rivaz designed the first car powered by an internal combustion engine fueled by hydrogen. In 1886 the first petrol or gasoline powered automobile the Benz Patent-Motorwagen was invented by Karl Benz.This is also considered to be the first "production" vehicle as Benz made several identical copies. FERDINAND VERBIEST Ferdinand Verbiest, a member of a Jesuit mission in China, built the first steam-powered vehicle around 1672 as a toy for the Chinese Emperor. It was of small enough scale that it could not carry a driver but it was, quite possibly the first working steam-powered vehicle. Leg2: Ferdinand Verbiest NICOLAS-JOSEPH CUGNOT Steam-powered self-propelled vehicles large enough to transport people and cargo were first devised in the late 18th century. Nicolas-Joseph Cugnot demonstrated his fardier à vapeur ("steam dray"), an experimental steam-driven artillery tractor, in 1770 and 1771. As Cugnot's design proved to be impractical, his invention was not developed in his native France. The center of innovation shifted to Great Britain. NICOLAS-JOSEPH CUGNOT By 1784, William Murdoch had built a working model of a steam carriage in Redruth. -
Interstate Commerce Commission Washington
INTERSTATE COMMERCE COMMISSION WASHINGTON REPORT NO. 3483 wTRAL OF GSOLTIA RAILWAY COMPANY IN RE ACCJ DENT AT MCINTIRE , OA.f ON ATJVAJS: 29, 1952 Report No. 3483 SUMMARY Date: August 29, 1952 Rail road: Central of Georgia Location: Mcli-tyre, G&. Kino oi' accident: Boiler explosion Train Number: Gordon svnitch local Locomotive number: g 00 Conn 1st: Ltjht, at time of accident Speed: Standing Operation: Local si\ri telling Track: On house track Tire : 1:20 p. m, g, nidl!-|c3: 2 Injured Cause : Overheated crown sheet result ing from low water INTERSTATE CONNERCE COMMISSION REPORT NO. 3483 IN THE NATTER OP MAKING ACCIDENT INVESTIGATION UNDER THE LOCOMOTIVE INSPECTION ACT OF FEBRUARY 17, 1911, AS AMENDED CENTRAL OF GEORGIA RAILWAY November 10, 1952 Acoident (boiler explosion) at Hclntyre, Ga,, on August 29, 1952, caused, by overheated, crown sheet due to low water. REPORT OF THE COMMISSION1 PATTERSON, Commissioner: On August ?9, 1952, about 1:10 p.m., at Mclntyre, Ga., the boiler of Central of Georgia Railway locomotive 6?S exploded while the locomotive was standing on the house track. The engi neer and. fireman were seriously injured. lUnder authority of sect: on 17 (2) of the Interstate Commerce Act the above-entitled proceeding was referred by the Commission to Commissioner Patterson for consideration and disposition. - 3 - DESCRIPTION OF ACCIDENT Central of Georgia Railway locomotive 629 wan placed in service at Gordon, Ga,, at 7:30 a.m., August 29, 1952, on the Gordon switch local which regularly performs switching service at four kaolin mines at and between Gordon ana Mclntyre, Ga,, a station 8.9 miles ca?t of Gordon, After switching at two mines the train proceeded, without any known unusual incident, one mile to Nolntyre where the train, consisting of 3 loaded ana 4 empty cars, was placed-on a siding and the locomotive moved to the house track. -
The Evolution of the Steam Locomotive, 1803 to 1898 (1899)
> g s J> ° "^ Q as : F7 lA-dh-**^) THE EVOLUTION OF THE STEAM LOCOMOTIVE (1803 to 1898.) BY Q. A. SEKON, Editor of the "Railway Magazine" and "Hallway Year Book, Author of "A History of the Great Western Railway," *•., 4*. SECOND EDITION (Enlarged). £on&on THE RAILWAY PUBLISHING CO., Ltd., 79 and 80, Temple Chambers, Temple Avenue, E.C. 1899. T3 in PKEFACE TO SECOND EDITION. When, ten days ago, the first copy of the " Evolution of the Steam Locomotive" was ready for sale, I did not expect to be called upon to write a preface for a new edition before 240 hours had expired. The author cannot but be gratified to know that the whole of the extremely large first edition was exhausted practically upon publication, and since many would-be readers are still unsupplied, the demand for another edition is pressing. Under these circumstances but slight modifications have been made in the original text, although additional particulars and illustrations have been inserted in the new edition. The new matter relates to the locomotives of the North Staffordshire, London., Tilbury, and Southend, Great Western, and London and North Western Railways. I sincerely thank the many correspondents who, in the few days that have elapsed since the publication: of the "Evolution of the , Steam Locomotive," have so readily assured me of - their hearty appreciation of the book. rj .;! G. A. SEKON. -! January, 1899. PREFACE TO FIRST EDITION. In connection with the marvellous growth of our railway system there is nothing of so paramount importance and interest as the evolution of the locomotive steam engine. -
The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED the LIVE STEAM SCENE
The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED THE LIVE STEAM SCENE fredlub |SNCF231E | 8 februari 2021 1 Content 1 Content ................................................................................................................................ 2 2 Introduction ........................................................................................................................ 5 3 1975 - 1985 .......................................................................................................................... 6 Southern Railway Schools Class .................................................................................................................... 6 JNR 8550 .......................................................................................................................................................... 7 V&T RR Reno ................................................................................................................................................. 8 Old Faithful ...................................................................................................................................................... 9 Shay Class B ..................................................................................................................................................... 9 JNR C12 ......................................................................................................................................................... 10 PLM 231A ..................................................................................................................................................... -
RED RAVEN, the LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California
RED RAVEN, THE LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California State University, Northridge California, USA Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent polycarbonate weatherproofing shell. INTRODUCTION 1. Horizontal Center of Gravity Red RAVEN, the grand award (HCG) winner of the 2011 Intelligent Ground Vehicle (IGV) Competition, is mechanically Unless a differential drive vehicle designed to navigate through an autonomous can balance the weight of its platform on the course fast and efficiently. The Cal State two driving wheels similar to a Segway, an Northridge IGV Team designed the vehicle additional and floating or caster wheel is with the innovative Linked-Bogie dynamic required to support the platform weight. -
Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle
Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle: The wheel is connected to the rod by a crank. The rod is connected to the piston rod of the steam cylinder., thereby converting the reciprocating motion of the piston rod generated by steam power into wheel rotation. - Main Parts of a steam locomotive: 1. Tender — Container holding both water for the boiler and combustible fuel such as wood, coal or oil for the fire box. 2. Cab — Compartment from which the engineer and fireman can control the engine and tend the firebox. 3. Whistle — Steam powered whistle, located on top of the boiler and used as a signalling and warning device. 4. Reach rod — Rod linking the reversing actuator in the cab (often a 'johnson bar') to the valve gear. 5. Safety valve — Pressure relief valve to stop the boiler exceeding the operating limit. 6. Generator — Steam powered electric generator to power pumps, head lights etc, on later locomotives. 7. Sand box/Sand dome — Holds sand that can be deposited on the rails to improve traction, especially in wet or icy conditions. 8. Throttle Lever — Controls the opening of the regulator/throttle valve thereby controlling the supply of steam to the cylinders. 9. Steam dome — Collects the steam at the top of the boiler so that it can be fed to the engine via the regulator/throttle valve. 10. Air pump — Provides air pressure for operating the brakes (train air brake system). 11. Smoke box — Collects the hot gas that have passed from the firebox and through the boiler tubes. -
The Steam Locomotive Table, V1
The Steam Locomotive Table, v1 If you’re reading this; you either like steam trains, or want to know more about them. Hopefully, either way, I can scratch your itch with this; a set of randomizer/dice-roll tables of my own making; as inspired by some similar tables for tanks and aircrafts. Bear with me, I know not everyone knows the things I do, and I sure know I don’t know a lot of things other train enthusiasts do; but hopefully the descriptions and examples will be enough to get anyone through this smoothly. To begin, you’ll either want a bunch of dice or any online dice-rolling/number generating site (or just pick at your own whim); and somewhere or something to keep track of the details. These tables will give details of a presumed (roughly) standard steam locomotive. No sentinels or other engines with vertical boilers; no climax, shay, etc specially driven locomotives; are considered for this listing as they can change many of the fundamental details of an engine. Go in expecting to make the likes of mainline, branchline, dockyard, etc engines; not the likes of experiments like Bulleid’s Leader or specific industry engines like the aforementioned logging shays. Some dice rolls will have uneven distribution, such as “1-4, and 5-6”. Typically this means that the less likely detail is also one that is/was significantly less common in real life, or significantly more complex to depict. For clarity sake examples will be linked, but you’re always encouraged to look up more as you would like or feel necessary. -
Steam Power Plant
www.getmyuni.com Steam Power Plant A power plant is assembly of systems or subsystems to generate electricity, i.e., power with economy and requirements. The power plant itself must be useful economically and environmental friendly to the society. The present book is oriented to conventional as well as non-conventional energy generation. While the stress is on energy efficient system regards conventional power systems viz., to increase the system conversion efficiency the supreme goal is to develop, design, and manufacturer the non-conventional power generating systems in coming decades preferably after 2050 AD which are conducive to society as well as having feasible energy conversion efficiency and non-friendly to pollution, keeping in view the pollution act. The subject as a whole can be also stated as modern power plants for power viz electricity generation in 21st century. The word modern means pertaining to time. At present due to energy crisis the first goal is to conserve energy for future while the second step is todevelop alternative energy systems including direct energy conversion devices, with the devotion, dedication and determination remembering the phrase, “Delve and Delve Again till wade into”. CLASSIFICATION OF POWER PLANTS Power Plant 1. Conventional - Steam Engines Power Plants - S team Turbine Power Plants - Diesel Power Plants - Gas Turbine Power Plants - Hydro-Electric Power Plants - Nuclear Power Plants Thermoelectric Generator 2. Non-conventional Thermoelectric generator Fuel-cells Power Plants Photovoltaic solar cells Power S ystem MHD Power Plants Fussion Reactor N PP Power S y stem Biogas, Biomass Energy Power sy stem Geothermal Energy Wind Energy Power System Ocean Thermal energy conversion (OTEC) Wave and Tidal Wave Energ y Plantation Scheme A power plant may be defined as a machine or assembly of equipment that generates and delivers a flow of mechanical or electrical energy. -
WSA Engineering Branch Training 3
59 RECIPROCATING STEAM ENGINES Reciprocating type main engines have been used to propel This is accomplished by the guide and slipper shown in the ships, since Robert Fulton first installed one in the Clermont in drawing. 1810. The Clermont's engine was a small single cylinder affair which turned paddle wheels on the side of the ship. The boiler was only able to supply steam to the engine at a few pounds pressure. Since that time the reciprocating engine has been gradually developed into a much larger and more powerful engine of several cylinders, some having been built as large as 12,000 horsepower. Turbine type main engines being much smaller and more powerful were rapidly replacing reciprocating engines, when the present emergency made it necessary to return to the installation of reciprocating engines in a large portion of the new ships due to the great demand for turbines. It is one of the most durable and reliable type engines, providing it has proper care and lubrication. Its principle of operation consists essentially of a cylinder in which a close fitting piston is pushed back and forth or up and down according to the position of the cylinder. If steam is admitted to the top of the cylinder, it will expand and push the piston ahead of it to the bottom. Then if steam is admitted to the bottom of the cylinder it will push the piston back up. This continual back and forth movement of the piston is called reciprocating motion, hence the name, reciprocating engine. To turn the propeller the motion must be changed to a rotary one.